Electronic structure, atomic forces and
structural relaxations by WIEN2k
Peter Blaha
Institute of Materials Chemistry
TU Vienna, Austria
Outline:
■ APW-based methods (history and state-of-the-art)
■ WIEN2k
■ program structure + usage
■ forces, structure relaxation
■ Applications
■ Phasetransitions in Aurivillius phases
■ Structure of Pyrochlore Y2Nb2O7
APW based schemes
■ APW (J.C.Slater 1937)
■ Non-linear eigenvalue problem
■ Computationally very demanding
■ LAPW (O.K.Anderssen 1975)
■ Generalized eigenvalue problem
■ Full-potential total-energies (A.Freeman etal.)
■ Local orbitals (D.J.Singh 1991)
■ treatment of semi-core states (avoids ghostbands)
■ APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
■ Efficience of APW + convenience of LAPW
■ Basis for
K.Schwarz, P.Blaha, G.K.H.Madsen,
Comp.Phys.Commun.147, 71-76 (2002)
APW Augmented Plane Wave method
The unit cell is partitioned into:
atomic spheres
Interstitial region
Bloch wave function:
atomic partial waves
Plane Waves (PWs)
Rmt
unit cell
PW:e
rr r
i(k K).r
Atomic partial waves
l m
K
al m Ylm
(rˆ)
u
(r, )
l
join
matching coefficient, radial function, spherical harmonics
Slater‘s APW (1937)
Atomic partial waves
Energy dependent
Radial basis functions lead to
K
l m l m
l
lm
ˆ(r )a u (r ,)Y
Non-linear eigenvalue problemH Hamiltonian
S Overlap matrix
Computationally very demanding
One had to numerically search for the energy, for which
the det|H-ES| vanishes.
Linearization of energy dependence
LAPW suggested by
( rˆ)k n l m
l m
[ A ( k ) u ( E , r )  B ( k ) u& ( E , r )] Y
l m n l l l m n l l
 
Atomic sphere
PW
O.K.Andersen,
Phys.Rev. B 12, 3060
(1975)
join PWs in value and slope
ul expanded at El („energy parameter“)
€additional constraint requires more
PWs than APW
basis flexible enough for single
diagonalization
 ul /u&l
LAPW
APW
Full-potential total-energy (A.Freeman etal.)
■ The potential (and charge density)
can be of general form
(no shape approximation)SrTiO3
Full
potential
Muffin tin
approximation
■ Inside each atomic sphere a
local coordinate system is used
(defining LM)
LM
VLM (r)YLM (rˆ) r  R

