SlideShare a Scribd company logo
Amazon SageMaker
?
AWS
AWS Deep Learning AMIs
EC2 GPUs EC2 CPUs IoT Edge
Amazon SageMaker Amazon Mechanical Turk
R E K O G N I T I O N R E K O G N I T I O N
V I D E O
P O L L Y T R A N S C R I B E T R A N S L A T E C O M P R E H E N D L E X
KERAS
Amazon SageMaker で始める機械学習
SageMaker
•
•
•
• IoT
•
•
SageMaker
SageMaker
SageMaker
SageMaker
Agenda
SageMaker
SageMaker
Amazon SageMaker で始める機械学習
Amazon SageMaker で始める機械学習
•
• 1
1
• 1
•
•
SageMaker
SageMaker
8
SageMaker
•
•
•
•
•
•
•
•
•
Jupyter Notebook
•
•
• 4
⎼ ml.t2
⎼ ml.m4
⎼ ml.p2
⎼ ml.p3
• VPC
ENI VPC
CreateTrainingJob API Docker
•
• 2
• m4, m5, c4, c5,
p2, p3
•
S3
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
CreateEndpoint API Docker
• AB
•
•
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/API_UpdateEndpoint.html
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/API_UpdateEndpointWeightsAndCapacities.html
SageMaker
SageMaker 2
AWS SDK
•
•
SageMaker SDK
•
• AWS SDK SageMaker SDK AWS SDK
scikit-learn
• Python Spark
• Jupyter Notebook
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-spark
AWS SDK SageMaker SDK
• SageMaker SDK
Jupyter Notebook
• AWS SDK
SageMaker SDK AWS SDK
create-endpoint
create-notebook-instance
create-training-job
delete-endpoint
delete-notebook-instance
describe-endpoint
describe-notebook-instance
…
estimator = TensorFlow(…)
estimator.set_hyperparameters(…)
estimator.fit(…)
predictor = estimator.deploy(…)
Predictor.predict(…)
SageMaker
1. SageMaker
2. Tensorflow/Chainer/PyTorch/MXNet
3.
SageMaker
1. SageMaker
→
2. Tensorflow/Chainer/PyTorch/MXNet
→
3.
→
SageMaker
Linear Learner
XGBoost (eXtreme Gradient
Boosting)
PCA
k-means
k-NN
Factorization Machines
Random Cut Forest (Amazon)
LDA (Latent Dirichlet Allocation)
SageMaker
SageMaker
Image classification
Object Detection
seq2seq
Neural Topic Model
Blazing text
(Amazon)
DeepAR Forecasting
(Amazon)
Image Classification
ResNet
• ResNet CNN
• ILSVRC 2015 1
• ImageNet
• use_pretrained_model
1 0
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-transfer-learning.ipynb
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/image-classification.html
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/IC-Hyperparameter.html
Object Detection
SSD
•
• VGG or ResNet
• ImageNet
• use_pretrained_model
1 0
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/object_detection_pascalvoc_coco/object_detection_image_json_format.ipynb
https://arxiv.org/pdf/1512.02325.pdf
https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/IC-Hyperparameter.html
SageMaker
S3
estimator.fit()
SageMaker
S3
estimator.deploy()
SageMaker
S3
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
SageMaker
Tensorflow/Chainer/PyTorch
/MXNet
*
S3
SageMaker
S3
estimator.fit() .
AWS
SageMaker
S3
estimator.deploy()
AWS
SageMaker
S3
Tensorflow
• model_fn
• estimator_fn tensorflow.estimator
• keras_model_fn tf.keras
• train_input_fn
• eval_input_fn
• serving_input_fn
• input_fn
• output_fn
https://docs.aws.amazon.com/sagemaker/latest/dg/tf-training-inference-code-template.html
5
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/API_CreateTrainingJob.html
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/tf-example1-train.html
CreateTrainingJob
Hyperparameters
Chainer
• __main__
• model_fn:
•
https://docs.aws.amazon.com/sagemaker/latest/dg/chainer.html
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-
sdk/chainer_mnist/chainer_mnist_single_machine.py
PyTorch
• __main__
• model_fn:
•
https://docs.aws.amazon.com/sagemaker/latest/dg/pytorch.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/README.rst
MXNet
• train
• save
• model_fn:
• transform_fn:
•
https://docs.aws.amazon.com/sagemaker/latest/dg/mxnet-training-inference-code-template.html
Amazon SageMaker で始める機械学習
docker run IMAGE_ID train
• train
• estimator.fit() docker run train
docker run IMAGE_ID serve
• serve
• estimator.fit() serve
• predictor.predict() /invocations
•
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html
ECR
push
SageMaker
S3
S3ECR
SageMaker
estimator.fit()
S3ECR
SageMaker
estimator.deploy()
Amazon SageMaker で始める機械学習
Amazon SageMaker で始める機械学習
SageMaker
SageMaker 3
1:
• SageMaker
2: GPU
• AWS
SageMaker API
CreateTrainingJob
CreateEndpointConfig
UpdateEndpoint
UpdateEndpointWeightsAndCapacities
Amazon SageMaker で始める機械学習
• →
•
VPC
EMR
SageMaker
EMR
EMR VPC
EMR Livy
