SlideShare a Scribd company logo
Optimal Damping with Hierarchical Adaptive Quadrature
for Efficient Fourier Pricing of Multi-Asset Options in
Lévy Models
Center for Uncertain
Quantification
Michael Samet, michael.samet@kaust.edu.sa
Joint work with 1
Christian Bayer (WIAS Berlin)
Chiheb Ben Hammouda (RWTH Aachen)
Antonis Papapantoleon (TU Delft, FORTH)
Raúl Tempone (RWTH Aachen, KAUST)
International Conference on Computational Finance 2022, June 10, Wuppertal.
1
Bayer, Christian, et al. ”Optimal Damping with Hierarchical Adaptive Quadrature
for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models.” arXiv preprint,
2022.
Motivation
Aim: compute E[P(XT)], P(·) is a payo↵ functional (typically non-smooth),
XT is a vector of log of asset prices at final time T.
Standard Monte Carlo (MC) has slow rate of convergence, O(M
1
2 ), and
may not take advantage of the smoothness of the problem.
Adaptive sparse grids quadrature (ASGQ) has rate of convergence,
O(M
p
2 ), where p > 1 is independent from the problem dimension, and is
related to the order up to which the weighted mixed derivatives are
bounded. (Chen 2018).
Better regularity of the integrand’s transform in the Fourier space (when
applicable) than the integrand’s regularity in the physical space.
Challenges
1 For integrability purposes, several Fourier methods rely on damping
parameters whose values a↵ect considerably the performance of numerical
quadrature methods.
2 Curse of dimensionality: cost of tensor product (TP) quadrature grows
exponentially with the number of underlying assets.
M.Samet (KAUST) Efficient Fourier Pricing 2 / 26
Outline
1 Problem Setting and Pricing Framework
2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse
Grids Quadrature
3 Numerical Experiments and Results
4 Conclusion
M.Samet (KAUST) Efficient Fourier Pricing 3 / 26
Outline
1 Problem Setting and Pricing Framework
2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse
Grids Quadrature
3 Numerical Experiments and Results
4 Conclusion
M.Samet (KAUST) Efficient Fourier Pricing 4 / 26
Problem Setting
Using the inverse generalized Fourier transform theorem, the value of the option price
on d stocks can be expressed as
V (⇥m, ⇥p) = e rT
E⇢XT
[P(XT)] = e rT
Z
Rd
P(x)⇢XT
(x)dx
= (2⇡) d
e rT
<
✓Z
Rd +iR
XT
(u) b
P(u)du
◆
, R 2 V
= (2⇡) d
e rT
<
✓Z
Rd
XT
(u + iR) b
P(u + iR)du
◆
:=
Z
Rd
g (u; R, ⇥m, ⇥p) du
XT
(u) is the joint characteristic function of XT := X1
T , . . . , Xd
T ,
Xi
T := log Si
T , i = 1, . . . , d, Si
T
d
i=1
are the prices of the underlying assets at
the maturity T. ⇢XT
is the risk neutral transition probability density function.
b
P(u) is the conjugate of the Fourier transform of the payo↵ function P(x).
R is a vector of damping parameter ensuring L1
integrability of g(.). V is the
strip of regularity of g(.).
i is the unit complex number, <(.) is a real part the argument. ⇥m, ⇥p are
respectively the model and payo↵ parameters.
M.Samet (KAUST) Efficient Fourier Pricing 5 / 26
Considered Payo↵s
Basket put:
Payo↵ (scaled):
P (XT ) = max 1
d
X
i=1
eXi
T , 0
!
Conjugate of the Fourier transform of the payo↵:
b
P(z) =
Qd
j=1 ( izj )
⇣
i
Pd
j=1 zj + 2
⌘, z 2 Cd
, =[z] 2 P
Call on min:
Payo↵ (scaled):
P (XT ) = max
⇣
min
⇣
eX1
T , . . . , eXd
T
⌘
1, 0
⌘
Conjugate of the Fourier transform of the payo↵:
b
P(z) =
1
⇣
i
⇣Pd
j=1 zj
⌘
1
⌘ Qd
j=1 (izj )
, z 2 Cd
, =[z] 2 P
Notation: (·): complex Gamma function, =(·): imaginary part of the argument, P : strip
of regularity of the conjugate of the payo↵ Fourier transform.
M.Samet (KAUST) Efficient Fourier Pricing 6 / 26
Pricing Models
Table: Discounted characteristic function of XT. XT
(·) = eih·,X0i
XT
(·), h., .i is the standard
dot product on Rd
, X is the strip of regularity of the characteristic function.
Model XT
(u)
GBM exp i
⌦
z, r1Rd
1
2 diag(⌃)
↵
T T
2 hz, ⌃zi , =[z] 2 X .
VG exp (i hz, µVG i T) 1 i⌫h✓, zi + 1
2 ⌫hz, ⌃zi
1/⌫
, =[z] 2 X .
NIG exp
⇣
i hz, µNIG i T + T
⇣p
↵2 h , i
p
↵2 h + iz, ( + iz)i
⌘⌘
,
=[z] 2 X .
, ⌃: Geometric Brownian Motion (GBM) parameters, controlling respectively the
volatility and the correlation between stocks.
⌫, ✓, , ⌃: Variance Gamma (VG) parameters, controlling respectively the peakedness,
skewness, volatility, and the correlation between stocks.
↵, , , : Normal Inverse Gaussian (NIG) parameters, controlling respectively the
peakedness, the skewness, the tail-heaviness, and the degree of correlation between
stocks.
µVG,i = r + 1
⌫ log 1 1
2
2
i ⌫ ✓i ⌫ , i = 1, . . . , d
µNIG,i = r
✓
p
↵2 2
i
q
↵2 ( i + 1)
2
◆
, i = 1, . . . , d
M.Samet (KAUST) Efficient Fourier Pricing 7 / 26
Strip of Regularity
To ensure the L1
integrability of g(·), a vector of damping parameters R 2 Rd
is
introduced, which must belong to V , where V = ¯P  X .
Table: Strip of regularity of the conjugate of payo↵ transforms, P (Eberlein,
Glau, and Papapantoleon 2010).
Payo↵ P
Basket put {R 2 Rd
, Ri > 0 8i 2 {1, . . . , d}}
Call on min {R 2 Rd
, Ri < 0 8i 2 {1, . . . , d},
Pd
i=1 Ri < 1}
Table: Strip of regularity of the characteristic functions, X (Eberlein, Glau, and
Papapantoleon 2010).
Model X
GBM Rd
VG {R 2 Rd
, 1 + ⌫h✓, Ri 1
2 ⌫hR, ⌃Ri > 0}
NIG {R 2 Rd
, ↵2
h( R), ( R)i > 0}
M.Samet (KAUST) Efficient Fourier Pricing 8 / 26
Strip of Regularity: 2D Illustration
