This document summarizes Project Tungsten, an effort by Databricks to substantially improve the memory and CPU efficiency of Spark applications. It discusses how Tungsten optimizes memory and CPU usage through techniques like explicit memory management, cache-aware algorithms, and code generation. It provides examples of how these optimizations improve performance for aggregation queries and record sorting. The roadmap outlines expanding Tungsten's optimizations in Spark 1.4 through 1.6 to support more workloads and achieve end-to-end processing using binary data representations.