https://aws.amazon.com/jp/blogs/news/build-amazon-sagemaker-notebooks-backed-by-spark-in-amazon-emr/
AWS
SageMaker
Presigned URL API
• CreatePresignedNotebookInstanceUrl
• AWS AWS
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreatePresignedNotebookInstanceUrl.html
CreatePresignedNotebookInstanceUrl
CreateNotebookInstance
Presigned Instance URL Returned
Presigned Instance URL
Notebook Instance Request
Instance Created
Amazon SageMaker で始める機械学習
SageMaker
→ instance_count 2
Tensorflow/Chainer/PyTorch/MXNet
→ instance_count
→
Docker SageMaker
/opt/ml/input/config/resourceConfig.json
Estimater hyperparameters
Tensorflow/Chainer/PyTorch/MXNet BYOA
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning
https://github.com/aws/sagemaker-python-sdk#sagemaker-automatic-model-tuning
CloudWatch Logs
CloudWatch Logs
Tensorflow
AWS Tensorflow Docker
model_fn
source_dir
Tensorflow 1.4-1.9 Keras
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/tf-examples.html
SageMaker Tensorflow/Chainer/PyTorch/MXNet
github
• SageMaker pull /
•
instance_type ‘local’
https://github.com/aws/sagemaker-python-sdk#local-mode
https://github.com/aws/sagemaker-tensorflow-containers
https://github.com/aws/sagemaker-mxnet-containers
https://github.com/aws/sagemaker-chainer-container
https://github.com/aws/sagemaker-pytorch-container
PIPE
2
• FILE:
• PIPE: S3 API
PIPE
• Tensorflow TFRecord
• MXNet RecordIO
Chainer PyTorch
PIPE
Amazon SageMaker で始める機械学習
=
2
• SageMakerVariantInvocationsPerInstance
⎼ 1 1
•
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html#endpoint-auto-scaling-add-policy
https://docs.aws.amazon.com/ja_jp/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
Tensorflow
AWS Tensorflow Docker
Tensorflow Serving
input_fn, output_fn
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/tf-examples.html
A/B
•
•
•
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/API_runtime_InvokeEndpoint.html
Transform Job
Transform Job
•
•
S3
Amazon SageMaker で始める機械学習
:
KMS key ID
SSE-KMS
• CreateTrainingJob /
• CreateEndpointConfig
•
•
Cloudtrail
PCI DSS HIPPA
https://aws.amazon.com/about-aws/whats-new/2018/01/aws-kms-based-encryption-is-now-available-in-amazon-sagemaker-training-and-hosting/
https://aws.amazon.com/about-aws/whats-new/2018/01/aws-cloudtrail-integration-is-now-available-in-amazon-sagemaker/
https://aws.amazon.com/about-aws/whats-new/2018/01/amazon-sagemaker-achieves-pci-dss-compliance/
https://aws.amazon.com/about-aws/whats-new/2018/04/access-amazon-vpc-resources-for-training-and-hosting-with-amazon-sageMaker/
https://aws.amazon.com/about-aws/whats-new/2018/05/Amazon-SageMaker-Achieves-HIPAA-Eligibility/
https://aws.amazon.com/jp/about-aws/whats-new/2018/06/amazon-sagemaker-inference-calls-are-supported-on-aws-privatelink/
:
SageMaker S3 S3 VPC
• S3
• S3
SageMaker API PrivateLink
• SageMaker Service API
• SageMaker Runtime API
https://aws.amazon.com/about-aws/whats-new/2018/04/access-amazon-vpc-resources-for-training-and-hosting-with-amazon-sageMaker/
https://aws.amazon.com/jp/about-aws/whats-new/2018/06/amazon-sagemaker-inference-calls-are-supported-on-aws-privatelink/
https://aws.amazon.com/about-aws/whats-new/2018/08/amazon-sagemaker-apis-supported-on-aws-privatelink/
ML
• SageMaker
1
ML
•
• 0.14 USD/GB/
•
• 0.016 USD/GB
https://aws.amazon.com/jp/sagemaker/pricing/
3
SageMaker Example Notebooks
• https://github.com/awslabs/amazon-sagemaker-examples
SageMaker SDK
• https://github.com/aws/sagemaker-python-sdk
(Doc : https://readthedocs.org/projects/sagemaker/)
SageMaker
• https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/whatis.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms
https://docs.aws.amazon.com/ja_jp/sagemaker/latest/dg/algos.html
•
•
•
•
•
•
•
•
•
•
•
•
•
•
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
Amazon Web Services Japan, K. K.
Amazon SageMaker
SageMaker
https://aws.amazon.com/jp/console/
(Chrome, Firefox IE, Safari )
SageMaker
Amazon SageMaker で始める機械学習
SageMaker
•
•
ml.t2.medium
• IAM
IAM
S3
S3
• VPC,
•
Jupyter Notebook
• InService
Jupyter Notebook
• New → Terminal
Terminal
cd SageMaker/
wget http://bit.ly/sm-handson -O handson.zip
unzip handson.zip + (O)
URL DL
Jupyter Notebook
handson
•
• XGBoost MNIST
• Chainer on SageMaker
• Chainer MLP MNIST
• MNIST Factorization Machines
@awscloud_jp
http://on.fb.me/1vR8yWm
Twitter/Facebook
AWS
Amazon SageMaker で始める機械学習