K
VKeiK.rr
rI
TiO2 rutile
Ti
O
V (r ) {
Core, semi-core and valence states
■ Valences states
■ High in energy
■ Delocalized wavefunctions
■ Semi-core states
■ Medium energy
■ Principal QN one less than valence
(e.g.in Ti 3p and 4p)
■ not completely confined inside
sphere
■ Core states
■ Low in energy
■ Reside inside sphere
For example: Ti
Problems of the LAPW method:
EFG Calculation for Rutile TiO2 as a function of the
Ti-p linearization energy Ep
exp. EFG
„ghostband“ region
P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz,
Phys. Rev. B 46, 1321 (1992).
Problems of the LAPW method
Problems with semi-core states
Extending the basis: Local orbitals (LO)
■ LO
■ is confined to an atomic sphere
■ has zero value and slope at R
■ can treat two principal QN n for
each azimuthal QN l (3p and 4p)
■ corresponding states are strictly
orthogonal (no “ghostbands”)
■ tail of semi-core states can be
represented by plane waves
■ only slight increase of basis set
(matrix size)
D.J.Singh,
Phys.Rev. B 43 6388 (1991)
1
(rˆ)E
LO l ml m ll m l l m l
&  C uE2
]Y  [A uE1
 B u
4p 3p
New ideas from Uppsala and Washington
E.Sjöstedt, L.Nordström, D.J.Singh,
An alternative way of linearizing the augmented plane wave method,
Solid State Commun. 114, 15 (2000)
•Use APW, but at fixed El (superior PW convergence)
•Linearize with additional lo (add a few basis functions)
E
1
E
1 l m ll m l
& [A u  B u ]Y (rˆ)
l m
lokn
 Al m(kn)ul (El ,r)Yl m(rˆ)
lm
optimal solution: mixed basis (K.Schwarz, P.Blaha, G.K.H.Madsen,
Comp.Phys.Commun.147, 71-76 (2002))
•use APW+lo for states which are difficult to converge:
(f or d- states, atoms with small spheres)
•use LAPW+LO for all other atoms and angular momenta
Convergence of the APW+LO Method
E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000).
x 100
Ce
(number of PWs)
Improved convergence of APW+lo
■ changes sign and
converges slowly in
LAPW
■ better convergence in
APW+lo
K.Schwarz, P.Blaha, G.K.H.Madsen,
Comp.Phys.Commun.147, 71-76 (2002)
Force (Fy) on oxygen in SES (sodium
electro sodalite) vs. # plane waves
Quantum mechanics at work
WIEN2k software package
WIEN97: ~500 users
WIEN2k: ~730 users
An Augmented Plane Wave Plus Local
Orbital
Program for Calculating Crystal Properties
Peter Blaha
Karlheinz Schwarz
Georg Madsen
Dieter Kvasnicka
Joachim Luitz
November 2001
Vienna,AUSTRIA
Vienna University of Technology
http://www.wien2k.at
Development of WIEN2k
■ Authors of WIEN2k
P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz
■ Other contributions to WIEN2k
■ C. Ambrosch-Draxl (Univ. Graz, Austria), optics
■ U. Birkenheuer (Dresden), wave function plotting
■ T. Charpin (Paris), elastic constants
■ R. Dohmen und J. Pichlmeier (RZG, Garching), parallelization
■ R. Laskowski (Vienna), non-collinear magnetism
■ P. Novák and J. Kunes (Prague), LDA+U, SO
■ B. Olejnik (Vienna), non-linear optics
■ C. Persson (Uppsala), irreducible representations
■ M. Scheffler (Fritz Haber Inst., Berlin), forces
■ D.J.Singh (NRL, Washington D.C.), local oribtals (LO), APW+lo
■ E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
■ J. Sofo and J. Fuhr (Barriloche), Bader analysis
■ B. Yanchitsky and A. Timoshevskii (Kiev), spacegroup
■ and many others ….
International co-operations
■ More than 700 user groups worldwide
■ 40 industries (Canon, Eastman, Exxon, Fuji, A.D.Little, Mitsubishi,
Motorola, NEC, Norsk Hydro, Osram, Panasonic, Samsung, Sony,
Sumitomo).
■ Europe: (EHT Zürich, MPI Stuttgart, Dresden, FHI Berlin, DESY, TH
Aachen, ESRF, Prague, Paris, Chalmers, Cambridge, Oxford)
■ America: ARG, BZ, CDN, MX, USA (MIT, NIST, Berkeley, Princeton,
Harvard, Argonne NL, Los Alamos Nat.Lab., Penn State, Georgia Tech,
Lehigh, Chicago, SUNY, UC St.Barbara, Toronto)
■ far east: AUS, China, India, JPN, Korea, Pakistan, Singapore,Taiwan
(Beijing, Tokyo, Osaka, Sendai, Tsukuba, Hong Kong)
■ Registration at www.wien2k.at
■ 400/4000 Euro for Universites/Industries
■ code download via www (with password), updates, bug fixes, news
■ usersguide, faq-page, mailing-list with help-requests
WIEN code as benchmark
WIEN2k- hardware/software
■ WIEN2k runs on any Unix/Linux platform from PCs, workstations,
clusters to supercomputers
■ Fortran90 (dynamical allocation)
■ many individual modules, linked together with C-shell or perl-scripts
■ f90 compiler, BLAS-library (mkl, Atlas), perl5, ghostview, gnuplot,
Tcl/Tk (Xcrysden), www-browser
•web-based GUI – w2web
•real/complex version (inversion)
•10 atom cells on 128Mb PC
•100 atom cells require 1-2 Gb RAM
•k-point parallel on clusters with
common NFS (slow network)
•MPI/Scalapack parallelization for big
cases (>50 atoms) and fast network
•installation support for many platforms
W2web – A web-interface
■ Based on www
■ WIEN2k can be managed
remotely via w2web
■ Secure (Password)
■ Important steps:
■ start w2web on all your
hosts
■ use your favorite browser
and connect to the master
host:port
■ define a session on the
desired host
GUI (Graphical user interface)
■ Structure generator
■ cif-file converter
■ spacegroup selection
■ step by step initialization
■ symmetry detection
■ automatic input generation
■ SCF calculations
■ Magnetism (spin-polarization)
■ Spin-orbit coupling
■ Forces (automatic geometry
optimization)
■ Guided Tasks
■ Energy band structure
■ DOS
■ Electron density
■ X-ray spectra
■ Optics
Program structure of WIEN2k
■ init_lapw
■ initialization
■ symmetry detection (F, I, C-
centering, inversion)
■ input generation with
recommended defaults
■ quality (and computing time)
depends on k-mesh and R.Kmax
(determines #PW)
■ run_lapw
■ scf-cycle
■ optional with SO and/or LDA+U
■ different convergence criteria
(energy, charge, forces)
Task for electron density plot
■ A task consists of
■ a series of steps
■ that must be executed
■ to generate a plot
■ For electron density plot
■ select states (e.g. valence e-)
■ select plane for plot
■ generate 3D or contour plot
with gnuplot or Xcrysden
Properties with WIEN2k - I
■ Energy bands
■ classification of irreducible representations
■ ´character-plot´ (emphasize a certain band-character)
■ Density of states
■ including partial DOS with l and m- character (eg. px , py , pz )
■ Electron density, potential
■ total-, valence-, difference-, spin-densities,  of selected states
■ 1-D, 2D- and 3D-plots (Xcrysden)
■ X-ray structure factors
■ Bader´s atom-in-molecule analysis, critical-points, atomic basins and charges
( .n  0 )
■ spin+orbital magnetic moments (spin-orbit / LDA+U)
■ Hyperfine parameters
■ hyperfine fields (contact + dipolar + orbital contribution)
■ Isomer shift
■ Electric field gradients
Properties with WIEN2k - II
■ Spectroscopy
■ core levels (with core holes)
■ X-ray emission, absorption, electron-energy-loss
■ (core - valence/conduction-band transitions including matrix elements and
angular dep.)
■ EELS inclusion of possible non-dipol transititons (momentum transfer)
■ optical properties (dielectric function, JDOS including momentum matrix
elements and Kramers-Kronig)
■ fermi surface (2D, 3D)
■ Total energy and forces
■ optimization of internal coordinates, (MD, BROYDEN)
■ cell parameter only via Etot (no stress tensor)
■ elastic constants for cubic cells
■ Phonons via supercells
■ interface to PHONON (K.Parlinski) – bands, DOS, thermodynamics, neutrons
Total energies and atomic forces
(Yu et al.; Kohler et al.)

 2
1
2
1
3
Z V (r)(r) 
xcxc
effi i i
es
(r
r
)
(r
r
)
r r
rr3r r
E []  d3
r
r
(r
r
)
d r  (r )Vn  T[] 
d r  (r )VU[]  

 es
■ Total Energy:
■ Electrostatic energy
■ Kinetic energy
■ XC-energy
■ Force on atom 
■ Hellmann-Feynman-force
■ Pulay corrections
■ Core
■ Valence
■ expensive, contains a summation
of matrix elements over all
occupied states (done only in last
scf-iteration)
dR
F  F 
 F
 F
HF core val
 dE
 r tot
r

  





 

