SlideShare a Scribd company logo
Spatio-Temporal Data Mining and
Classification of Ships' Trajectories

               Laurent ETIENNE
                  PhD in geomatics
        French Naval Academy Research Institute
         Geographic Information Systems Group
    Maritime Activity and Risk Investigation Network
Department of Industrial Engineering, Dalhousie University

           laurent.etienne@ecole-navale.fr

                  Halifax, June 2012
Introduction
   Movement is an important part of life
   Mobile objects tracking systems
   Large spatio-temporal databases
   Knowledge Discovery from movement
   Real time analysis
   Decision support systems
   Different kind of mobile objects
   Different mobility data interest
        Ecology, Sociology, Transports,
         Intelligence...

                                            2
Research interests
   Knowledge discovery from moving objects
    databases (KDD)
   Algorithms for spatial data processing and
    modelling
   Advanced visualisation
    techniques for
    spatial data



                                                 3
Process overview




                   4
Spatio-temporal data mining

    Extract knowledge from a data warehouse
    
        Cluster groups of trajectories
    
        Main route followed by most trajectories of this group
                
                    Main trajectory
                
                    Spatial spreading (channel)
                
                    Temporal stretching (channel)





    Metrics and rules to compare trajectories to main routes
                                                                 5
Trajectories comparison

    Frechet distance and Dynamic Time Warping
    
        Frechet : Minimise the max distance between pos
    
        DTW : Minimise sum of distances between pos




                                                          6
Group of Similar Trajectories

    The model allows trajectories clustering using :
    
        Distance (Fréchet, DTW...)
    
        Density (T-OPTICS)
    
        Zone Graph (Itinerary)




                                                       7
Main trajectory

    Median trajectory
    
        Cluster positions (Normalized time, Frechet, DTW)
    
        Compute aggregated median position (K-Mean)




                                                            8
Statistical analysis

    Statistical analysis of
    points clusters distribution
    (distance, time, heading...)
    
        Boxplot visualisation




                                         9
Spatio-temporal pattern

    Median trajectory and spatio-temporal channel
    
        Cluster positions (Frechet matching)
        with the main trajectory positions
    
        Compute spatial and temporal
        distance to the median position
                
                    Sort spatialy (left/right)
                
                    Sort temporaly (early/late)
                
                    Statistical selection 90%
    
        Normality bounds
                
                    ∆left / ∆right
                
                    ∆early / ∆late


                                                    10
Qualification Functional Process




                                   11
Qualify a Position
   Spatio-temporal channel
       Merge together spatial and temporal channel
       At each relative time of the median trajectory
       Normality bounds
       5 zones defined
       Qualify a position

   How to qualify a trajectory ?


                                                         12
Similarity measurements
   Average, maximum and variability of
    spatial/temporal distance between the
    trajectory and the spatio-temporal channel (%)




                                                 13
Fuzzy Logic
   Spatio-temporal similarity classification of a trajectory
    compared to a pattern
   Using Fuzzy logic :
       Fuzzy sets learned by statistical analysis of
        similarity measurements
       Fuzzy rules defined by experts and combining
        similarity measurements




                                                            14
Fuzzy Logic (Fuzzy sets)
   Use statistics of similarity measurements

       Min
       20%
       40%
       50%
       60%
       80%
       Max
   Define
    fuzzy sets
                                                15
Fuzzy Logic (Fuzzification)
   Match a trajectory to the spatio-temporal
    pattern (Frechet matching)
   Compute the similarity measurements
   Fuzzify similarity measurements
    using fuzzy sets
   Value : 145
   75% Medium
   25% High

                                                16
Fuzzy Logic (Fuzzy Rules)
   Apply fuzzy rules using a fuzzy associative matrix
    combining the fuzzified similarity measurements




   Fuzzy rules are activated at different degree of
    truth depending on the membership of the similarity
    measurements to fuzzy sets
                                                          17
Fuzzy Logic (Defuzzification)
   How to get an human friendly similarity score
    combining the similarity ratings measurements ?
   Defuzzify the fuzzy rules sets activated
   Using the « center of gravity » method




                                                      18
Visualisation




                19
Visualisation of spatio-temporal data
   How to display spatio-temporal patterns and
    qualified positions/trajectories ?
   3D
    space/time
    cube ?