More Related Content

What's hot (20)

PPTX
AWSで作る分析基盤
Yu Otsubo
 
PDF
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
PDF
AWS Black Belt Tech シリーズ 2015 - Amazon Redshift
Amazon Web Services Japan
 
PDF
AWS Black Belt Online Seminar 2016 AWS IoT
Amazon Web Services Japan
 
PPTX
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
DeNA
 
PDF
AWSではじめるMLOps
MariOhbuchi
 
PDF
Singularityで分散深層学習
Hitoshi Sato
 
PDF
レコメンドアルゴリズムの基本と周辺知識と実装方法
Takeshi Mikami
 
PDF
SolrとElasticsearchを比べてみよう
Shinsuke Sugaya
 
PDF
MQTTとAMQPと.NET
terurou
 
PDF
20190806 AWS Black Belt Online Seminar AWS Glue
Amazon Web Services Japan
 
PDF
Machine learning CI/CD with OSS
yusuke shibui
 
PDF
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
Ayako_Hasegawa
 
PDF
ビッグデータ処理データベースの全体像と使い分け
Recruit Technologies
 
PDF
Infrastructure as Code (IaC) 談義 2022
Amazon Web Services Japan
 
PDF
PlaySQLAlchemy: SQLAlchemy入門
泰 増田
 
PDF
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
Amazon Web Services Japan
 