K Ki
i iieff  val

val
effcorecore
es
HF
 VF
F
r
F
 (r) dS  i(K  K) K H  i K 
(K   )  (r)
n c (K )c (K )(r) dr (r) 
 r Y (rˆ)V (r )
 Z lim
*2
*
k,i K,K
  1m
1
m1
1m 
r 0
r
(r)V (r) dr
r
Optimization of atomic posistions (E-minimization via forces)
• damped Newton scheme
(not user friendly, input adjustment by hand)
• new quite efficient Broyden scheme
W impurity in Bi (2x2x2 cell: Bi15W)
0 2 4 10 12 14
-40
-20
20
40
60
for01
for04x
for04z
for06x
for06z
0
forces(mRy/a)
6 8
timestep
0 2 4 10 12 14
-679412.54
-679412.52
-679412.48
0
-679412.50
-679412.46
-679412.44
Energy(Ry)
6 8
time step
0 2 4 6 8 10 12 14
-0.04
-0.02
0.00
0.02
0.04
pos01
pos04x
pos04z
pos06
position
0 2 4 6 8 10 12 14
-4
-2
0
2
4
6
8
EFG(1021
V/m2
)
Energy
Forces
Positions
EFG
PHONON-I
■ PHONON
■ by K.Parlinski (Crakow)
■ runs under MS-windows
■ uses a „direct“ method
to calculate Force-
constants with the help
of an ab initio program
■ with these Force-
constants phonons at
arbitrary k-points can be
obtained
■ Define your spacegroup
■ Define all atoms at
previously optimized
positions
PHONON-II
■ Define an interaction range
(supercell)
■ create displacement file
■ transfer case.d45 to Unix
■ Calculate forces for all
required displacements
■ init_phonon_lapw
■ for each displacement a
case_XX.struct file is
generated in an extra
directory
■ runs nn and lets you
define RMT values like:
■ 1.85 1-16
• init_lapw: either without symmetry (and then copies this setup to all case_XX)
or with symmetry (must run init_lapw for all case_XX) (Do NOT use SGROUP)
• run_phonon: run_lapw –fc 0.1 –i 40 for each case_XX
PHONON-III
■ analyze_phonon_lapw
■ reads the forces of the scf runs
■ generates „Hellman-Feynman“ file
case.dat and a „symmetrized HF-
file case.dsy (when you have
displacements in both directions)
■ check quality of forces:
■ sum Fx should be small (0)
■ abs(Fx) should be similar for +/-
displacements
■ transfer case.dat (dsy) to Windows
■ Import HF files to PHONON
■ Calculate phonons
Ferroelectricity in Aurivillius phases
■ *Bilbao: J. Manuel Perez-Mato, M. Aroyo
■ Universidad del País Vasco
■ *Vienna: P. Blaha, K. Schwarz,
■ J. Schweifer
■ *Cracow: K. Parlinski
Perovskites: PbTiO3
Classical Example of a Ferroelectric
PbTiO3
(perovskite distorted structure)
Features:
• spontaneous polarization- frozen polar mode
• phase transition:
paraelectric -------- ferroelectric
Tc

Perovskites: PbTiO3
PbTiO3
• Symmetry break at Tc:
cubic ---- tetragonal
Pm-3m ----- P4mm
• A single (degenerate) normal mode responsible for the
transition
• Structure in Ferroelectric Phase:
high-symmetry structure + frozen polar mode
• Strain: spontaneous strain  10-2

