7
Most read
9
Most read
11
Most read
“ Pearson’s Correlation Coefficient”
Presented by : Eng. Waleed Alzaghal
YouTube Channel : Waleed Alzaghal
Pearson Correlation Coefficient
The correlation coefficient (r) is a measure of the strength and the direction of
a linear relationship between two variables x and y.
Strength and Direction of Correlation
A single outlier point can significantly change the correlation coefficient r
r = 0.88
r = - 0.08
Obs. x i y j
1 x 1 y 1
2 x 2 y 2
3 x 3 y 3
… … …
… … …
… … …
… … …
… … …
n x n y n
Sum
Pearson's correlation coefficient
Obs. x y
1 1 8
2 10 4
3 9 4
4 6 5
5 5 7
6 3 7
7 2 9
Sum 36 44
x 2
1
100
81
36
25
9
4
256
y2
64
16
16
25
49
49
81
300
xy
8
40
36
30
35
21
18
188
• Sum Up x and y
• Compute x2 and Sum Up
• Compute y2 and Sum Up
• Compute xy and Sum Up
Apply,
𝑟 =
𝑛 𝑥𝑦 − ( 𝑥)( 𝑦)
(𝑛 𝑥2 − ( 𝑥)2)(𝑛 𝑦2 − ( 𝑦)2
𝑟 ≈ − 0.94 (Strong negative relationship)
Obs. x y x 2
y2
xy
1 1 8 1 64 8
2 10 4 100 16 40
3 9 4 81 16 36
4 6 5 36 25 30
5 5 7 25 49 35
6 3 7 9 49 21
7 2 9 4 81 18
Sum 36 44 256 300 188
( x - x̅ )
-4.14
4.86
3.86
0.86
-0.14
-2.14
-3.14
0.02
( x - x̅ )2
17.14
23.62
14.90
0.74
0.02
4.58
9.86
70.86
( y - y̅ )
1.71
-2.29
-2.29
-1.29
0.71
0.71
2.71
-0.03
( y - y̅ )2
2.92
5.24
5.24
1.66
0.50
0.50
7.34
23.43
( x - x̅ )( y - y̅ )
-7.08
-11.13
-8.84
-1.11
-0.10
-1.52
-8.51
-38.29
• Compute the Mean for x and y
• Compute ( x - x̅ ) and Sum up
• Compute ( x - x̅ )2 and Sum up
• Compute ( y - y̅ ) and Sum up
• Compute ( y - y̅ )2 and Sum up
• Compute ( x - x̅ )( y - y̅ ) and Sum up
Obs. x y
1 1 8
2 10 4
3 9 4
4 6 5
5 5 7
6 3 7
7 2 9
Sum 36 44
Count 7 7
Mean 5.14 6.29
Apply, r =
( 𝑥 − 𝑥 )( 𝑦 − 𝑦 )
𝑥 − 𝑥 2
( 𝑦− 𝑦 )2
r =
( 𝑥 − 𝑥 )( 𝑦 − 𝑦 )
𝑥 − 𝑥 2
( 𝑦− 𝑦 )2
r ≈ − 0.94 (Strong negative relationship)
Pearson's correlation coefficient
Obs. x y x 2
y2
xy
1 8 16 64 256 128
2 9 9 81 81 81
3 10 4 100 16 40
4 11 1 121 1 11
5 12 0 144 0 0
6 13 1 169 1 13
7 14 4 196 16 56
8 15 9 225 81 135
9 16 16 256 256 256
Sum 108 60 1356 708 720
𝑟 =
𝑛 𝑥𝑦 − ( 𝑥)( 𝑦)
(𝑛 𝑥2 − ( 𝑥)2). (𝑛 𝑦2 − ( 𝑦)2
𝑟 =
9 720 − (108)(60)
( 9 1356 − 108 2)( 9 708 − 60 2)
r = 0.0 (No relationship because of the nonlinearity between the two variables)
(r does not describe curved relationships)

More Related Content

PPTX
INTERPOLATION
PPTX
Parcial
PPTX
PEARSON PRODUCT MOMENT CORRELATION COEFFICIENT
PDF
Ecuaciones lineal y homogena..
PDF
Residue integration 01
DOCX
PPT
08 interpolation lagrange
PPTX
Absolute function
INTERPOLATION
Parcial
PEARSON PRODUCT MOMENT CORRELATION COEFFICIENT
Ecuaciones lineal y homogena..
Residue integration 01
08 interpolation lagrange
Absolute function

What's hot (20)