PPTX
DockerコンテナでGitを使う
Kazuhiro Suga
 
PDF
失敗事例で学ぶ負荷試験
樽八 仲川
 
PDF
[AKIBA.AWS] VGWのルーティング仕様
Shuji Kikuchi
 
AWSで作る分析基盤
Yu Otsubo
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
AWS Black Belt Tech シリーズ 2015 - Amazon Redshift
Amazon Web Services Japan
 
AWS Black Belt Online Seminar 2016 AWS IoT
Amazon Web Services Japan
 
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
DeNA
 
AWSではじめるMLOps
MariOhbuchi
 
Singularityで分散深層学習
Hitoshi Sato
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
Takeshi Mikami
 
SolrとElasticsearchを比べてみよう
Shinsuke Sugaya
 
MQTTとAMQPと.NET
terurou
 
20190806 AWS Black Belt Online Seminar AWS Glue
Amazon Web Services Japan
 
Machine learning CI/CD with OSS
yusuke shibui
 
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
Ayako_Hasegawa
 
ビッグデータ処理データベースの全体像と使い分け
Recruit Technologies
 
Infrastructure as Code (IaC) 談義 2022
Amazon Web Services Japan
 
PlaySQLAlchemy: SQLAlchemy入門
泰 増田
 
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
Amazon Web Services Japan
 
DockerコンテナでGitを使う
Kazuhiro Suga
 
失敗事例で学ぶ負荷試験
樽八 仲川
 
[AKIBA.AWS] VGWのルーティング仕様
Shuji Kikuchi
 

Similar to Amazon SageMaker で始める機械学習 (20)

PPTX
Build, train and deploy ML models with SageMaker (October 2019)
Julien SIMON
 
PDF
Amazon SageMaker 紹介 & ハンズオン(2018/07/03 実施)
Amazon Web Services Japan
 
PPTX
Build, Train and Deploy ML Models using Amazon SageMaker
Hagay Lupesko
 
PPTX
ACDKOCHI19 - Demystifying amazon sagemaker
AWS User Group Kochi
 
PPTX
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
PPTX
Demystifying Machine Learning with AWS (ACD Mumbai)
AWS User Group Pune
 
PPTX
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
PPTX
Demystifying Amazon Sagemaker (ACD Kochi)
AWS User Group Pune
 
PPTX
AWS re:Invent 2018 - ENT321 - SageMaker Workshop
Julien SIMON
 
PDF
Amazon SageMaker workshop
Julien SIMON
 
PPTX
ML_Development_with_Sagemaker.pptx
TemiReply
 
PDF
20190206 AWS Black Belt Online Seminar Amazon SageMaker Basic Session
Amazon Web Services Japan
 
PPTX
AWS re:Invent 2018 - AIM401 - Deep Learning using Tensorflow
Julien SIMON
 
PDF
Accelerate your Machine Learning workflows with Amazon SageMaker
Julien SIMON
 
PDF
Amazon SageMaker Build, Train and Deploy Your ML Models
AWS Riyadh User Group
 
PDF
Machine Learning with Amazon SageMaker
Vladimir Simek
 
PPTX
Advanced Machine Learning with Amazon SageMaker
Julien SIMON
 
PDF
AWS reinvent 2019 recap - Riyadh - AI And ML - Ahmed Raafat
AWS Riyadh User Group
 
PDF
20180309 DLIもくもく会 Deep Learning on AWS
Yasuhiro Matsuo
 
PPTX
Build, train and deploy your ML models with Amazon Sage Maker
AWS User Group Bengaluru
 