Ab-initio “prediction” of the ferroelectric inestability
PbTiO3
King-Smith&Vanderbilt 1994Waghmare&Rabe 1997
Ab-initio
Phonon Branches
Ghosez et al. 1999
Polar unstable mode
The Aurivillius Compounds
[Bi2O2]-[An-1BnO3n+1]
n-sized perovskite slab
cation deficient
perovskites:
[Bi,A]B1-xO3
A21am
Bi2O2
B2ab
A21am
n=2
n=3 n=4
orthorhombic
Dipl. Thesis -S. Borg 2001Ps
Bi2SrTa2O9 - SBT
Bi
O3
O2
O1
O4
Sr
O4
Spontaneous Polarization
a
b
c
polar mode Eu (deg. 2)
Previous ab-initio calculations in SBT
Stachiotti et al. 2000
(110)
(100)
• Unstable Eu polar mode
• Strong contribution of Bi displacement :
Bi-O(2) hybridization
SBT – An Usual Ferroelectric? NO !
I4/mmm
F2mm
Eu
A21am
Amam Abam
X3
-
X2
+
high and low T
structures
From symmetry analysis (group/ subgroup relations) the Eu mode alone
cannot explain the complete phase transition
Ferroelectric Phase = mode Eu + mode X3- + mode X2+
Frozen distortions in SBT
-
mode X3
+
mode X2
Hervoches et al. 2002Shimakawa et al. 1999
Ferroelectric Phase = mode Eu + mode X3- + mode X2+
eEu eX3 eX2
QEu = 0.82 QX3= -1.20 QX2= -0.35
Eigenvectors:
Mode Amplitudes (bohrs) :
All Aurivillius: “Atypical” Ferroelectrics:
Prototype tetragonal paraelectric phase
Ferroelectric orthorhombic phase
Not possible through the freezing
of a polar mode!
•A single order parameter can not produce this transition.
According to Landau theory:
•Either discontinuous transition or intermediate phases
Phonons in SBT
X3
-
Eu
X2
+
Eu
X3
-
SBT
CALCULATED “PHONON”
BRANCHES
Comparing calculated and exp. soft-modes Eigenvectors:
Ferroelectric Phase = mode Eu + mode X3- + mode X2+
In general, good agreement with experimental frozen modes
Except !…. The experimental frozen mode X2
+
+
Comparing exp. and calculated X2 Modes
a
b
c
“Part 1”
“Part 2”
a b
c
2
coincides approx. with
calculated soft-mode X +
Two independent normal-
modes
coincides approx. with a
2second (hard) mode X +
Energy Landscape around the tetragonal configuration
2 2 2Energy = Eo + ½ Eu QEu + ½ X3 QX3 + ½ X2 QX2 + ……
QEu
QX3
QX2
QEu
ground state
Tc1
Tc2
Tc1 Tc2 QX3
Eu < 0, X3 <0
Transition Sequence:
Thermal Free Energy = Fo + ½ Eu(T)Q 2 + ½  (T)Q 2 + ½  Q 2 + ……
Eu X3 X3 X2 X2
ENERGY MAP – SBT Main axes
QX3 (bohr)
QEu(bohr)
E(mRy)
E(mRy)
33 mRy
26 mRy
QEu
QX3
Space GroupAmam
EX3 = -40.2 QX3
2 + 10.9 QX3
4 + 0.87QX3
6
QEu
QX3
Space Group F2mm
EEu = -19.9 QEu
2+ 2.6 QEu
4+ 0.52 QEu
6
ENERGY MAP – SBT: Coupling Eu –X3
-
QEu
QX3
QEu
QX31.25
EEu = -19.9 QEu
2+ 2.6 QEu
4+ 0.51 QEu
6 EEu = +3.1 QEu
2+ 1.6 QEu
4+ 0.53 QEu
6
+14.7 QEu
2 QX3
2 - 0.63 QEu
4QX3
2
Strong biquadratic coupling Eu –X3
-
SBT – Energy Map: Coupling Eu –X3
-
Predicted Ground State:
Only mode X3
- frozen !
Space group Amam
-1.5 -1 -0.5 0 0.5 1 1.5
-2
-1
0
1
2
QX3
QEu
Essential reason:
Strong biquadratic coupling
penalizes “mixed” states
Something missing?
•coupling with X2
+QX2=0
Coupling with X2
+
• Coupling with soft X2
+ mode relatively weak !
• Strong renormalization of hard (second) X2
+ mode
Energy landscape in SBT
including only soft X2
+ mode with additional hard X2
+ mode
only with the additional hard X2
+ mode the experimentally
observed combination of 3 different modes can be established
Phase diagram for Bi2SrTa2O9 - SBT
•Finite temperature
renormalization of the T=0
energy map
•Landau theory suggests
linear T-variation of the
quadratic stiffness
coefficients Eu and  -
X3
The topolgy of this phase diagram predicts two second order
phase transitions and implies the existence of an intermediate
phase of Amam symmetry. A single first order PT is impossible.
Pyrochlore Y2Nb2O7
Insulating and non-magnetic 4d TM-oxide
P.Blaha, D.Singh, K.Schwarz,
PRL in print (2004)
Metal Sublattice:
Corner-shared
tetrahedral network
Pyrochlore structure of Y2Nb2O7:
■ Experimental structure from powder diffraction
(Fukazawa,Maeno):
■ Pyrochlore structure: Fd-3m, a0=10.33 Å
■ 22 atoms (2 FU/cell)
■ One free parameter for O2: (0.344,1/8,1/8)
■ Corner shared Nb - O octahedra
■ Corner shared O1 - Y tetrahedra
■ Y surrounded by 8 oxygens (~ cube)
■ Metal sublattices
■ Nb-tetrahedra (empty)
■ Y-tetrahedra (around O)
■ Insulator
■ Nonmagnetic
Nb
Nb Y
O1O2
Y
metal sublattice
Nb
Y.Maeno et al, Nature 372, 532 (1994)
H.Fukazawa, Y.Maeno,Phys.Rev. B 67, 054410 (2003)
First theoretical results:
O-2p Nb-t2g Nb-eg
3+ 4+ 2-
■ Ionic model: Y2 Nb2 O7 Nb4+: 4d1
■ € metallic or localized system with spin ½
(neither one observed in exp.)
■ LDA gives nonmagnetic metallic
ground-state with conventional
t2g-eg splitting due to the octahedral
crystal field of the oxygen atoms.
“degenerate” t2g states are only partly
filled.
EF
EF
How could one obtain a non-magnetic insulator ?
■ Antiferromagnetic s=1/2 solution
■ (on geometrically frustrated lattice !?)
■ Localization, strong e--e- correlation:
■ 4d (not 3d !) electrons,
■ thus correlation should be small (Hubbard-U ~ 2-3 eV)
■ LDA+U with U=6 eV gives insulator (FM ground state, no AFM)
■ bandwidth of t2g bands: 2.5 eV (similar to U)
■ structural distortion, which breaks the dominant octahedral
crystal field
■ € Search for phonon-instabilities
■ 88 atom supercell, 46 symmetry adapted selected distortions from
PHONON; resulting forces € back into PHONON
Phonon-bandstructure of Y2Nb2O7
(100) (110) (111)
■ strong Phonon-instabilities, lowest at X, K, L
■ select a certain (unstable) phonon, freeze it with certain amplitude
into the structure and perform full structural optimization
, X and K-point phonons:
■ energy lower than in ideal pyrochlore structure, but still not
insulating
EF
L-point (111) phonon:
■ Relaxed structure is an
Insulator
■ energy gain of 0.5 eV/FU
gap
metal
EF
Relaxed structure:
■ Primitive supercell with 88 atoms
■ all atoms inequivalent
due to numerical optimization of the positions in P1
■ Symmetrization using KPLOT (R.Hundt, J.C.Schön, A.Hannemann,
M.Jansen: Determination of symmetries and idealized cell parameters for
simulated structures, J.Appl.Cryst. 32, 413-416 (1999))
■ Tests possible symmetries with increasing tolerance
■ Space group € P-43m, 88 atoms/cell,
■ Inequivalent atoms:
■ 2 Y
■ 2 Nb
■ 3 O1
■ 5 O2
Relaxed structure
Nb2
Nb1
Experimental (ideal) relaxed:
Nb2 moves „off-center“, O octahedra
changes little, Nb2-Nb2 bonds ?
Main change in structural relaxation
Original pyrochlore Relaxed structure
Nb1NbNb
equal large
3.65 Å
Nb2
small
2.91 Å
3.90 Å
Nb1 - Nb2
3.89 Å
Nb1–triangle: 3.40Å
Chemical bonding: original structure
peak A: Nb-Nb bonds within the
Nb tetrahedra by d-z2 orbitals
O-2p
(Nb-4d)
(Y-4d)
Nb t2g
Nb
Y
O
peak
A B
Chemical bonding: original structure
Nb t2g
O-2p
(Nb-4d)
(Y-4d)
peak
A B
peak B: mixture of all 3 t2g
orbitals
Nb
Y
O
DOS of relaxed structure
O-2p
(Nb-4d)
(Y-4d) Nb-4d (O-2p), Y-4d
Nb1
B
Nb2
A
EF
gap
Nb2
C
Peak A (Nb2) 4-center bond (d-z2)
O-2p
(Nb-4d)
(Y-4d) Nb-4d (O-2p), Y-4d
Nb1
B
Nb2
A
Nb2
C
EF
gap
Nb1
Nb1
Nb1
Nb2
Nb2 Nb2
Nb2
Peak B (Nb1) 3-center bond (new !)
O-2p
(Nb-4d)
(Y-4d) Nb-4d (O-2p), Y-4d
Nb1
B
Nb2
A
Nb2
C
EF
gap
Nb1
Nb1
Nb1
Nb1
Nb2
Peak C (Nb2) 3-center bonds an all 4 faces
O-2p
(Nb-4d)
(Y-4d) Nb-4d (O-2p), Y-4d
Nb1
B
Nb2
A
Nb2
C
EF
gap
Nb1
Nb1Nb1
NbNb2
Nb2
Nb2
Nb2
Results for Y2Nb2O7
■ Orbital ordering of Nb-4d orbitals and structural distortion !
■ Can be described with LDA !!
■ M-M interaction (second NN): 2 types of bonds:
■ strong Nb-Nb 4-center bonds (only Nb2 dz
2)
■ strong Nb-Nb 3-center bonds (both, on Nb1 and Nb2)
■ Relaxation
■ Two types of Nb
■ Nb1 (12i) highly elongated tetradedron along (111)
■ Nb2 (4e) perfect tetrahedron with short distances
■ Metal/insulator
■ Ideal structure metallic, relaxed structure insulating
P.Blaha, D.J.Singh, K.Schwarz,
Charge singlets in pyrochlore Y2Nb2O7
Phys.Rev.Lett. (in print) (2004)
Advantage/disadvantage of WIEN2k
+ robust all-electron full-potential method
+ unbiased basisset, one convergence parameter (LDA-limit)
+ all elements of periodic table (equal expensive), metals
+ LDA, GGA, meta-GGA, LDA+U, spin-orbit
+ many properties
+ w2web (for novice users)
- ? speed (+ memory requirements)
+ very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry)
- less efficient for small spheres (1 bohr) (O: 25 Ry)
- large cells (n3, iterative diagonalization not perfect)
- no stress tensor
- no linear response
Thank you for
your attention !