PPTX
Diagonalization and eigen
DOCX
PPT
08 numerical integration 2
PPTX
Vectors space definition with axiom classification
PPTX
Quantum phase estimation
PPTX
Relaxation method
PPTX
Quantum fourier transformation
DOCX
Tangents and normals
PDF
Properties of coefficient of correlation
DOCX
Applied mathematics
PDF
A uniform distribution has density function find n (1)
PPTX
量子フーリエ変換まとめ
PDF
Revmidterm 1
PPTX
Coursera 2week
PPTX
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
PPTX
量子位相推定
PPTX
GAUSS ELIMINATION METHOD
DOCX
B.tech ii unit-3 material multiple integration
PPTX
Fixed point Iterative Method
PPT
07 interpolation
Diagonalization and eigen
08 numerical integration 2
Vectors space definition with axiom classification
Quantum phase estimation
Relaxation method
Quantum fourier transformation
Tangents and normals
Properties of coefficient of correlation
Applied mathematics
A uniform distribution has density function find n (1)
量子フーリエ変換まとめ
Revmidterm 1
Coursera 2week
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
量子位相推定
GAUSS ELIMINATION METHOD
B.tech ii unit-3 material multiple integration
Fixed point Iterative Method
07 interpolation
Ad

Similar to Pearson's correlation coefficient (20)

PPTX
Lesson 27 using statistical techniques in analyzing data
PDF
CH04 Covariance and Regression- Marketing Strategies
PPT
Scatter plot
PPT
PDF
stats_ch12.pdf
PPTX
Unit 4_3 Correlation Regression.pptx
PDF
PPT
correlation and regression
PDF
Analyzing Relations between Data Set - Part I
PPTX
correlation-analysis.pptx
PDF
DOCX
Statistics
PDF
Introduction to correlation and regression analysis
PPT
Correlation analysis
PPTX
UNIT 4.pptx
PPTX
Correlation and Its Types with Questions and Examples
PPT
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
PPTX
Correlation Statistics for Economics Notes
PPTX
Correlation-and-regression-Analysis.pptx
Lesson 27 using statistical techniques in analyzing data
CH04 Covariance and Regression- Marketing Strategies
Scatter plot
stats_ch12.pdf
Unit 4_3 Correlation Regression.pptx
correlation and regression
Analyzing Relations between Data Set - Part I
correlation-analysis.pptx
Statistics
Introduction to correlation and regression analysis
Correlation analysis
UNIT 4.pptx
Correlation and Its Types with Questions and Examples
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation Statistics for Economics Notes
Correlation-and-regression-Analysis.pptx
Ad

Recently uploaded (20)

PDF
Grey Minimalist Professional Project Presentation (1).pdf
PPTX
Chapter security of computer_8_v8.1.pptx
PPTX
Machine Learning and working of machine Learning
PPTX
Capstone Presentation a.pptx on data sci
PDF
Mcdonald's : a half century growth . pdf
PPTX
AI AND ML PROPOSAL PRESENTATION MUST.pptx
PPTX
chuitkarjhanbijunsdivndsijvndiucbhsaxnmzsicvjsd
PPTX
OJT-Narrative-Presentation-Entrep-group.pptx_20250808_102837_0000.pptx
PPTX
inbound2857676998455010149.pptxmmmmmmmmm
PPTX
Hushh.ai: Your Personal Data, Your Business
PPTX
865628565-Pertemuan-2-chapter-03-NUMERICAL-MEASURES.pptx
PDF
Hikvision-IR-PPT---EN.pdfSADASDASSAAAAAAAAAAAAAAA
PPTX
research framework and review of related literature chapter 2
PPTX
DATA MODELING, data model concepts, types of data concepts
PPTX
ch20 Database System Architecture by Rizvee
PDF
©️ 01_Algorithm for Microsoft New Product Launch - handling web site - by Ale...
PPTX
inbound6529290805104538764.pptxmmmmmmmmm
PDF
The Role of Pathology AI in Translational Cancer Research and Education
PPTX
Statisticsccdxghbbnhhbvvvvvvvvvv. Dxcvvvhhbdzvbsdvvbbvv ccc
PDF
technical specifications solar ear 2025.
Grey Minimalist Professional Project Presentation (1).pdf
Chapter security of computer_8_v8.1.pptx
Machine Learning and working of machine Learning
Capstone Presentation a.pptx on data sci
Mcdonald's : a half century growth . pdf
AI AND ML PROPOSAL PRESENTATION MUST.pptx
chuitkarjhanbijunsdivndsijvndiucbhsaxnmzsicvjsd
OJT-Narrative-Presentation-Entrep-group.pptx_20250808_102837_0000.pptx
inbound2857676998455010149.pptxmmmmmmmmm
Hushh.ai: Your Personal Data, Your Business
865628565-Pertemuan-2-chapter-03-NUMERICAL-MEASURES.pptx
Hikvision-IR-PPT---EN.pdfSADASDASSAAAAAAAAAAAAAAA
research framework and review of related literature chapter 2
DATA MODELING, data model concepts, types of data concepts
ch20 Database System Architecture by Rizvee
©️ 01_Algorithm for Microsoft New Product Launch - handling web site - by Ale...
inbound6529290805104538764.pptxmmmmmmmmm
The Role of Pathology AI in Translational Cancer Research and Education
Statisticsccdxghbbnhhbvvvvvvvvvv. Dxcvvvhhbdzvbsdvvbbvv ccc
technical specifications solar ear 2025.