                                                  20
Visualisation (spatio-temporal patterns)




                                       21
Visualisation (2D analysis)




                              22
Conclusion
   Model of trajectory, itineraries and matching tools
   General methodology
   Data mining : spatio-temporal patterns
   Position and trajectory classification using fuzzy logic




                                                               23
Future work

    Improve statistics analysis (skewness/kurtosis)

    Detect multimodal groups of trajectories

    Investigate patterns generalization (aggregation ?)

    Consider more similarity measurements (heading,
    speed)

    Extend to trajectories partial matching, data
    streams, real time analysis

    Improve geovisualisation of outliers

    ...
                                                          24
Questions ?




   L. Etienne, T. Devogele, A. Bouju. In Shi, Goodchild, Lees & Leung
    (Eds.) Advances in Geo-Spatial Information Science, Chap. Modeling
    Space and Time, Spatio-temporal Trajectory Analysis of Mobile
    Objects Following the same Itinerary. CRC Press, Taylor & Francis
    Group, ISPRS Orange book series, ISBN 978-0-415-62093-2, pages
    47-58, 2012.                                                         25
Plateform programming
   PostgreSQL / PostGIS database
        Model & data integration
         (60 Gb of raw AIS data frames from different sources, 6 month )
        PostGIS spatial functions & indexes
        PL/PgSQL, PL/C, PL/Java programming
   Java
        Spatio-temporal pattern extraction & similarity measurements
        Fuzzy logic
   Statistics
        Matlab
   Web
        PHP/HTML/JS/AJAX (Ajax Push Engine)
        GeoServer WFS/WMS Openlayers KML
                                                                           26
Related publications

    Book chapters
     
         T. Devogele, L. Etienne, C. Ray, and C. Claramunt. In C. Renso, S.
         Spaccapietra & E. Zimányi (Eds.) Mobility Data: Modeling, Management,
         and Understanding, Chapter Mobility Applications, Maritime Applications.
         Cambridge press, to be published in 2012.
     
         L. Etienne, T. Devogele, A. Bouju. In Shi, Goodchild, Lees & Leung (Eds.)
         Advances in Geo-Spatial Information Science, Chap. Modeling Space and
         Time, Spatio-temporal Trajectory Analysis of Mobile Objects Following the
         same Itinerary CRC Press, Taylor & Francis Group, ISPRS Orange book
         series, ISBN 978-0-415-62093-2, pages 47-58, 2012.




                                                                                     27
Related publications

    International conferences
     
         L. Etienne, C. Ray, and G. Mcardle. Spatio-temporal visualisation of
         outliers. Proceedings of the international workshop on Maritime Anomaly
         Detection (MAD), pages 119–120, 2011.
     
         L. Etienne, T. Devogele, and A. Bouju. Spatio-temporal trajectory analysis
         of mobile objects following the same itinerary. Proceedings of the
         International Symposium on Spatial Data Handling (SDH), pages 86–91,
         2010.
     
         A. Lecuyer, J.M. Burkhardt, and L. Etienne. Feeling bumps and holes
         without a haptic interface: the perception of pseudo-haptic textures.
         Proceedings of the SIGCHI conference on Human factors in computing
         systems, pages 239–246, 2004.




                                                                                      28
Europe map




             29
Passenger ships




                  30
Calais - Dovers




                  31
Dover straits




                32

More Related Content

What's hot (20)

PDF
FUTURE TRENDS OF SEISMIC ANALYSIS
Stig-Arne Kristoffersen
 
PDF
Improving search time for contentment based image retrieval via, LSH, MTRee, ...
IOSR Journals
 
PDF
OBIA on Coastal Landform Based on Structure Tensor
csandit
 
PDF
Active learning algorithms in seismic facies classification
Pioneer Natural Resources
 
PPT
GIS Data Types
John Reiser
 
PDF
Understanding raster
Sumant Diwakar
 
PDF
Structure of geographic data
Md. Yousuf Gazi
 
PPTX
TYBSC IT PGIS Unit I Chapter I- Introduction to Geographic Information Systems
Arti Parab Academics
 