More Related Content

PDF
Wien2k getting started
PPTX
Localized Electrons with Wien2k
PDF
The all-electron GW method based on WIEN2k: Implementation and applications.
PDF
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
PPTX
Methods available in WIEN2k for the treatment of exchange and correlation ef...
PDF
Libxc a library of exchange and correlation functionals
PDF
Introduction to DFT Part 2
PPTX
Exact Exchange in Density Functional Theory
Wien2k getting started
Localized Electrons with Wien2k
The all-electron GW method based on WIEN2k: Implementation and applications.
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Methods available in WIEN2k for the treatment of exchange and correlation ef...
Libxc a library of exchange and correlation functionals
Introduction to DFT Part 2
Exact Exchange in Density Functional Theory

What's hot (20)

PDF
Gravitational Waves and Binary Systems (3) - Thibault Damour
PDF
Viscosity of Liquid Nickel
PDF
Starobinsky astana 2017
PDF
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
PDF
Multiscale methods for graphene based nanocomposites
PDF
Caldwellcolloquium
PDF
Phonons & Phonopy: Pro Tips (2014)
PDF
Gravitational Waves and Binary Systems (2) - Thibault Damour
PDF
NANO266 - Lecture 4 - Introduction to DFT
PPT
Webinar about ATK
PDF
"When the top is not single: a theory overview from monotop to multitops" to...
PPT
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
PDF
Nucleation III: Phase-field crystal modeling of nucleation process
PDF
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
PDF
Surface Tension in Liquid Nickel
PDF
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
PDF
Quick and Dirty Introduction to Mott Insulators
PDF
Statics and dynamics of nanoscale structures
PDF
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
Gravitational Waves and Binary Systems (3) - Thibault Damour
Viscosity of Liquid Nickel
Starobinsky astana 2017
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
Multiscale methods for graphene based nanocomposites
Caldwellcolloquium
Phonons & Phonopy: Pro Tips (2014)
Gravitational Waves and Binary Systems (2) - Thibault Damour
NANO266 - Lecture 4 - Introduction to DFT
Webinar about ATK
"When the top is not single: a theory overview from monotop to multitops" to...
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...
Nucleation III: Phase-field crystal modeling of nucleation process
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Surface Tension in Liquid Nickel
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
Quick and Dirty Introduction to Mott Insulators
Statics and dynamics of nanoscale structures
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
Ad

Viewers also liked (20)

PDF
Python for Scientific Computing
PPT
Increasing eCommerce & Online Transactions in India
 
DOCX
Internet service provider
PPTX
E commerce - impact on credit card industry
PPT
COST ACCOUNTING CONCEPTSSSSS
PPTX
Wage differentials
PPTX
10.637 Lecture 1: Introduction
PPTX
Wage differntial
PDF
Introduction to DFT Part 1
PPT
Wage Differentials
PPT
Nhiễu xạ tia X
PPTX
PPTX
Wage differential
PPT
Chapter 10 Pay-for-Performance: Incentive Rewards
PPTX
Sales of goods act, 1930
PPTX
Web Browsers
PPT
Pay for- performance: Incentive Rewards
PPT
Payment of Wages Act, 1936
PPT
Material management
PPTX
The indian partnership act, 1932===by sumit mukherjee
Python for Scientific Computing
Increasing eCommerce & Online Transactions in India
 
Internet service provider
E commerce - impact on credit card industry
COST ACCOUNTING CONCEPTSSSSS
Wage differentials
10.637 Lecture 1: Introduction
Wage differntial
Introduction to DFT Part 1
Wage Differentials
Nhiễu xạ tia X
Wage differential
Chapter 10 Pay-for-Performance: Incentive Rewards
Sales of goods act, 1930
Web Browsers
Pay for- performance: Incentive Rewards
Payment of Wages Act, 1936
Material management
The indian partnership act, 1932===by sumit mukherjee
Ad

Similar to Blaha krakow 2004 (20)

PPT
Serena barbanotti INFN milano
PDF
Mott insulators
PPT
Room Temperature Superconductivity: Dream or Reality?
PPTX
Copper (775) - an optics, 2PPE, and Bulk state simulation study
PDF
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
PDF
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
PPT
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
PDF
Tendex and Vortex Lines around Spinning Supermassive Black Holes
PPTX
Dielectrics 2015
PPT
Mw day 1
PDF
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
PPTX
Basissets.pptx
PDF
Benchmark Calculations of Atomic Data for Modelling Applications
PPT
Lecture ppt this ppt contains material about dft
PPTX
Professional Technology Style by Slidesgo.pptx
PDF
Quantum Electronic Transport : TranSiesta
PDF
Light-emitting diodes
PDF
Fundamentals of Photovoltaics: Lecture 1
PDF
5 anten theor_basics
PDF
144533007 17314480-antena-theory-basics-2
Serena barbanotti INFN milano
Mott insulators
Room Temperature Superconductivity: Dream or Reality?
Copper (775) - an optics, 2PPE, and Bulk state simulation study
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
Tendex and Vortex Lines around Spinning Supermassive Black Holes
Dielectrics 2015
Mw day 1
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Basissets.pptx
Benchmark Calculations of Atomic Data for Modelling Applications
Lecture ppt this ppt contains material about dft
Professional Technology Style by Slidesgo.pptx
Quantum Electronic Transport : TranSiesta
Light-emitting diodes
Fundamentals of Photovoltaics: Lecture 1
5 anten theor_basics
144533007 17314480-antena-theory-basics-2

More from ABDERRAHMANE REGGAD (20)