Pearson's correlation coefficient

  • 1. “ Pearson’s Correlation Coefficient” Presented by : Eng. Waleed Alzaghal YouTube Channel : Waleed Alzaghal
  • 2. Pearson Correlation Coefficient The correlation coefficient (r) is a measure of the strength and the direction of a linear relationship between two variables x and y.
  • 3. Strength and Direction of Correlation
  • 4. A single outlier point can significantly change the correlation coefficient r
  • 5. r = 0.88 r = - 0.08
  • 6. Obs. x i y j 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3 … … … … … … … … … … … … … … … n x n y n Sum
  • 8. Obs. x y 1 1 8 2 10 4 3 9 4 4 6 5 5 5 7 6 3 7 7 2 9 Sum 36 44 x 2 1 100 81 36 25 9 4 256 y2 64 16 16 25 49 49 81 300 xy 8 40 36 30 35 21 18 188 • Sum Up x and y • Compute x2 and Sum Up • Compute y2 and Sum Up • Compute xy and Sum Up Apply,
  • 9. 𝑟 = 𝑛 𝑥𝑦 − ( 𝑥)( 𝑦) (𝑛 𝑥2 − ( 𝑥)2)(𝑛 𝑦2 − ( 𝑦)2 𝑟 ≈ − 0.94 (Strong negative relationship) Obs. x y x 2 y2 xy 1 1 8 1 64 8 2 10 4 100 16 40 3 9 4 81 16 36 4 6 5 36 25 30 5 5 7 25 49 35 6 3 7 9 49 21 7 2 9 4 81 18 Sum 36 44 256 300 188
  • 10. ( x - x̅ ) -4.14 4.86 3.86 0.86 -0.14 -2.14 -3.14 0.02 ( x - x̅ )2 17.14 23.62 14.90 0.74 0.02 4.58 9.86 70.86 ( y - y̅ ) 1.71 -2.29 -2.29 -1.29 0.71 0.71 2.71 -0.03 ( y - y̅ )2 2.92 5.24 5.24 1.66 0.50 0.50 7.34 23.43 ( x - x̅ )( y - y̅ ) -7.08 -11.13 -8.84 -1.11 -0.10 -1.52 -8.51 -38.29 • Compute the Mean for x and y • Compute ( x - x̅ ) and Sum up • Compute ( x - x̅ )2 and Sum up • Compute ( y - y̅ ) and Sum up • Compute ( y - y̅ )2 and Sum up • Compute ( x - x̅ )( y - y̅ ) and Sum up Obs. x y 1 1 8 2 10 4 3 9 4 4 6 5 5 5 7 6 3 7 7 2 9 Sum 36 44 Count 7 7 Mean 5.14 6.29 Apply, r = ( 𝑥 − 𝑥 )( 𝑦 − 𝑦 ) 𝑥 − 𝑥 2 ( 𝑦− 𝑦 )2
  • 11. r = ( 𝑥 − 𝑥 )( 𝑦 − 𝑦 ) 𝑥 − 𝑥 2 ( 𝑦− 𝑦 )2 r ≈ − 0.94 (Strong negative relationship)
  • 13. Obs. x y x 2 y2 xy 1 8 16 64 256 128 2 9 9 81 81 81 3 10 4 100 16 40 4 11 1 121 1 11 5 12 0 144 0 0 6 13 1 169 1 13 7 14 4 196 16 56 8 15 9 225 81 135 9 16 16 256 256 256 Sum 108 60 1356 708 720 𝑟 = 𝑛 𝑥𝑦 − ( 𝑥)( 𝑦) (𝑛 𝑥2 − ( 𝑥)2). (𝑛 𝑦2 − ( 𝑦)2 𝑟 = 9 720 − (108)(60) ( 9 1356 − 108 2)( 9 708 − 60 2) r = 0.0 (No relationship because of the nonlinearity between the two variables) (r does not describe curved relationships)