PPT
Geotagging Photographs By Sanjay Rana
sanjay_rana
 
PDF
Conceptual models of real world geographical phenomena (epm107_2007)
esambale
 
PDF
Spatial vs non spatial
Sumant Diwakar
 
PDF
IJRET-V1I1P3 - Remotely Sensed Images in using Automatic Road Map Compilation
ISAR Publications
 
PDF
A comparison of classification techniques for seismic facies recognition
Pioneer Natural Resources
 
PPTX
Geographic Phenomena and their Representations
NAXA-Developers
 
PDF
Carpita metulini 111220_dssr_bari_version2
University of Salerno
 
PPT
4.2 spatial data mining
Krish_ver2
 
PDF
Hyperspectral Data Compression Using Spatial-Spectral Lossless Coding Technique
CSCJournals
 
PDF
Remote sensing e course (Geohydrology)
Fatwa Ramdani
 
PDF
Four data models in GIS
Prof. A.Balasubramanian
 
PDF
Spatial association discovery process using frequent subgraph mining
TELKOMNIKA JOURNAL
 
FUTURE TRENDS OF SEISMIC ANALYSIS
Stig-Arne Kristoffersen
 
Improving search time for contentment based image retrieval via, LSH, MTRee, ...
IOSR Journals
 
OBIA on Coastal Landform Based on Structure Tensor
csandit
 
Active learning algorithms in seismic facies classification
Pioneer Natural Resources
 
GIS Data Types
John Reiser
 
Understanding raster
Sumant Diwakar
 
Structure of geographic data
Md. Yousuf Gazi
 
TYBSC IT PGIS Unit I Chapter I- Introduction to Geographic Information Systems
Arti Parab Academics
 
Geotagging Photographs By Sanjay Rana
sanjay_rana
 
Conceptual models of real world geographical phenomena (epm107_2007)
esambale
 
Spatial vs non spatial
Sumant Diwakar
 
IJRET-V1I1P3 - Remotely Sensed Images in using Automatic Road Map Compilation
ISAR Publications
 
A comparison of classification techniques for seismic facies recognition
Pioneer Natural Resources
 
Geographic Phenomena and their Representations
NAXA-Developers
 
Carpita metulini 111220_dssr_bari_version2
University of Salerno
 
4.2 spatial data mining
Krish_ver2
 
Hyperspectral Data Compression Using Spatial-Spectral Lossless Coding Technique
CSCJournals
 
Remote sensing e course (Geohydrology)
Fatwa Ramdani
 
Four data models in GIS
Prof. A.Balasubramanian
 
Spatial association discovery process using frequent subgraph mining
TELKOMNIKA JOURNAL
 

Similar to Spatio-Temporal Data Mining and Classification of Ships' Trajectories (20)

PDF
An innovative idea to discover the trend on multi dimensional spatio-temporal...
eSAT Publishing House
 
PDF
An innovative idea to discover the trend on multi dimensional spatio-temporal...
eSAT Journals
 
PDF
USING ONTOLOGY BASED SEMANTIC ASSOCIATION RULE MINING IN LOCATION BASED SERVICES
IJDKP
 
PDF
A Survey on Trajectory Data Mining
CSCJournals
 
PPTX
Capabilities Brief Analytics
DataTactics
 
PDF
Multi-thematic spatial databases
Conor Mc Elhinney
 
PDF
13584 27 multimedia mining
Universitas Bina Darma Palembang
 
PPTX
Dealing with multiple source spatio-temporal data in urban dynamics analysis ...
Beniamino Murgante
 
PDF
Applying association rules and co location techniques on geospatial web services
Alexander Decker
 
PPT
Agile2010 Update
ohuisman
 
PDF
(eBook PDF) Introduction to Geographic Information Systems, 9th Edition
kdodnyzoet807
 
PDF
Skills portfolio
yeboyerp
 
PDF
SPATIO-TEMPORAL QUERIES FOR MOVING OBJECTS DATA WAREHOUSING
IJDMS
 
PDF
unitiv-spacialdataanalysis-200423132043.pdf
sumitshrivastav2904
 
PPTX
TYBSC IT PGIS Unit IV Spacial Data Analysis
Arti Parab Academics
 
PDF
Mobility Models
Thomas Liebig
 
PDF
(eBook PDF) Introduction to Geographic Information Systems 8th
fedieghent7m
 
PDF
Trajectory Segmentation and Sampling of Moving Objects Based On Representativ...
ijsrd.com
 
