SlideShare a Scribd company logo
Transfer Learning
Oleksandr Baiev, PhD
ProblemsML problems
Computer Vision
Natural Language Processing
Signal processing
Predicting
Decision making
MODEL
INPUTS
INFERENCE
DS
Conventional approaches
Domain
specific
features
INPUTS
Model fitted
to specific
features set
INFERENCE
Assumes domain specific
research, conducted by
appropriate expert
(feature engineering)
Looks like hacks for
practical solutions
Neural Networks Solution
INPUTS
INFERENCE
Simple pre- and postprocessing:
scaling, shifting, etc.
Is Neural Networks is simple solution?
SVM
- Kernel type
- Smoothness
RANDOM FOREST
- Number of trees
- Trees’ depth
NEURAL NETWORKS
Is Neural Networks simple solution?
• A few dozens of thousands of samples – is not bad dataset
• A few hundreds of thousands of samples – is good dataset
• Overfitting is problem even for datasets with several millions samples
Transfer learning
Learning
system
Learning
system
Knowledge
Source task
Target task
Storing knowledge gained while
solving one problem and applying it
to a different but related problem
What is knowledge in Neural Networks
Transfer learning for Neural Networks
1) Train on Source Task
2) Remove last layers
3) Add new last layers
4) Train net for Target Task
Known topology
AlexNet
GoogleNet
VGG-16
ResNet-50
Weights transfer
Source task:
For example, train VGG-16 for ImageNet classification
(1.2*10^6 samples, 1000 classes)
Target task:
Remove last layer with 1000 outputs
Put your own last layer for N classes
=> same topology, weights initialized by weights from
source task’s net
When such flow can be used
Low amount of data Source and Target
tasks are similar
Transfer learning types
• New classifier (for example, SVM)
• Layer by Layer pretrain (for example, early autoencoders)
• Finetuning (with lower LR)
Examples. “Plankton” and AlexNet
“Plankton”
National Data Science Bowl
kaggle.com
Classes: 121 with hierarchy
Samples: ~30 000
AlexNet: 8 layers
inputs: 227x227
Examples. “Pankton” and Cifar10
“Plankton”
National Data Science Bowl
kaggle.com
Classes: 121 with hierarchy
Samples: ~30 000
AlexNet: 4 layers
inputs: 32x32
Example. “Drivers” and GoogleNet
“Drivers”
State Farm Distracted
Driver Detection
kaggle.com
Classes: 121 with hierarchy
Samples: ~30 000
AlexNet: 4 layers
inputs: 32x32
Model Zoo
Model Zoo
CAFFE : ~ 30 models for different problems
https://github.com/BVLC/caffe/wiki/Model-Zoo
MatConvNet: ~10 models for different problems
http://www.vlfeat.org/matconvnet/pretrained/
TensorFlow:
https://github.com/tensorflow/models
Torch:
https://github.com/facebook/fb.resnet.torch
https://github.com/szagoruyko/loadcaffe

More Related Content

What's hot (20)

PDF
Neural Network as a function
Taisuke Oe
 
PDF
Scene classification using Convolutional Neural Networks - Jayani Withanawasam
WithTheBest
 
PDF
Understanding Convolutional Neural Networks
Jeremy Nixon
 
PPTX
Introduction to CNN
Shuai Zhang
 
PPTX
CNN Tutorial
Sungjoon Choi
 
PDF
Introduction to Convolutional Neural Networks
Hannes Hapke
 
PDF
Offline Character Recognition Using Monte Carlo Method and Neural Network
ijaia
 
PDF
CNN
Ukjae Jeong
 
PDF
LeNet to ResNet
Somnath Banerjee
 
PDF
Modern Convolutional Neural Network techniques for image segmentation
Gioele Ciaparrone
 
PDF
Deep learning
Rouyun Pan
 
PPT
Cnn method
AmirSajedi1
 
PDF
Learning Convolutional Neural Networks for Graphs
Mathias Niepert
 
PDF
ujava.org Deep Learning with Convolutional Neural Network
신동 강
 
PPTX
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
PDF
#4 Convolutional Neural Networks for Natural Language Processing
Berlin Language Technology
 
PPTX
Image classification with Deep Neural Networks
Yogendra Tamang
 
PPTX
Deep Learning Tutorial
Ligeng Zhu
 
PPTX
Deep learning lecture - part 1 (basics, CNN)
SungminYou
 
PPTX
Efficient Neural Network Architecture for Image Classfication
Yogendra Tamang
 