Figure: Strip of regularity of characteristic functions, X , (left) VG: = (0.2, 0.8),
✓ = ( 0.3, 0), ⌫ = 0.257 (right) NIG: ↵ = 10, = ( 3, 0), = 0.2, = I2.
There is no guidance in the litterature on how to choose the damping
parameters, R, to improve error convergence of quadrature methods in the
Fourier space.
M.Samet (KAUST) Efficient Fourier Pricing 9 / 26
E↵ect of the Damping Parameters: 2D Illustration
Figure: E↵ect of the damping parameters on the shape of the integrand in case of basket
put on 2 stocks under VG: = (0.4, 0.4), ✓ = ( 0.3, 0.3), ⌫ = 0.257 (top left)
R = (0.2, 0.2) (top right) R = (1, 1), (bottom left) R = (2, 2), (bottom right) R = (3, 3).
M.Samet (KAUST) Efficient Fourier Pricing 10 / 26
Outline
1 Problem Setting and Pricing Framework
2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse
Grids Quadrature
3 Numerical Experiments and Results
4 Conclusion
M.Samet (KAUST) Efficient Fourier Pricing 11 / 26
Methodology
1 Smoothing the Fourier integrand via a proposed heuristic
optimization rule.
2 Approximating the Fourier integral using adaptive sparse grid
quadrature (ASGQ), hence accelerating the convergence of the
numerical quadrature.
M.Samet (KAUST) Efficient Fourier Pricing 12 / 26
Optimal Damping Rule: 1D Motivation
We define the quadrature error as
EQN
[g] :=
Z b
a
g(x)⇢(x)dx
N
X
k=1
g (xk) wk
g : [a, b] ⇢ R 7! R (a, b can be infinite), ⇢(.) be a weight function, {xk}N
k=1,
{wk}N
k=1 are respectively quadrature nodes and quadrature weights, N is the number
of quadrature points.
Theorem: Derivative-free quadrature error estimate (Donaldson and Elliott
1972)
| EQN
[g] |=|
1
2⇡i
I
C
KN(z)g(z)dz |
1
2⇡
max
z2C
|g(z)|
I
C
|KN(z)kdz|
KN(z) =
HN(z)
⇡N(z)
, HN(z) =
Z b
a
⇢(x)
⇡N(z)
z x
dx
C is a contour containing the interval [a, b] within which g(z) has no singularities
(poles, fractional powers, branch points, discontinuities in a function or in any of its
derivatives.), ⇡N(z) are the roots of the orthogonal polynomial related to the
considered quadrature.
M.Samet (KAUST) Efficient Fourier Pricing 13 / 26
Optimal Damping Rule: 1D Motivation
Figure: (left) Shape of the integrand w.r.t the damping parameter, R. (right)
Convergence of relative quadrature error w.r.t. number of quadrature points,
using Gauss-Laguerre quadrature for the European put option under VG:
S0 = K = 100, r = 0, T = 1, = 0.4, ✓ = 0.3, ⌫ = 0.257.
M.Samet (KAUST) Efficient Fourier Pricing 14 / 26
Optimal Damping Heuristic Rule
We propose a heuristic optimization rule for choosing the damping
parameters
R⇤
:= R⇤
(⇥m, ⇥p) = arg min
R2 V
kg(u; R, ⇥m, ⇥p)k1, (1)
where R⇤
:= (R⇤
1 , . . . , R⇤
d ) denotes the optimal damping parameters.
For the considered models, the integrand attains its maximum at the
origin point u = 0Rd ; thus solving (1) is reformulated to a simpler
optimization problem
R⇤
= arg min
R2 V
g(0Rd ; R, ⇥m, ⇥p).
We denote by R the numerical approximation of R⇤ using
interior-point method.
M.Samet (KAUST) Efficient Fourier Pricing 15 / 26
Quadrature Estimator
Qd [g] :=
d
O
i=1
Qm( i )
[g] ⌘
m( 1)
X
k1=1
· · ·
m( d )
X
kd =1
w 1
k1
· · · w d
kd
g
⇣
x 1
k1
, . . . , x d
kd
⌘
n
x i
ki
om( i )
ki =1
,
n
! i
ki
om( i )
ki =1
are respectively the sets of quadrature points and
corresponding quadrature weights.
= ( i )
d
i=1 2 Nd
is a multi-index, and m : N ! N is a level-to-nodes
function mapping a given level to the number of quadrature points.
i Qd :=
(
Qd Q
0
d , with 0
= ei , when i > 0
Qd , otherwise
QI
d =
X
2I
Qd , Qd =
d
O
i=1
i
!
Qd
M.Samet (KAUST) Efficient Fourier Pricing 16 / 26
Quadrature Estimator
Table: Construction details for the quadrature methods. ` 2 N represents a given level.
T̄ 2 is a threshold value. r is the order of bounded total derivatives, p depends on the
order up to which weighted mixed derivatives are bounded (Chen 2018).
Quadrature
Method
m : N 7! N I(`) ⇢ Nd
Complexity
TP m( ) = IT P
(`) ⌘ { 2 Nd
+ : || ||1  `} O N
r
d
ASGQ m( ) = 2 1
+1,
> 1, m(1) = 1
IASGQ
⌘ 2 Nd
+ : P T̄ O N
p
2
New indices are selected iteratively, a-posteriori, based on the error versus cost-profit rule,
with a hierarchical surplus defined by P =
| E |
W
E = Q
IASGQ
[{ }
d [g] QIASGQ
d [g] (Error Contribution)
W = Work
h
Q
IASGQ
[{ }
d [g]
i
Work
h
QIASGQ
d [g]
i
(Work Contribution)
M.Samet (KAUST) Efficient Fourier Pricing 17 / 26
ASGQ Construction: 2D Illustration
Figure: A-posteriori construction of the index set for ASGQ (Bayer,
Ben Hammouda, and Tempone 2020).
M.Samet (KAUST) Efficient Fourier Pricing 18 / 26
Outline
1 Problem Setting and Pricing Framework
2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse
Grids Quadrature
3 Numerical Experiments and Results
4 Conclusion
M.Samet (KAUST) Efficient Fourier Pricing 19 / 26
Setting for the Numerical Experiments
The relative quadrature error is defined as
Relative Error =
| QI
d [g] Reference Value |
Reference Value
,
where QI
d [g] is the quadrature estimator with Gauss-Laguerre measure used
to approximate the integral of g(.).
Reference values are computed by the MC method using M = 109
samples.
The used parameters are based on the literature on model calibration, GBM:
(Healy 2021), VG: (Aguilar 2020), NIG: (Kirkby 2015).
For illustration, we provide the numerical results under VG model. These
results are consistent with the results found under other pricing models,