PDF
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Beniamino Murgante
 
PDF
A developed GPS trajectories data management system for predicting tourists' POI
TELKOMNIKA JOURNAL
 
An innovative idea to discover the trend on multi dimensional spatio-temporal...
eSAT Publishing House
 
An innovative idea to discover the trend on multi dimensional spatio-temporal...
eSAT Journals
 
USING ONTOLOGY BASED SEMANTIC ASSOCIATION RULE MINING IN LOCATION BASED SERVICES
IJDKP
 
A Survey on Trajectory Data Mining
CSCJournals
 
Capabilities Brief Analytics
DataTactics
 
Multi-thematic spatial databases
Conor Mc Elhinney
 
13584 27 multimedia mining
Universitas Bina Darma Palembang
 
Dealing with multiple source spatio-temporal data in urban dynamics analysis ...
Beniamino Murgante
 
Applying association rules and co location techniques on geospatial web services
Alexander Decker
 
Agile2010 Update
ohuisman
 
(eBook PDF) Introduction to Geographic Information Systems, 9th Edition
kdodnyzoet807
 
Skills portfolio
yeboyerp
 
SPATIO-TEMPORAL QUERIES FOR MOVING OBJECTS DATA WAREHOUSING
IJDMS
 
unitiv-spacialdataanalysis-200423132043.pdf
sumitshrivastav2904
 
TYBSC IT PGIS Unit IV Spacial Data Analysis
Arti Parab Academics
 
Mobility Models
Thomas Liebig
 
(eBook PDF) Introduction to Geographic Information Systems 8th
fedieghent7m
 
Trajectory Segmentation and Sampling of Moving Objects Based On Representativ...
ijsrd.com
 
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Beniamino Murgante
 
A developed GPS trajectories data management system for predicting tourists' POI
TELKOMNIKA JOURNAL
 
Ad

More from Centre of Geographic Sciences (COGS) (16)

PPTX
Making data storage more efficient
Centre of Geographic Sciences (COGS)
 
PPTX
What's In A Building?
Centre of Geographic Sciences (COGS)
 
PPTX
Change Agents (MCISUR 2012)
Centre of Geographic Sciences (COGS)
 
PPTX
Applied Marine Geomatics as a Management & Planning Tool
Centre of Geographic Sciences (COGS)
 
PPTX
Gold Rush (Inquiry-Based Learning)
Centre of Geographic Sciences (COGS)
 
PPTX
Closing the Knowledge Gap
Centre of Geographic Sciences (COGS)
 
PPTX
Halifax Water: the Geomatics Kaleidoscope
Centre of Geographic Sciences (COGS)
 
PPTX
COGS Recollections, by Tim Webster
Centre of Geographic Sciences (COGS)
 
PPTX
Open-Source Based Direct Georeferencing Thermal Camera System
Centre of Geographic Sciences (COGS)
 
Making data storage more efficient
Centre of Geographic Sciences (COGS)
 
Change Agents (MCISUR 2012)
Centre of Geographic Sciences (COGS)
 
Applied Marine Geomatics as a Management & Planning Tool
Centre of Geographic Sciences (COGS)
 
Gold Rush (Inquiry-Based Learning)
Centre of Geographic Sciences (COGS)
 
Closing the Knowledge Gap
Centre of Geographic Sciences (COGS)
 
Halifax Water: the Geomatics Kaleidoscope
Centre of Geographic Sciences (COGS)
 
COGS Recollections, by Tim Webster
Centre of Geographic Sciences (COGS)
 
Open-Source Based Direct Georeferencing Thermal Camera System
Centre of Geographic Sciences (COGS)
 
Ad

Recently uploaded (20)

PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
PPTX
grade 5 lesson matatag ENGLISH 5_Q1_PPT_WEEK4.pptx
SireQuinn
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
PDF
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
PPTX
How to Convert an Opportunity into a Quotation in Odoo 18 CRM
Celine George
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PDF
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
PDF
CEREBRAL PALSY: NURSING MANAGEMENT .pdf
PRADEEP ABOTHU
 