Neural Network as a function
Taisuke Oe
 
Scene classification using Convolutional Neural Networks - Jayani Withanawasam
WithTheBest
 
Understanding Convolutional Neural Networks
Jeremy Nixon
 
Introduction to CNN
Shuai Zhang
 
CNN Tutorial
Sungjoon Choi
 
Introduction to Convolutional Neural Networks
Hannes Hapke
 
Offline Character Recognition Using Monte Carlo Method and Neural Network
ijaia
 
LeNet to ResNet
Somnath Banerjee
 
Modern Convolutional Neural Network techniques for image segmentation
Gioele Ciaparrone
 
Deep learning
Rouyun Pan
 
Cnn method
AmirSajedi1
 
Learning Convolutional Neural Networks for Graphs
Mathias Niepert
 
ujava.org Deep Learning with Convolutional Neural Network
신동 강
 
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
#4 Convolutional Neural Networks for Natural Language Processing
Berlin Language Technology
 
Image classification with Deep Neural Networks
Yogendra Tamang
 
Deep Learning Tutorial
Ligeng Zhu
 
Deep learning lecture - part 1 (basics, CNN)
SungminYou
 
Efficient Neural Network Architecture for Image Classfication
Yogendra Tamang
 

Similar to AI&BigData Lab 2016. Александр Баев: Transfer learning - зачем, как и где. (20)

PPTX
OReilly AI Transfer Learning
Danielle Dean
 
PPTX
MaLAI_Hyderabad presentation
Gurram Poorna Prudhvi
 
PDF
How to use transfer learning to bootstrap image classification and question a...
Wee Hyong Tok
 
PDF
Lecture 11 - Advance Learning Techniques
Maninda Edirisooriya
 
PDF
Transfer Learning -- The Next Frontier for Machine Learning
Sebastian Ruder
 
PPTX
Deep Learning Intoductions along with Examples.pptx
kinecob710
 
PPTX
Nuts and Bolts of Transfer Learning.pptx
vmanjusundertamil21
 
PPTX
MODULE 4 AAI_______________________.pptx
443PVamsiKrishna
 
PPTX
transferlearning.pptx
Amit Kumar
 
PPTX
Introduction to transfer learning,aster way of adapting a neural network by e...
ShatrughanKumar14
 
PDF
NTU DBME5028 Week8 Transfer Learning
Sean Yu
 
PDF
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
StampedeCon
 
PDF
Dato Keynote
Turi, Inc.
 
PDF
3_Transfer_Learning.pdf
FEG
 
PDF
Frontier in reinforcement learning
Jie-Han Chen
 
PPTX
Transfer Learning: Breve introducción a modelos pre-entrenados.
Fernando Constantino
 
PDF
Deep Learning and Design Thinking
Yen-lung Tsai
 
PDF
AI/ML Fundamentals to advanced Slides by GDG Amrita Mysuru.pdf
Lakshay14663
 
PDF
Deep LearningフレームワークChainerと最近の技術動向
Shunta Saito
 
OReilly AI Transfer Learning
Danielle Dean
 
MaLAI_Hyderabad presentation
Gurram Poorna Prudhvi
 
How to use transfer learning to bootstrap image classification and question a...
Wee Hyong Tok
 
Lecture 11 - Advance Learning Techniques
Maninda Edirisooriya
 
Transfer Learning -- The Next Frontier for Machine Learning
Sebastian Ruder
 
Deep Learning Intoductions along with Examples.pptx
kinecob710
 
Nuts and Bolts of Transfer Learning.pptx
vmanjusundertamil21
 
MODULE 4 AAI_______________________.pptx
443PVamsiKrishna
 
transferlearning.pptx
Amit Kumar
 
Introduction to transfer learning,aster way of adapting a neural network by e...
ShatrughanKumar14
 
NTU DBME5028 Week8 Transfer Learning
Sean Yu
 
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
StampedeCon
 
Dato Keynote
Turi, Inc.
 