namely, GBM and NIG, for di↵erent parameter sets and dimensions,
d 2 {2, 4, 6}.
M.Samet (KAUST) Efficient Fourier Pricing 20 / 26
Numerical Experiments and Results
Payo↵ Set Model Parameters
Basket
put
1 = (0.4, 0.4, 0.4, 0.4), ✓ = ( 0.3, 0.3, 0.3, 0.3), ⌫ = 0.257
Basket
put
2 = (0.2, 0.4, 0.6, 0.8), ✓ = ( 0.3, 0.2, 0.1, 0), ⌫ = 0.257
Call on
min
3 = (0.4, 0.4, 0.4, 0.4), ✓ = ( 0.3, 0.3, 0.3, 0.3), ⌫ = 0.257
Call on
min
4 = (0.2, 0.4, 0.6, 0.8), ✓ = ( 0.3, 0.2, 0.1, 0), ⌫ = 0.257
Basket
put
5
= (0.4, 0.4, 0.4, 0.4, 0.4, 0.4), ✓ = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3),
⌫ = 0.257
Basket
put
6
= (0.2, 0.3, 0.4, 0.5, 0.6, 0.7), ✓ = ( 0.3, 0.2, 0.1, 0, 0.1, 0.2),
⌫ = 0.257
Call on
min
7
= (0.4, 0.4, 0.4, 0.4, 0.4, 0.4), ✓ = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3),
⌫ = 0.257
Call on
min
8
= (0.2, 0.3, 0.4, 0.5, 0.6, 0.7), ✓ = ( 0.3, 0.2, 0.1, 0, 0.1, 0.2),
⌫ = 0.257
Table: Parameters setting for the numerical experiments under VG model
M.Samet (KAUST) Efficient Fourier Pricing 21 / 26
E↵ect of the ASGQ
Figure: Convergence of the relative quadrature error w.r.t. number of quadrature
points for TP and ASGQ methods for European 4-asset options under VG model,
when optimal damping parameters, R, are used (left) basket put: set 2 (right)
call on min: set 4
100
101
102
103
104
Number of quadrature points
10-4
10-3
10-2
10-1
100
Relative
Error
100
101
102
103
Number of quadrature points
10-4
10-3
10-2
10-1
100
Relative
Error
M.Samet (KAUST) Efficient Fourier Pricing 22 / 26
E↵ect of the Optimal Damping Rule on ASGQ
Figure: Convergence of the relative quadrature errorr, w.r.t. number of
quadrature points, for the ASGQ method for various damping parameter values
under VG model (left) basket put: set 2 (right) call on min: set 4
100
101
102
103
104
Number of quadrature points
10-3
10-2
10-1
100
Relative
Error
100
101
102
103
Number of quadrature points
10-4
10-3
10-2
10-1
100
Relative
Error
M.Samet (KAUST) Efficient Fourier Pricing 23 / 26
Comparison of Fourier approach against MC
Table: Comparison of the Fourier approach against the MC method for the
European basket put and call on min under the VG model.
Payo↵ d Set Best
Quadra-
ture
Relative
Error
CPU
Time
Ratio
Basket put 4 1 ASGQ 2.6 ⇥ 10 4
4.7%
Basket put 4 2 ASGQ 3.6 ⇥ 10 4
5.2%
Call on min 4 3 ASGQ 5.9 ⇥ 10 4
0.57%
Call on min 4 4 ASGQ 8.9 ⇥ 10 4
0.56%
Basket put 6 5 ASGQ 7.8 ⇥ 10 4
42.6%
Basket put 6 6 ASGQ 5.4 ⇥ 10 3
11%
Call on min 6 7 ASGQ 2.0 ⇥ 10 3
23%
Call on min 6 8 ASGQ 2.6 ⇥ 10 3
1.3%
CPU times provided in Table 6 are obtained by averaging the CPU time of
10 runs. CPU Time Ratio = CPU(Quadrature)+CPU(Optimization)
CPU(MC) ⇥ 100.
M.Samet (KAUST) Efficient Fourier Pricing 24 / 26
Outline
1 Problem Setting and Pricing Framework
2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse
Grids Quadrature
3 Numerical Experiments and Results
4 Conclusion
M.Samet (KAUST) Efficient Fourier Pricing 25 / 26
Conclusion
We proposed a heuristic rule for a choice of the damping parameters
which improves the convergence of the numerical quadrature.
We used adaptive sparse grids quadrature to approximate the Fourier
integral in order to alleviate the curse of dimensionality.
Our Fourier method combined with the optimal damping rule and
adaptive sparse grids quadrature achieves substantial computational
gains compared to the MC method for basket and rainbow options
under GBM and in Lévy models.
More details can be found in Christian Bayer, Chiheb Ben Hammouda,
Antonis Papapantoleon, Michael Samet, and Raúl Tempone. “Optimal
Damping with Hierarchical Adaptive Quadrature for Efficient Fourier
Pricing of Multi-Asset Options in Lévy Models”. In: arXiv preprint
arXiv:2203.08196 (2022).
M.Samet (KAUST) Efficient Fourier Pricing 26 / 26
References I
[1] C. Bayer, C. Ben Hammouda, A. Papapantoleon, M. Samet,
R. Tempone. Optimal Damping with Hierarchical Adaptive Quadrature
for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models,
arXiv:2203.08196 (2022).
[2] Christian Bayer, Chiheb Ben Hammouda, and Raul Tempone
Numerical smoothing with hierarchical adaptive sparse grids and
quasi-Monte Carlo methods for efficient option pricing. arXiv preprint
arXiv:2111.01874, 2021.
[3] P Chen Sparse quadrature for high-dimensional integration with
Gaussian measure,ESAIM: Mathematical Modelling and Numerical
Analysis, 2018.
M.Samet (KAUST) Efficient Fourier Pricing 26 / 26
References II
[4] Ernst Eberlein, Kathrin Glau, and Antonis Papapantoleon Ernst
Eberlein, Kathrin Glau, and Antonis Papapantoleon. Analysis of
Fourier transform valuation formulas and applications, Applied
Mathematical Finance, 17(3):211–240, 2010.
[5] David Elliott and P.D. Tuan Asymptotic estimates of Fourier
coefficients,SIAM Journal on Mathematical Analysis, 5(1):1–10, 1974.
[6] Alan L. Lewis A simple option formula for general jump-di↵usion and
other exponential lévy processes,SSRN 282110, 2001.
[7] J. Lars. Kirkby,Efficient option pricing by frame duality with the fast
Fourier transform,SIAM Journal on Financial Mathematics,
6(1):713–747, 2015.
[8] Wim Schoutens,Lévy Processes in Finance: Pricing Financial
Derivatives,Wiley Online Library, 2003.
M.Samet (KAUST) Efficient Fourier Pricing 26 / 26
Thank you
for your attention!
M.Samet (KAUST) Efficient Fourier Pricing 26 / 26

