The document discusses using Kafka and Kudu for low-latency SQL analytics on streaming data. It describes the challenges of supporting both streaming and batch workloads simultaneously using traditional solutions. The authors propose using Kafka to ingest data and Kudu for structured storage and querying. They demonstrate how this allows for stream processing, batch processing, and querying of up-to-second data with low complexity. Case studies from Xiaomi and TPC-H benchmarks show the advantages of this approach over alternatives.