PDF
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
PPTX
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
PPTX
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
PPTX
MENINGITIS: NURSING MANAGEMENT, BACTERIAL MENINGITIS, VIRAL MENINGITIS.pptx
PRADEEP ABOTHU
 
PDF
community health nursing question paper 2.pdf
Prince kumar
 
PDF
People & Earth's Ecosystem -Lesson 2: People & Population
marvinnbustamante1
 
PPTX
Universal immunization Programme (UIP).pptx
Vishal Chanalia
 
PDF
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
PPTX
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PPT
Talk on Critical Theory, Part II, Philosophy of Social Sciences
Soraj Hongladarom
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PPTX
Views on Education of Indian Thinkers Mahatma Gandhi.pptx
ShrutiMahanta1
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
grade 5 lesson matatag ENGLISH 5_Q1_PPT_WEEK4.pptx
SireQuinn
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
How to Convert an Opportunity into a Quotation in Odoo 18 CRM
Celine George
 
Dimensions of Societal Planning in Commonism
StefanMz
 
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
CEREBRAL PALSY: NURSING MANAGEMENT .pdf
PRADEEP ABOTHU
 
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
MENINGITIS: NURSING MANAGEMENT, BACTERIAL MENINGITIS, VIRAL MENINGITIS.pptx
PRADEEP ABOTHU
 
community health nursing question paper 2.pdf
Prince kumar
 
People & Earth's Ecosystem -Lesson 2: People & Population
marvinnbustamante1
 
Universal immunization Programme (UIP).pptx
Vishal Chanalia
 
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
Talk on Critical Theory, Part II, Philosophy of Social Sciences
Soraj Hongladarom
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
Views on Education of Indian Thinkers Mahatma Gandhi.pptx
ShrutiMahanta1
 