More Related Content

PDF
Presentation.pdf
Chiheb Ben Hammouda
 
PDF
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Chiheb Ben Hammouda
 
PDF
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Chiheb Ben Hammouda
 
PDF
ICCF_2022_talk.pdf
Chiheb Ben Hammouda
 
PDF
Talk_HU_Berlin_Chiheb_benhammouda.pdf
Chiheb Ben Hammouda
 
PDF
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Chiheb Ben Hammouda
 
PDF
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
PDF
Gaussian quadratures
Tarun Gehlot
 
Presentation.pdf
Chiheb Ben Hammouda
 
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Chiheb Ben Hammouda
 
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Chiheb Ben Hammouda
 
ICCF_2022_talk.pdf
Chiheb Ben Hammouda
 
Talk_HU_Berlin_Chiheb_benhammouda.pdf
Chiheb Ben Hammouda
 
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Chiheb Ben Hammouda
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
Gaussian quadratures
Tarun Gehlot
 

Similar to Fourier_Pricing_ICCF_2022.pdf (20)

PDF
Margrabe option
Bank Industry
 
PDF
Numerical smoothing and hierarchical approximations for efficient option pric...
Chiheb Ben Hammouda
 
PDF
Thesis
Marios Aspris
 
PDF
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
CassIndTalk15g2
Sergei Levendorskii
 
PDF
Value Function Geometry and Gradient TD
Ashwin Rao
 
PDF
11.the comparative study of finite difference method and monte carlo method f...
Alexander Decker
 
PDF
The comparative study of finite difference method and monte carlo method for ...
Alexander Decker
 
PDF
Options pricing using Lattice models
Quasar Chunawala
 
PDF
Talk iccf 19_ben_hammouda
Chiheb Ben Hammouda
 
PDF
Fractional programming (A tool for optimization)
VARUN KUMAR
 
PDF
talk_NASPDE.pdf
Chiheb Ben Hammouda
 
PDF
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
PDF
09-LQR.pdf
mouli9
 
PDF
Regeneration of simple and complicated curves using Fourier series
IJAEMSJORNAL
 
PDF
Scalable inference for a full multivariate stochastic volatility
SYRTO Project
 
PDF
Levy models
Mohamed Raagi
 
PDF
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
PDF
IVR - Chapter 1 - Introduction
Charles Deledalle
 
PDF
The convenience yield implied by quadratic volatility smiles presentation [...
yigalbt
 
Margrabe option
Bank Industry
 
Numerical smoothing and hierarchical approximations for efficient option pric...
Chiheb Ben Hammouda
 
QMC: Transition Workshop - How to Efficiently Implement Multivariate Decompos...
The Statistical and Applied Mathematical Sciences Institute
 
CassIndTalk15g2
Sergei Levendorskii
 
Value Function Geometry and Gradient TD
Ashwin Rao
 
11.the comparative study of finite difference method and monte carlo method f...
Alexander Decker
 
The comparative study of finite difference method and monte carlo method for ...
Alexander Decker
 
Options pricing using Lattice models
Quasar Chunawala
 
Talk iccf 19_ben_hammouda
Chiheb Ben Hammouda
 
Fractional programming (A tool for optimization)
VARUN KUMAR
 
talk_NASPDE.pdf
Chiheb Ben Hammouda
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
09-LQR.pdf
mouli9
 
Regeneration of simple and complicated curves using Fourier series
IJAEMSJORNAL
 
Scalable inference for a full multivariate stochastic volatility
SYRTO Project
 
Levy models
Mohamed Raagi
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
IVR - Chapter 1 - Introduction
Charles Deledalle
 
The convenience yield implied by quadratic volatility smiles presentation [...
yigalbt
 
Ad

More from Chiheb Ben Hammouda (8)