Build, train and deploy ML models with SageMaker (October 2019)
Julien SIMON
 
Amazon SageMaker 紹介 & ハンズオン(2018/07/03 実施)
Amazon Web Services Japan
 
Build, Train and Deploy ML Models using Amazon SageMaker
Hagay Lupesko
 
ACDKOCHI19 - Demystifying amazon sagemaker
AWS User Group Kochi
 
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
Demystifying Machine Learning with AWS (ACD Mumbai)
AWS User Group Pune
 
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
Demystifying Amazon Sagemaker (ACD Kochi)
AWS User Group Pune
 
AWS re:Invent 2018 - ENT321 - SageMaker Workshop
Julien SIMON
 
Amazon SageMaker workshop
Julien SIMON
 
ML_Development_with_Sagemaker.pptx
TemiReply
 
20190206 AWS Black Belt Online Seminar Amazon SageMaker Basic Session
Amazon Web Services Japan
 
AWS re:Invent 2018 - AIM401 - Deep Learning using Tensorflow
Julien SIMON
 
Accelerate your Machine Learning workflows with Amazon SageMaker
Julien SIMON
 
Amazon SageMaker Build, Train and Deploy Your ML Models
AWS Riyadh User Group
 
Machine Learning with Amazon SageMaker
Vladimir Simek
 
Advanced Machine Learning with Amazon SageMaker
Julien SIMON
 
AWS reinvent 2019 recap - Riyadh - AI And ML - Ahmed Raafat
AWS Riyadh User Group
 
20180309 DLIもくもく会 Deep Learning on AWS
Yasuhiro Matsuo
 
Build, train and deploy your ML models with Amazon Sage Maker
AWS User Group Bengaluru
 
Ad

More from Amazon Web Services Japan (20)

PDF
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
Amazon Web Services Japan
 
PDF
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
Amazon Web Services Japan
 
PDF
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
Amazon Web Services Japan
 
PDF
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
Amazon Web Services Japan
 
PDF
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
Amazon Web Services Japan
 
PDF
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Web Services Japan
 
PPTX
20220409 AWS BLEA 開発にあたって検討したこと
Amazon Web Services Japan
 
PDF
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
Amazon Web Services Japan
 
PDF
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
Amazon Web Services Japan
 
PDF
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
Amazon Web Services Japan
 
PDF
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon Web Services Japan
 
PDF
マルチテナント化で知っておきたいデータベースのこと
Amazon Web Services Japan
 
PDF
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
Amazon Web Services Japan
 
PDF
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
Amazon Web Services Japan
 
PDF
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
Amazon Web Services Japan
 
PDF
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Web Services Japan
 
PDF
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
Amazon Web Services Japan
 
PPTX
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
Amazon Web Services Japan
 
PDF
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
Amazon Web Services Japan
 
PDF
202201 AWS Black Belt Online Seminar Apache Spark Performnace Tuning for AWS ...
Amazon Web Services Japan
 
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
Amazon Web Services Japan
 
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
Amazon Web Services Japan
 
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Web Services Japan
 
20220409 AWS BLEA 開発にあたって検討したこと
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
Amazon Web Services Japan
 
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
Amazon Web Services Japan
 
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
Amazon Web Services Japan
 
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon Web Services Japan
 
マルチテナント化で知っておきたいデータベースのこと
Amazon Web Services Japan
 
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
Amazon Web Services Japan
 
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
Amazon Web Services Japan
 
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
Amazon Web Services Japan
 
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
Amazon Web Services Japan
 
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
Amazon Web Services Japan
 
202201 AWS Black Belt Online Seminar Apache Spark Performnace Tuning for AWS ...
Amazon Web Services Japan
 
Ad

Recently uploaded (20)

PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
July Patch Tuesday
Ivanti
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
PDF
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
July Patch Tuesday
Ivanti
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 

Amazon SageMaker で始める機械学習