PPTX
Presentation de mon mémoire de magister
PPTX
Présentation de thèse de doctorat
PPT
Introduction to the phenomenology of HiTc superconductors.
PPT
Strongly Interacting Atoms in Optical Lattices
PPT
The metal-insulator transition of VO2 revisited
PPT
Mean field Green function solution of the two-band Hubbard model in cuprates
PPT
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
PDF
Electronic structure of strongly correlated materials Part III V.Anisimov
PDF
Electronic structure of strongly correlated materials Part II V.Anisimov
PDF
Electronic structure of strongly correlated materials
PDF
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
PDF
Strongly correlated electrons: LDA+U in practice
PDF
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
PPT
Theoretical picture: magnetic impurities, Zener model, mean-field theory
PPT
Magnetic semiconductors: classes of materials, basic properties, central ques...
PPT
Diluted Magnetic Semiconductors
PPTX
Phase Transitions in VO2 – Nikita Butakov
PPTX
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
PDF
Mottphysics 2talk
PDF
Mottphysics 1talk
Presentation de mon mémoire de magister
Présentation de thèse de doctorat
Introduction to the phenomenology of HiTc superconductors.
Strongly Interacting Atoms in Optical Lattices
The metal-insulator transition of VO2 revisited
Mean field Green function solution of the two-band Hubbard model in cuprates
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Strongly correlated electrons: LDA+U in practice
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Magnetic semiconductors: classes of materials, basic properties, central ques...
Diluted Magnetic Semiconductors
Phase Transitions in VO2 – Nikita Butakov
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Mottphysics 2talk
Mottphysics 1talk

Recently uploaded (20)

PDF
Thyroid Hormone by Iqra Nasir detail.pdf
PDF
final prehhhejjehehhehehehebesentation.pdf
PPTX
Models of Eucharyotic Chromosome Dr. Thirunahari Ugandhar.pptx
PPT
Chapter 6 Introductory course Biology Camp
PPTX
Bacterial and protozoal infections in pregnancy.pptx
PDF
Pharmacokinetics Lecture_Study Material.pdf
PDF
Pentose Phosphate Pathway by Rishikanta Usham, Dhanamanjuri University
PPTX
23ME402 Materials and Metallurgy- PPT.pptx
PDF
CHEM - GOC general organic chemistry.ppt
PPT
Chapter 52 introductory biology course Camp
PPTX
Introduction of Plant Ecology and Diversity Conservation
PDF
Unit Four Lesson in Carbohydrates chemistry
PDF
SOCIAL PSYCHOLOGY chapter 1-what is social psychology and its definition
PPTX
1. (Teknik) Atoms, Molecules, and Ions.pptx
PPTX
Antihypertensive Medicinal Chemistry Unit II BP501T.pptx
PDF
Sujay Rao Mandavilli Variable logic FINAL FINAL FINAL FINAL FINAL.pdf
PPTX
Chromosomal Aberrations Dr. Thirunahari Ugandhar.pptx
PPTX
flavonoids/ Secondary Metabolites_BCH 314-2025.pptx
PPT
dcs-computertraningbasics-170826004702.ppt
PDF
LEUCEMIA LINFOBLÁSTICA AGUDA EN NIÑOS. Guías NCCN 2020-desbloqueado.pdf
Thyroid Hormone by Iqra Nasir detail.pdf
final prehhhejjehehhehehehebesentation.pdf
Models of Eucharyotic Chromosome Dr. Thirunahari Ugandhar.pptx
Chapter 6 Introductory course Biology Camp
Bacterial and protozoal infections in pregnancy.pptx
Pharmacokinetics Lecture_Study Material.pdf
Pentose Phosphate Pathway by Rishikanta Usham, Dhanamanjuri University
23ME402 Materials and Metallurgy- PPT.pptx
CHEM - GOC general organic chemistry.ppt
Chapter 52 introductory biology course Camp
Introduction of Plant Ecology and Diversity Conservation
Unit Four Lesson in Carbohydrates chemistry
SOCIAL PSYCHOLOGY chapter 1-what is social psychology and its definition
1. (Teknik) Atoms, Molecules, and Ions.pptx
Antihypertensive Medicinal Chemistry Unit II BP501T.pptx
Sujay Rao Mandavilli Variable logic FINAL FINAL FINAL FINAL FINAL.pdf
Chromosomal Aberrations Dr. Thirunahari Ugandhar.pptx
flavonoids/ Secondary Metabolites_BCH 314-2025.pptx
dcs-computertraningbasics-170826004702.ppt
LEUCEMIA LINFOBLÁSTICA AGUDA EN NIÑOS. Guías NCCN 2020-desbloqueado.pdf