PDF
Leiden_VU_Delft_seminar short.pdf
Chiheb Ben Hammouda
 
PDF
Presentation.pdf
Chiheb Ben Hammouda
 
PDF
KAUST_talk_short.pdf
Chiheb Ben Hammouda
 
PDF
MCQMC_talk_Chiheb_Ben_hammouda.pdf
Chiheb Ben Hammouda
 
PDF
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Chiheb Ben Hammouda
 
PDF
PhD defense talk slides
Chiheb Ben Hammouda
 
PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 
PDF
Mcqmc talk
Chiheb Ben Hammouda
 
Leiden_VU_Delft_seminar short.pdf
Chiheb Ben Hammouda
 
Presentation.pdf
Chiheb Ben Hammouda
 
KAUST_talk_short.pdf
Chiheb Ben Hammouda
 
MCQMC_talk_Chiheb_Ben_hammouda.pdf
Chiheb Ben Hammouda
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Chiheb Ben Hammouda
 
PhD defense talk slides
Chiheb Ben Hammouda
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 
Ad

Recently uploaded (20)

PPTX
Rotary_Fundraising_Overview_Updated_new video .pptx
allangraemeduncan
 
PPTX
Building a Strong and Ethical Digital Professional Identity
khalyaniramjan49
 
PDF
Mathematics Grade 11 Term 1 Week 1_2021.pdf
MalepyaneMokgatle
 
PDF
Developing Accessible and Usable Security Heuristics
Daniela Napoli
 
PPTX
THE school_exposure_presentation[1].pptx
sayanmondal3500
 
PPTX
AMFI - Investor Awareness Presentation.pptx
ssuser89d308
 
PPT
strucure of protein geomics for new .ppt
RakeshKumar508211
 
PPTX
PHILIPPINE LITERATURE DURING SPANISH ERA
AllizaJoyMendigoria
 
PDF
Thu Dinh - CIE-RESEARCH-METHODS-SLIDES-sample-extract.pptx.pdf
dinhminhthu1405
 
DOCX
Ss Peter & Paul Choir Formation Training
kiambutownshipsecond
 
PPTX
2025-07-27 Abraham 09 (shared slides).pptx
Dale Wells
 
PDF
SXSW Panel Picker: Placemaking: Culture is the new cost of living
GabrielCohen28
 
PPTX
Information Security and Risk Management.pptx
prembasnet12
 
PPTX
“Mastering Digital Professionalism: Your Online Image Matters”
ramjankhalyani
 
PPTX
How do Company Analysis Short Term and Long Term Investment.pptx
auntorkhastagirpujan
 
PDF
Media Training for Authors: Producing Videos & Nailing Interviews
Paula Rizzo
 
PPTX
Raksha Bandhan Celebrations PPT festival
sowmyabapuram
 
PPTX
IBA DISTRICT PIR PRESENTATION.POWERPOINT
ROGELIOLADIERO1
 
PDF
Enhancing Bambara Groundnut Production Through Improved Agronomic Practices
Francois Stepman
 
PPTX
Design Tips to Help Non-Visual Visitors Stay Safe Online
Daniela Napoli
 
Rotary_Fundraising_Overview_Updated_new video .pptx
allangraemeduncan
 
Building a Strong and Ethical Digital Professional Identity
khalyaniramjan49
 
Mathematics Grade 11 Term 1 Week 1_2021.pdf
MalepyaneMokgatle
 
Developing Accessible and Usable Security Heuristics
Daniela Napoli
 
THE school_exposure_presentation[1].pptx
sayanmondal3500
 
AMFI - Investor Awareness Presentation.pptx
ssuser89d308
 
strucure of protein geomics for new .ppt
RakeshKumar508211
 
PHILIPPINE LITERATURE DURING SPANISH ERA
AllizaJoyMendigoria
 
Thu Dinh - CIE-RESEARCH-METHODS-SLIDES-sample-extract.pptx.pdf
dinhminhthu1405
 
Ss Peter & Paul Choir Formation Training
kiambutownshipsecond
 
2025-07-27 Abraham 09 (shared slides).pptx
Dale Wells
 
SXSW Panel Picker: Placemaking: Culture is the new cost of living
GabrielCohen28
 
Information Security and Risk Management.pptx
prembasnet12
 
“Mastering Digital Professionalism: Your Online Image Matters”
ramjankhalyani
 
How do Company Analysis Short Term and Long Term Investment.pptx
auntorkhastagirpujan
 
Media Training for Authors: Producing Videos & Nailing Interviews
Paula Rizzo
 
Raksha Bandhan Celebrations PPT festival
sowmyabapuram
 
IBA DISTRICT PIR PRESENTATION.POWERPOINT
ROGELIOLADIERO1
 
Enhancing Bambara Groundnut Production Through Improved Agronomic Practices
Francois Stepman
 