Spatio-Temporal Data Mining and Classification of Ships' Trajectories

  • 1. Spatio-Temporal Data Mining and Classification of Ships' Trajectories Laurent ETIENNE PhD in geomatics French Naval Academy Research Institute Geographic Information Systems Group Maritime Activity and Risk Investigation Network Department of Industrial Engineering, Dalhousie University [email protected] Halifax, June 2012
  • 2. Introduction  Movement is an important part of life  Mobile objects tracking systems  Large spatio-temporal databases  Knowledge Discovery from movement  Real time analysis  Decision support systems  Different kind of mobile objects  Different mobility data interest  Ecology, Sociology, Transports, Intelligence... 2
  • 3. Research interests  Knowledge discovery from moving objects databases (KDD)  Algorithms for spatial data processing and modelling  Advanced visualisation techniques for spatial data 3
  • 5. Spatio-temporal data mining  Extract knowledge from a data warehouse  Cluster groups of trajectories  Main route followed by most trajectories of this group  Main trajectory  Spatial spreading (channel)  Temporal stretching (channel)  Metrics and rules to compare trajectories to main routes 5
  • 6. Trajectories comparison  Frechet distance and Dynamic Time Warping  Frechet : Minimise the max distance between pos  DTW : Minimise sum of distances between pos 6
  • 7. Group of Similar Trajectories  The model allows trajectories clustering using :  Distance (Fréchet, DTW...)  Density (T-OPTICS)  Zone Graph (Itinerary) 7
  • 8. Main trajectory  Median trajectory  Cluster positions (Normalized time, Frechet, DTW)  Compute aggregated median position (K-Mean) 8
  • 9. Statistical analysis  Statistical analysis of points clusters distribution (distance, time, heading...)  Boxplot visualisation 9
  • 10. Spatio-temporal pattern  Median trajectory and spatio-temporal channel  Cluster positions (Frechet matching) with the main trajectory positions  Compute spatial and temporal distance to the median position  Sort spatialy (left/right)  Sort temporaly (early/late)  Statistical selection 90%  Normality bounds  ∆left / ∆right  ∆early / ∆late 10
  • 12. Qualify a Position  Spatio-temporal channel  Merge together spatial and temporal channel  At each relative time of the median trajectory  Normality bounds  5 zones defined  Qualify a position  How to qualify a trajectory ? 12
  • 13. Similarity measurements  Average, maximum and variability of spatial/temporal distance between the trajectory and the spatio-temporal channel (%) 13
  • 14. Fuzzy Logic  Spatio-temporal similarity classification of a trajectory compared to a pattern  Using Fuzzy logic :  Fuzzy sets learned by statistical analysis of similarity measurements  Fuzzy rules defined by experts and combining similarity measurements 14
  • 15. Fuzzy Logic (Fuzzy sets)  Use statistics of similarity measurements  Min  20%  40%  50%  60%  80%  Max  Define fuzzy sets 15
  • 16. Fuzzy Logic (Fuzzification)  Match a trajectory to the spatio-temporal pattern (Frechet matching)  Compute the similarity measurements  Fuzzify similarity measurements using fuzzy sets  Value : 145  75% Medium  25% High 16
  • 17. Fuzzy Logic (Fuzzy Rules)  Apply fuzzy rules using a fuzzy associative matrix combining the fuzzified similarity measurements  Fuzzy rules are activated at different degree of truth depending on the membership of the similarity measurements to fuzzy sets 17
  • 18. Fuzzy Logic (Defuzzification)  How to get an human friendly similarity score combining the similarity ratings measurements ?  Defuzzify the fuzzy rules sets activated  Using the « center of gravity » method 18
  • 20. Visualisation of spatio-temporal data  How to display spatio-temporal patterns and qualified positions/trajectories ?  3D space/time cube ? 20
  • 23. Conclusion  Model of trajectory, itineraries and matching tools  General methodology  Data mining : spatio-temporal patterns  Position and trajectory classification using fuzzy logic 23
  • 24. Future work  Improve statistics analysis (skewness/kurtosis)  Detect multimodal groups of trajectories  Investigate patterns generalization (aggregation ?)  Consider more similarity measurements (heading, speed)  Extend to trajectories partial matching, data streams, real time analysis  Improve geovisualisation of outliers  ... 24
  • 25. Questions ?  L. Etienne, T. Devogele, A. Bouju. In Shi, Goodchild, Lees & Leung (Eds.) Advances in Geo-Spatial Information Science, Chap. Modeling Space and Time, Spatio-temporal Trajectory Analysis of Mobile Objects Following the same Itinerary. CRC Press, Taylor & Francis Group, ISPRS Orange book series, ISBN 978-0-415-62093-2, pages 47-58, 2012. 25
  • 26. Plateform programming  PostgreSQL / PostGIS database  Model & data integration (60 Gb of raw AIS data frames from different sources, 6 month )  PostGIS spatial functions & indexes  PL/PgSQL, PL/C, PL/Java programming  Java  Spatio-temporal pattern extraction & similarity measurements  Fuzzy logic  Statistics  Matlab  Web  PHP/HTML/JS/AJAX (Ajax Push Engine)  GeoServer WFS/WMS Openlayers KML 26
  • 27. Related publications  Book chapters  T. Devogele, L. Etienne, C. Ray, and C. Claramunt. In C. Renso, S. Spaccapietra & E. Zimányi (Eds.) Mobility Data: Modeling, Management, and Understanding, Chapter Mobility Applications, Maritime Applications. Cambridge press, to be published in 2012.  L. Etienne, T. Devogele, A. Bouju. In Shi, Goodchild, Lees & Leung (Eds.) Advances in Geo-Spatial Information Science, Chap. Modeling Space and Time, Spatio-temporal Trajectory Analysis of Mobile Objects Following the same Itinerary CRC Press, Taylor & Francis Group, ISPRS Orange book series, ISBN 978-0-415-62093-2, pages 47-58, 2012. 27
  • 28. Related publications  International conferences  L. Etienne, C. Ray, and G. Mcardle. Spatio-temporal visualisation of outliers. Proceedings of the international workshop on Maritime Anomaly Detection (MAD), pages 119–120, 2011.  L. Etienne, T. Devogele, and A. Bouju. Spatio-temporal trajectory analysis of mobile objects following the same itinerary. Proceedings of the International Symposium on Spatial Data Handling (SDH), pages 86–91, 2010.  A. Lecuyer, J.M. Burkhardt, and L. Etienne. Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. Proceedings of the SIGCHI conference on Human factors in computing systems, pages 239–246, 2004. 28