Blaha krakow 2004

  • 1. Electronic structure, atomic forces and structural relaxations by WIEN2k Peter Blaha Institute of Materials Chemistry TU Vienna, Austria
  • 2. Outline: ■ APW-based methods (history and state-of-the-art) ■ WIEN2k ■ program structure + usage ■ forces, structure relaxation ■ Applications ■ Phasetransitions in Aurivillius phases ■ Structure of Pyrochlore Y2Nb2O7
  • 3. APW based schemes ■ APW (J.C.Slater 1937) ■ Non-linear eigenvalue problem ■ Computationally very demanding ■ LAPW (O.K.Anderssen 1975) ■ Generalized eigenvalue problem ■ Full-potential total-energies (A.Freeman etal.) ■ Local orbitals (D.J.Singh 1991) ■ treatment of semi-core states (avoids ghostbands) ■ APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000) ■ Efficience of APW + convenience of LAPW ■ Basis for K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.147, 71-76 (2002)
  • 4. APW Augmented Plane Wave method The unit cell is partitioned into: atomic spheres Interstitial region Bloch wave function: atomic partial waves Plane Waves (PWs) Rmt unit cell PW:e rr r i(k K).r Atomic partial waves l m K al m Ylm (rˆ) u (r, ) l join matching coefficient, radial function, spherical harmonics
  • 5. Slater‘s APW (1937) Atomic partial waves Energy dependent Radial basis functions lead to K l m l m l lm ˆ(r )a u (r ,)Y Non-linear eigenvalue problemH Hamiltonian S Overlap matrix Computationally very demanding One had to numerically search for the energy, for which the det|H-ES| vanishes.
  • 6. Linearization of energy dependence LAPW suggested by ( rˆ)k n l m l m [ A ( k ) u ( E , r )  B ( k ) u& ( E , r )] Y l m n l l l m n l l   Atomic sphere PW O.K.Andersen, Phys.Rev. B 12, 3060 (1975) join PWs in value and slope ul expanded at El („energy parameter“) €additional constraint requires more PWs than APW basis flexible enough for single diagonalization  ul /u&l LAPW APW
  • 7. Full-potential total-energy (A.Freeman etal.) ■ The potential (and charge density) can be of general form (no shape approximation)SrTiO3 Full potential Muffin tin approximation ■ Inside each atomic sphere a local coordinate system is used (defining LM) LM VLM (r)YLM (rˆ) r  R  K VKeiK.rr rI TiO2 rutile Ti O V (r ) {
  • 8. Core, semi-core and valence states ■ Valences states ■ High in energy ■ Delocalized wavefunctions ■ Semi-core states ■ Medium energy ■ Principal QN one less than valence (e.g.in Ti 3p and 4p) ■ not completely confined inside sphere ■ Core states ■ Low in energy ■ Reside inside sphere For example: Ti
  • 9. Problems of the LAPW method: EFG Calculation for Rutile TiO2 as a function of the Ti-p linearization energy Ep exp. EFG „ghostband“ region P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys. Rev. B 46, 1321 (1992).
  • 10. Problems of the LAPW method Problems with semi-core states
  • 11. Extending the basis: Local orbitals (LO) ■ LO ■ is confined to an atomic sphere ■ has zero value and slope at R ■ can treat two principal QN n for each azimuthal QN l (3p and 4p) ■ corresponding states are strictly orthogonal (no “ghostbands”) ■ tail of semi-core states can be represented by plane waves ■ only slight increase of basis set (matrix size) D.J.Singh, Phys.Rev. B 43 6388 (1991) 1 (rˆ)E LO l ml m ll m l l m l &  C uE2 ]Y  [A uE1  B u 4p 3p
  • 12. New ideas from Uppsala and Washington E.Sjöstedt, L.Nordström, D.J.Singh, An alternative way of linearizing the augmented plane wave method, Solid State Commun. 114, 15 (2000) •Use APW, but at fixed El (superior PW convergence) •Linearize with additional lo (add a few basis functions) E 1 E 1 l m ll m l & [A u  B u ]Y (rˆ) l m lokn  Al m(kn)ul (El ,r)Yl m(rˆ) lm optimal solution: mixed basis (K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.147, 71-76 (2002)) •use APW+lo for states which are difficult to converge: (f or d- states, atoms with small spheres) •use LAPW+LO for all other atoms and angular momenta
  • 13. Convergence of the APW+LO Method E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000). x 100 Ce (number of PWs)
  • 14. Improved convergence of APW+lo ■ changes sign and converges slowly in LAPW ■ better convergence in APW+lo K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.147, 71-76 (2002) Force (Fy) on oxygen in SES (sodium electro sodalite) vs. # plane waves
  • 16. WIEN2k software package WIEN97: ~500 users WIEN2k: ~730 users An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz November 2001 Vienna,AUSTRIA Vienna University of Technology http://www.wien2k.at
  • 17. Development of WIEN2k ■ Authors of WIEN2k P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz ■ Other contributions to WIEN2k ■ C. Ambrosch-Draxl (Univ. Graz, Austria), optics ■ U. Birkenheuer (Dresden), wave function plotting ■ T. Charpin (Paris), elastic constants ■ R. Dohmen und J. Pichlmeier (RZG, Garching), parallelization ■ R. Laskowski (Vienna), non-collinear magnetism ■ P. Novák and J. Kunes (Prague), LDA+U, SO ■ B. Olejnik (Vienna), non-linear optics ■ C. Persson (Uppsala), irreducible representations ■ M. Scheffler (Fritz Haber Inst., Berlin), forces ■ D.J.Singh (NRL, Washington D.C.), local oribtals (LO), APW+lo ■ E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo ■ J. Sofo and J. Fuhr (Barriloche), Bader analysis ■ B. Yanchitsky and A. Timoshevskii (Kiev), spacegroup ■ and many others ….
  • 18. International co-operations ■ More than 700 user groups worldwide ■ 40 industries (Canon, Eastman, Exxon, Fuji, A.D.Little, Mitsubishi, Motorola, NEC, Norsk Hydro, Osram, Panasonic, Samsung, Sony, Sumitomo). ■ Europe: (EHT Zürich, MPI Stuttgart, Dresden, FHI Berlin, DESY, TH Aachen, ESRF, Prague, Paris, Chalmers, Cambridge, Oxford) ■ America: ARG, BZ, CDN, MX, USA (MIT, NIST, Berkeley, Princeton, Harvard, Argonne NL, Los Alamos Nat.Lab., Penn State, Georgia Tech, Lehigh, Chicago, SUNY, UC St.Barbara, Toronto) ■ far east: AUS, China, India, JPN, Korea, Pakistan, Singapore,Taiwan (Beijing, Tokyo, Osaka, Sendai, Tsukuba, Hong Kong) ■ Registration at www.wien2k.at ■ 400/4000 Euro for Universites/Industries ■ code download via www (with password), updates, bug fixes, news ■ usersguide, faq-page, mailing-list with help-requests
  • 19. WIEN code as benchmark
  • 20. WIEN2k- hardware/software ■ WIEN2k runs on any Unix/Linux platform from PCs, workstations, clusters to supercomputers ■ Fortran90 (dynamical allocation) ■ many individual modules, linked together with C-shell or perl-scripts ■ f90 compiler, BLAS-library (mkl, Atlas), perl5, ghostview, gnuplot, Tcl/Tk (Xcrysden), www-browser •web-based GUI – w2web •real/complex version (inversion) •10 atom cells on 128Mb PC •100 atom cells require 1-2 Gb RAM •k-point parallel on clusters with common NFS (slow network) •MPI/Scalapack parallelization for big cases (>50 atoms) and fast network •installation support for many platforms