Design Tips to Help Non-Visual Visitors Stay Safe Online
Daniela Napoli
 

Fourier_Pricing_ICCF_2022.pdf

  • 1. Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models Center for Uncertain Quantification Michael Samet, [email protected] Joint work with 1 Christian Bayer (WIAS Berlin) Chiheb Ben Hammouda (RWTH Aachen) Antonis Papapantoleon (TU Delft, FORTH) Raúl Tempone (RWTH Aachen, KAUST) International Conference on Computational Finance 2022, June 10, Wuppertal. 1 Bayer, Christian, et al. ”Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models.” arXiv preprint, 2022.
  • 2. Motivation Aim: compute E[P(XT)], P(·) is a payo↵ functional (typically non-smooth), XT is a vector of log of asset prices at final time T. Standard Monte Carlo (MC) has slow rate of convergence, O(M 1 2 ), and may not take advantage of the smoothness of the problem. Adaptive sparse grids quadrature (ASGQ) has rate of convergence, O(M p 2 ), where p > 1 is independent from the problem dimension, and is related to the order up to which the weighted mixed derivatives are bounded. (Chen 2018). Better regularity of the integrand’s transform in the Fourier space (when applicable) than the integrand’s regularity in the physical space. Challenges 1 For integrability purposes, several Fourier methods rely on damping parameters whose values a↵ect considerably the performance of numerical quadrature methods. 2 Curse of dimensionality: cost of tensor product (TP) quadrature grows exponentially with the number of underlying assets. M.Samet (KAUST) Efficient Fourier Pricing 2 / 26
  • 3. Outline 1 Problem Setting and Pricing Framework 2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse Grids Quadrature 3 Numerical Experiments and Results 4 Conclusion M.Samet (KAUST) Efficient Fourier Pricing 3 / 26
  • 4. Outline 1 Problem Setting and Pricing Framework 2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse Grids Quadrature 3 Numerical Experiments and Results 4 Conclusion M.Samet (KAUST) Efficient Fourier Pricing 4 / 26
  • 5. Problem Setting Using the inverse generalized Fourier transform theorem, the value of the option price on d stocks can be expressed as V (⇥m, ⇥p) = e rT E⇢XT [P(XT)] = e rT Z Rd P(x)⇢XT (x)dx = (2⇡) d e rT < ✓Z Rd +iR XT (u) b P(u)du ◆ , R 2 V = (2⇡) d e rT < ✓Z Rd XT (u + iR) b P(u + iR)du ◆ := Z Rd g (u; R, ⇥m, ⇥p) du XT (u) is the joint characteristic function of XT := X1 T , . . . , Xd T , Xi T := log Si T , i = 1, . . . , d, Si T d i=1 are the prices of the underlying assets at the maturity T. ⇢XT is the risk neutral transition probability density function. b P(u) is the conjugate of the Fourier transform of the payo↵ function P(x). R is a vector of damping parameter ensuring L1 integrability of g(.). V is the strip of regularity of g(.). i is the unit complex number, <(.) is a real part the argument. ⇥m, ⇥p are respectively the model and payo↵ parameters. M.Samet (KAUST) Efficient Fourier Pricing 5 / 26
  • 6. Considered Payo↵s Basket put: Payo↵ (scaled): P (XT ) = max 1 d X i=1 eXi T , 0 ! Conjugate of the Fourier transform of the payo↵: b P(z) = Qd j=1 ( izj ) ⇣ i Pd j=1 zj + 2 ⌘, z 2 Cd , =[z] 2 P Call on min: Payo↵ (scaled): P (XT ) = max ⇣ min ⇣ eX1 T , . . . , eXd T ⌘ 1, 0 ⌘ Conjugate of the Fourier transform of the payo↵: b P(z) = 1 ⇣ i ⇣Pd j=1 zj ⌘ 1 ⌘ Qd j=1 (izj ) , z 2 Cd , =[z] 2 P Notation: (·): complex Gamma function, =(·): imaginary part of the argument, P : strip of regularity of the conjugate of the payo↵ Fourier transform. M.Samet (KAUST) Efficient Fourier Pricing 6 / 26
  • 7. Pricing Models Table: Discounted characteristic function of XT. XT (·) = eih·,X0i XT (·), h., .i is the standard dot product on Rd , X is the strip of regularity of the characteristic function. Model XT (u) GBM exp i ⌦ z, r1Rd 1 2 diag(⌃) ↵ T T 2 hz, ⌃zi , =[z] 2 X . VG exp (i hz, µVG i T) 1 i⌫h✓, zi + 1 2 ⌫hz, ⌃zi 1/⌫ , =[z] 2 X . NIG exp ⇣ i hz, µNIG i T + T ⇣p ↵2 h , i p ↵2 h + iz, ( + iz)i ⌘⌘ , =[z] 2 X . , ⌃: Geometric Brownian Motion (GBM) parameters, controlling respectively the volatility and the correlation between stocks. ⌫, ✓, , ⌃: Variance Gamma (VG) parameters, controlling respectively the peakedness, skewness, volatility, and the correlation between stocks. ↵, , , : Normal Inverse Gaussian (NIG) parameters, controlling respectively the peakedness, the skewness, the tail-heaviness, and the degree of correlation between stocks. µVG,i = r + 1 ⌫ log 1 1 2 2 i ⌫ ✓i ⌫ , i = 1, . . . , d µNIG,i = r ✓ p ↵2 2 i q ↵2 ( i + 1) 2 ◆ , i = 1, . . . , d M.Samet (KAUST) Efficient Fourier Pricing 7 / 26
  • 8. Strip of Regularity To ensure the L1 integrability of g(·), a vector of damping parameters R 2 Rd is introduced, which must belong to V , where V = ¯P X . Table: Strip of regularity of the conjugate of payo↵ transforms, P (Eberlein, Glau, and Papapantoleon 2010). Payo↵ P Basket put {R 2 Rd , Ri > 0 8i 2 {1, . . . , d}} Call on min {R 2 Rd , Ri < 0 8i 2 {1, . . . , d}, Pd i=1 Ri < 1} Table: Strip of regularity of the characteristic functions, X (Eberlein, Glau, and Papapantoleon 2010). Model X GBM Rd VG {R 2 Rd , 1 + ⌫h✓, Ri 1 2 ⌫hR, ⌃Ri > 0} NIG {R 2 Rd , ↵2 h( R), ( R)i > 0} M.Samet (KAUST) Efficient Fourier Pricing 8 / 26