3_Transfer_Learning.pdf
FEG
 
Frontier in reinforcement learning
Jie-Han Chen
 
Transfer Learning: Breve introducción a modelos pre-entrenados.
Fernando Constantino
 
Deep Learning and Design Thinking
Yen-lung Tsai
 
AI/ML Fundamentals to advanced Slides by GDG Amrita Mysuru.pdf
Lakshay14663
 
Deep LearningフレームワークChainerと最近の技術動向
Shunta Saito
 
Ad

More from GeeksLab Odessa (20)

PDF
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Блиц-доклад_Турский Виктор
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Обзор методов детекции лиц на изображение
GeeksLab Odessa
 
PDF
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
PDF
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
PDF
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
PDF
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
GeeksLab Odessa
 
PDF
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
GeeksLab Odessa
 
PDF
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Графические вероятностные модели для принятия решений в ...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
GeeksLab Odessa
 
PDF
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
GeeksLab Odessa
 
PPTX
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
GeeksLab Odessa
 
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
GeeksLab Odessa
 
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
GeeksLab Odessa
 
DataScience Lab 2017_Блиц-доклад_Турский Виктор
GeeksLab Odessa
 
DataScience Lab 2017_Обзор методов детекции лиц на изображение
GeeksLab Odessa
 
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
GeeksLab Odessa
 
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
GeeksLab Odessa
 
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
GeeksLab Odessa
 
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
GeeksLab Odessa
 
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
GeeksLab Odessa
 
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и...
GeeksLab Odessa
 
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
GeeksLab Odessa
 
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
GeeksLab Odessa
 
DataScience Lab 2017_Графические вероятностные модели для принятия решений в ...
GeeksLab Odessa
 
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
GeeksLab Odessa
 
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
GeeksLab Odessa
 
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
GeeksLab Odessa
 
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
GeeksLab Odessa
 
Ad

Recently uploaded (20)

PPTX
Simplifying End-to-End Apache CloudStack Deployment with a Web-Based Automati...
ShapeBlue
 
PDF
Shuen Mei Parth Sharma Boost Productivity, Innovation and Efficiency wit...
AWS Chicago
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PPTX
Extensions Framework (XaaS) - Enabling Orchestrate Anything
ShapeBlue
 
PDF
HR agent at Mediq: Lessons learned on Agent Builder & Maestro by Tacstone Tec...
UiPathCommunity
 
PDF
Novus Safe Lite- What is Novus Safe Lite.pdf
Novus Hi-Tech
 
PDF
Bitcoin+ Escalando sin concesiones - Parte 1
Fernando Paredes García
 
PDF
Meetup Kickoff & Welcome - Rohit Yadav, CSIUG Chairman
ShapeBlue
 
PDF
UiPath vs Other Automation Tools Meeting Presentation.pdf
Tracy Dixon
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
Market Wrap for 18th July 2025 by CIFDAQ
CIFDAQ
 
PDF
Upskill to Agentic Automation 2025 - Kickoff Meeting
DianaGray10
 
PDF
CloudStack GPU Integration - Rohit Yadav
ShapeBlue
 
PDF
NewMind AI Journal - Weekly Chronicles - July'25 Week II
NewMind AI
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PPTX
Darren Mills The Migration Modernization Balancing Act: Navigating Risks and...
AWS Chicago
 
PDF
Novus-Safe Pro: Brochure-What is Novus Safe Pro?.pdf
Novus Hi-Tech
 
PPTX
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
PDF
Arcee AI - building and working with small language models (06/25)
Julien SIMON
 
PDF
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
Simplifying End-to-End Apache CloudStack Deployment with a Web-Based Automati...
ShapeBlue
 
Shuen Mei Parth Sharma Boost Productivity, Innovation and Efficiency wit...
AWS Chicago
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
Extensions Framework (XaaS) - Enabling Orchestrate Anything
ShapeBlue
 
HR agent at Mediq: Lessons learned on Agent Builder & Maestro by Tacstone Tec...
UiPathCommunity
 
Novus Safe Lite- What is Novus Safe Lite.pdf
Novus Hi-Tech
 
Bitcoin+ Escalando sin concesiones - Parte 1
Fernando Paredes García
 
Meetup Kickoff & Welcome - Rohit Yadav, CSIUG Chairman
ShapeBlue
 
UiPath vs Other Automation Tools Meeting Presentation.pdf
Tracy Dixon
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Market Wrap for 18th July 2025 by CIFDAQ
CIFDAQ
 
Upskill to Agentic Automation 2025 - Kickoff Meeting
DianaGray10
 
CloudStack GPU Integration - Rohit Yadav
ShapeBlue
 
NewMind AI Journal - Weekly Chronicles - July'25 Week II
NewMind AI
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
Darren Mills The Migration Modernization Balancing Act: Navigating Risks and...
AWS Chicago
 
Novus-Safe Pro: Brochure-What is Novus Safe Pro?.pdf
Novus Hi-Tech
 
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
Arcee AI - building and working with small language models (06/25)
Julien SIMON
 
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 

AI&BigData Lab 2016. Александр Баев: Transfer learning - зачем, как и где.