  • 9. Strip of Regularity: 2D Illustration Figure: Strip of regularity of characteristic functions, X , (left) VG: = (0.2, 0.8), ✓ = ( 0.3, 0), ⌫ = 0.257 (right) NIG: ↵ = 10, = ( 3, 0), = 0.2, = I2. There is no guidance in the litterature on how to choose the damping parameters, R, to improve error convergence of quadrature methods in the Fourier space. M.Samet (KAUST) Efficient Fourier Pricing 9 / 26
  • 10. E↵ect of the Damping Parameters: 2D Illustration Figure: E↵ect of the damping parameters on the shape of the integrand in case of basket put on 2 stocks under VG: = (0.4, 0.4), ✓ = ( 0.3, 0.3), ⌫ = 0.257 (top left) R = (0.2, 0.2) (top right) R = (1, 1), (bottom left) R = (2, 2), (bottom right) R = (3, 3). M.Samet (KAUST) Efficient Fourier Pricing 10 / 26
  • 11. Outline 1 Problem Setting and Pricing Framework 2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse Grids Quadrature 3 Numerical Experiments and Results 4 Conclusion M.Samet (KAUST) Efficient Fourier Pricing 11 / 26
  • 12. Methodology 1 Smoothing the Fourier integrand via a proposed heuristic optimization rule. 2 Approximating the Fourier integral using adaptive sparse grid quadrature (ASGQ), hence accelerating the convergence of the numerical quadrature. M.Samet (KAUST) Efficient Fourier Pricing 12 / 26
  • 13. Optimal Damping Rule: 1D Motivation We define the quadrature error as EQN [g] := Z b a g(x)⇢(x)dx N X k=1 g (xk) wk g : [a, b] ⇢ R 7! R (a, b can be infinite), ⇢(.) be a weight function, {xk}N k=1, {wk}N k=1 are respectively quadrature nodes and quadrature weights, N is the number of quadrature points. Theorem: Derivative-free quadrature error estimate (Donaldson and Elliott 1972) | EQN [g] |=| 1 2⇡i I C KN(z)g(z)dz | 1 2⇡ max z2C |g(z)| I C |KN(z)kdz| KN(z) = HN(z) ⇡N(z) , HN(z) = Z b a ⇢(x) ⇡N(z) z x dx C is a contour containing the interval [a, b] within which g(z) has no singularities (poles, fractional powers, branch points, discontinuities in a function or in any of its derivatives.), ⇡N(z) are the roots of the orthogonal polynomial related to the considered quadrature. M.Samet (KAUST) Efficient Fourier Pricing 13 / 26
  • 14. Optimal Damping Rule: 1D Motivation Figure: (left) Shape of the integrand w.r.t the damping parameter, R. (right) Convergence of relative quadrature error w.r.t. number of quadrature points, using Gauss-Laguerre quadrature for the European put option under VG: S0 = K = 100, r = 0, T = 1, = 0.4, ✓ = 0.3, ⌫ = 0.257. M.Samet (KAUST) Efficient Fourier Pricing 14 / 26
  • 15. Optimal Damping Heuristic Rule We propose a heuristic optimization rule for choosing the damping parameters R⇤ := R⇤ (⇥m, ⇥p) = arg min R2 V kg(u; R, ⇥m, ⇥p)k1, (1) where R⇤ := (R⇤ 1 , . . . , R⇤ d ) denotes the optimal damping parameters. For the considered models, the integrand attains its maximum at the origin point u = 0Rd ; thus solving (1) is reformulated to a simpler optimization problem R⇤ = arg min R2 V g(0Rd ; R, ⇥m, ⇥p). We denote by R the numerical approximation of R⇤ using interior-point method. M.Samet (KAUST) Efficient Fourier Pricing 15 / 26
  • 16. Quadrature Estimator Qd [g] := d O i=1 Qm( i ) [g] ⌘ m( 1) X k1=1 · · · m( d ) X kd =1 w 1 k1 · · · w d kd g ⇣ x 1 k1 , . . . , x d kd ⌘ n x i ki om( i ) ki =1 , n ! i ki om( i ) ki =1 are respectively the sets of quadrature points and corresponding quadrature weights. = ( i ) d i=1 2 Nd is a multi-index, and m : N ! N is a level-to-nodes function mapping a given level to the number of quadrature points. i Qd := ( Qd Q 0 d , with 0 = ei , when i > 0 Qd , otherwise QI d = X 2I Qd , Qd = d O i=1 i ! Qd M.Samet (KAUST) Efficient Fourier Pricing 16 / 26
  • 17. Quadrature Estimator Table: Construction details for the quadrature methods. ` 2 N represents a given level. T̄ 2 is a threshold value. r is the order of bounded total derivatives, p depends on the order up to which weighted mixed derivatives are bounded (Chen 2018). Quadrature Method m : N 7! N I(`) ⇢ Nd Complexity TP m( ) = IT P (`) ⌘ { 2 Nd + : || ||1  `} O N r d ASGQ m( ) = 2 1 +1, > 1, m(1) = 1 IASGQ ⌘ 2 Nd + : P T̄ O N p 2 New indices are selected iteratively, a-posteriori, based on the error versus cost-profit rule, with a hierarchical surplus defined by P = | E | W E = Q IASGQ [{ } d [g] QIASGQ d [g] (Error Contribution) W = Work h Q IASGQ [{ } d [g] i Work h QIASGQ d [g] i (Work Contribution) M.Samet (KAUST) Efficient Fourier Pricing 17 / 26
  • 18. ASGQ Construction: 2D Illustration Figure: A-posteriori construction of the index set for ASGQ (Bayer, Ben Hammouda, and Tempone 2020). M.Samet (KAUST) Efficient Fourier Pricing 18 / 26
  • 19. Outline 1 Problem Setting and Pricing Framework 2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse Grids Quadrature 3 Numerical Experiments and Results 4 Conclusion M.Samet (KAUST) Efficient Fourier Pricing 19 / 26
  • 20. Setting for the Numerical Experiments The relative quadrature error is defined as Relative Error = | QI d [g] Reference Value | Reference Value , where QI d [g] is the quadrature estimator with Gauss-Laguerre measure used to approximate the integral of g(.). Reference values are computed by the MC method using M = 109 samples. The used parameters are based on the literature on model calibration, GBM: (Healy 2021), VG: (Aguilar 2020), NIG: (Kirkby 2015). For illustration, we provide the numerical results under VG model. These results are consistent with the results found under other pricing models, namely, GBM and NIG, for di↵erent parameter sets and dimensions, d 2 {2, 4, 6}. M.Samet (KAUST) Efficient Fourier Pricing 20 / 26
  • 21. Numerical Experiments and Results Payo↵ Set Model Parameters Basket put 1 = (0.4, 0.4, 0.4, 0.4), ✓ = ( 0.3, 0.3, 0.3, 0.3), ⌫ = 0.257 Basket put 2 = (0.2, 0.4, 0.6, 0.8), ✓ = ( 0.3, 0.2, 0.1, 0), ⌫ = 0.257 Call on min 3 = (0.4, 0.4, 0.4, 0.4), ✓ = ( 0.3, 0.3, 0.3, 0.3), ⌫ = 0.257 Call on min 4 = (0.2, 0.4, 0.6, 0.8), ✓ = ( 0.3, 0.2, 0.1, 0), ⌫ = 0.257 Basket put 5 = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4), ✓ = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3), ⌫ = 0.257 Basket put 6 = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7), ✓ = ( 0.3, 0.2, 0.1, 0, 0.1, 0.2), ⌫ = 0.257 Call on min 7 = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4), ✓ = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3), ⌫ = 0.257 Call on min 8 = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7), ✓ = ( 0.3, 0.2, 0.1, 0, 0.1, 0.2), ⌫ = 0.257 Table: Parameters setting for the numerical experiments under VG model M.Samet (KAUST) Efficient Fourier Pricing 21 / 26
  • 22. E↵ect of the ASGQ Figure: Convergence of the relative quadrature error w.r.t. number of quadrature points for TP and ASGQ methods for European 4-asset options under VG model, when optimal damping parameters, R, are used (left) basket put: set 2 (right) call on min: set 4 100 101 102 103 104 Number of quadrature points 10-4 10-3 10-2 10-1 100 Relative Error 100 101 102 103 Number of quadrature points 10-4 10-3 10-2 10-1 100 Relative Error M.Samet (KAUST) Efficient Fourier Pricing 22 / 26
  • 23. E↵ect of the Optimal Damping Rule on ASGQ Figure: Convergence of the relative quadrature errorr, w.r.t. number of quadrature points, for the ASGQ method for various damping parameter values under VG model (left) basket put: set 2 (right) call on min: set 4 100 101 102 103 104 Number of quadrature points 10-3 10-2 10-1 100 Relative Error 100 101 102 103 Number of quadrature points 10-4 10-3 10-2 10-1 100 Relative Error M.Samet (KAUST) Efficient Fourier Pricing 23 / 26
  • 24. Comparison of Fourier approach against MC Table: Comparison of the Fourier approach against the MC method for the European basket put and call on min under the VG model. Payo↵ d Set Best Quadra- ture Relative Error CPU Time Ratio Basket put 4 1 ASGQ 2.6 ⇥ 10 4 4.7% Basket put 4 2 ASGQ 3.6 ⇥ 10 4 5.2% Call on min 4 3 ASGQ 5.9 ⇥ 10 4 0.57% Call on min 4 4 ASGQ 8.9 ⇥ 10 4 0.56% Basket put 6 5 ASGQ 7.8 ⇥ 10 4 42.6% Basket put 6 6 ASGQ 5.4 ⇥ 10 3 11% Call on min 6 7 ASGQ 2.0 ⇥ 10 3 23% Call on min 6 8 ASGQ 2.6 ⇥ 10 3 1.3% CPU times provided in Table 6 are obtained by averaging the CPU time of 10 runs. CPU Time Ratio = CPU(Quadrature)+CPU(Optimization) CPU(MC) ⇥ 100. M.Samet (KAUST) Efficient Fourier Pricing 24 / 26
  • 25. Outline 1 Problem Setting and Pricing Framework 2 Fourier Pricing Combined with Optimal Damping and Adaptive Sparse Grids Quadrature 3 Numerical Experiments and Results 4 Conclusion M.Samet (KAUST) Efficient Fourier Pricing 25 / 26
  • 26. Conclusion We proposed a heuristic rule for a choice of the damping parameters which improves the convergence of the numerical quadrature. We used adaptive sparse grids quadrature to approximate the Fourier integral in order to alleviate the curse of dimensionality. Our Fourier method combined with the optimal damping rule and adaptive sparse grids quadrature achieves substantial computational gains compared to the MC method for basket and rainbow options under GBM and in Lévy models. More details can be found in Christian Bayer, Chiheb Ben Hammouda, Antonis Papapantoleon, Michael Samet, and Raúl Tempone. “Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models”. In: arXiv preprint arXiv:2203.08196 (2022). M.Samet (KAUST) Efficient Fourier Pricing 26 / 26
  • 27. References I [1] C. Bayer, C. Ben Hammouda, A. Papapantoleon, M. Samet, R. Tempone. Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models, arXiv:2203.08196 (2022). [2] Christian Bayer, Chiheb Ben Hammouda, and Raul Tempone Numerical smoothing with hierarchical adaptive sparse grids and quasi-Monte Carlo methods for efficient option pricing. arXiv preprint arXiv:2111.01874, 2021. [3] P Chen Sparse quadrature for high-dimensional integration with Gaussian measure,ESAIM: Mathematical Modelling and Numerical Analysis, 2018. M.Samet (KAUST) Efficient Fourier Pricing 26 / 26
  • 28. References II [4] Ernst Eberlein, Kathrin Glau, and Antonis Papapantoleon Ernst Eberlein, Kathrin Glau, and Antonis Papapantoleon. Analysis of Fourier transform valuation formulas and applications, Applied Mathematical Finance, 17(3):211–240, 2010. [5] David Elliott and P.D. Tuan Asymptotic estimates of Fourier coefficients,SIAM Journal on Mathematical Analysis, 5(1):1–10, 1974. [6] Alan L. Lewis A simple option formula for general jump-di↵usion and other exponential lévy processes,SSRN 282110, 2001. [7] J. Lars. Kirkby,Efficient option pricing by frame duality with the fast Fourier transform,SIAM Journal on Financial Mathematics, 6(1):713–747, 2015. [8] Wim Schoutens,Lévy Processes in Finance: Pricing Financial Derivatives,Wiley Online Library, 2003. M.Samet (KAUST) Efficient Fourier Pricing 26 / 26
  • 29. Thank you for your attention! M.Samet (KAUST) Efficient Fourier Pricing 26 / 26