  • 21. W2web – A web-interface ■ Based on www ■ WIEN2k can be managed remotely via w2web ■ Secure (Password) ■ Important steps: ■ start w2web on all your hosts ■ use your favorite browser and connect to the master host:port ■ define a session on the desired host
  • 22. GUI (Graphical user interface) ■ Structure generator ■ cif-file converter ■ spacegroup selection ■ step by step initialization ■ symmetry detection ■ automatic input generation ■ SCF calculations ■ Magnetism (spin-polarization) ■ Spin-orbit coupling ■ Forces (automatic geometry optimization) ■ Guided Tasks ■ Energy band structure ■ DOS ■ Electron density ■ X-ray spectra ■ Optics
  • 23. Program structure of WIEN2k ■ init_lapw ■ initialization ■ symmetry detection (F, I, C- centering, inversion) ■ input generation with recommended defaults ■ quality (and computing time) depends on k-mesh and R.Kmax (determines #PW) ■ run_lapw ■ scf-cycle ■ optional with SO and/or LDA+U ■ different convergence criteria (energy, charge, forces)
  • 24. Task for electron density plot ■ A task consists of ■ a series of steps ■ that must be executed ■ to generate a plot ■ For electron density plot ■ select states (e.g. valence e-) ■ select plane for plot ■ generate 3D or contour plot with gnuplot or Xcrysden
  • 25. Properties with WIEN2k - I ■ Energy bands ■ classification of irreducible representations ■ ´character-plot´ (emphasize a certain band-character) ■ Density of states ■ including partial DOS with l and m- character (eg. px , py , pz ) ■ Electron density, potential ■ total-, valence-, difference-, spin-densities,  of selected states ■ 1-D, 2D- and 3D-plots (Xcrysden) ■ X-ray structure factors ■ Bader´s atom-in-molecule analysis, critical-points, atomic basins and charges ( .n  0 ) ■ spin+orbital magnetic moments (spin-orbit / LDA+U) ■ Hyperfine parameters ■ hyperfine fields (contact + dipolar + orbital contribution) ■ Isomer shift ■ Electric field gradients
  • 26. Properties with WIEN2k - II ■ Spectroscopy ■ core levels (with core holes) ■ X-ray emission, absorption, electron-energy-loss ■ (core - valence/conduction-band transitions including matrix elements and angular dep.) ■ EELS inclusion of possible non-dipol transititons (momentum transfer) ■ optical properties (dielectric function, JDOS including momentum matrix elements and Kramers-Kronig) ■ fermi surface (2D, 3D) ■ Total energy and forces ■ optimization of internal coordinates, (MD, BROYDEN) ■ cell parameter only via Etot (no stress tensor) ■ elastic constants for cubic cells ■ Phonons via supercells ■ interface to PHONON (K.Parlinski) – bands, DOS, thermodynamics, neutrons
  • 27. Total energies and atomic forces (Yu et al.; Kohler et al.)   2 1 2 1 3 Z V (r)(r)  xcxc effi i i es (r r ) (r r ) r r rr3r r E []  d3 r r (r r ) d r  (r )Vn  T[]  d r  (r )VU[]     es ■ Total Energy: ■ Electrostatic energy ■ Kinetic energy ■ XC-energy ■ Force on atom  ■ Hellmann-Feynman-force ■ Pulay corrections ■ Core ■ Valence ■ expensive, contains a summation of matrix elements over all occupied states (done only in last scf-iteration) dR F  F   F  F HF core val  dE  r tot r             K Ki i iieff  val  val effcorecore es HF  VF F r F  (r) dS  i(K  K) K H  i K  (K   )  (r) n c (K )c (K )(r) dr (r)   r Y (rˆ)V (r )  Z lim *2 * k,i K,K   1m 1 m1 1m  r 0 r (r)V (r) dr r
  • 28. Optimization of atomic posistions (E-minimization via forces) • damped Newton scheme (not user friendly, input adjustment by hand) • new quite efficient Broyden scheme W impurity in Bi (2x2x2 cell: Bi15W) 0 2 4 10 12 14 -40 -20 20 40 60 for01 for04x for04z for06x for06z 0 forces(mRy/a) 6 8 timestep 0 2 4 10 12 14 -679412.54 -679412.52 -679412.48 0 -679412.50 -679412.46 -679412.44 Energy(Ry) 6 8 time step 0 2 4 6 8 10 12 14 -0.04 -0.02 0.00 0.02 0.04 pos01 pos04x pos04z pos06 position 0 2 4 6 8 10 12 14 -4 -2 0 2 4 6 8 EFG(1021 V/m2 ) Energy Forces Positions EFG
  • 29. PHONON-I ■ PHONON ■ by K.Parlinski (Crakow) ■ runs under MS-windows ■ uses a „direct“ method to calculate Force- constants with the help of an ab initio program ■ with these Force- constants phonons at arbitrary k-points can be obtained ■ Define your spacegroup ■ Define all atoms at previously optimized positions
  • 30. PHONON-II ■ Define an interaction range (supercell) ■ create displacement file ■ transfer case.d45 to Unix ■ Calculate forces for all required displacements ■ init_phonon_lapw ■ for each displacement a case_XX.struct file is generated in an extra directory ■ runs nn and lets you define RMT values like: ■ 1.85 1-16 • init_lapw: either without symmetry (and then copies this setup to all case_XX) or with symmetry (must run init_lapw for all case_XX) (Do NOT use SGROUP) • run_phonon: run_lapw –fc 0.1 –i 40 for each case_XX
  • 31. PHONON-III ■ analyze_phonon_lapw ■ reads the forces of the scf runs ■ generates „Hellman-Feynman“ file case.dat and a „symmetrized HF- file case.dsy (when you have displacements in both directions) ■ check quality of forces: ■ sum Fx should be small (0) ■ abs(Fx) should be similar for +/- displacements ■ transfer case.dat (dsy) to Windows ■ Import HF files to PHONON ■ Calculate phonons
  • 32. Ferroelectricity in Aurivillius phases ■ *Bilbao: J. Manuel Perez-Mato, M. Aroyo ■ Universidad del País Vasco ■ *Vienna: P. Blaha, K. Schwarz, ■ J. Schweifer ■ *Cracow: K. Parlinski
  • 33. Perovskites: PbTiO3 Classical Example of a Ferroelectric PbTiO3 (perovskite distorted structure) Features: • spontaneous polarization- frozen polar mode • phase transition: paraelectric -------- ferroelectric Tc
  • 34.  Perovskites: PbTiO3 PbTiO3 • Symmetry break at Tc: cubic ---- tetragonal Pm-3m ----- P4mm • A single (degenerate) normal mode responsible for the transition • Structure in Ferroelectric Phase: high-symmetry structure + frozen polar mode • Strain: spontaneous strain  10-2 
  • 35. Ab-initio “prediction” of the ferroelectric inestability PbTiO3 King-Smith&Vanderbilt 1994Waghmare&Rabe 1997
  • 36. Ab-initio Phonon Branches Ghosez et al. 1999 Polar unstable mode
  • 37. The Aurivillius Compounds [Bi2O2]-[An-1BnO3n+1] n-sized perovskite slab cation deficient perovskites: [Bi,A]B1-xO3 A21am Bi2O2 B2ab A21am n=2 n=3 n=4 orthorhombic Dipl. Thesis -S. Borg 2001Ps
  • 38. Bi2SrTa2O9 - SBT Bi O3 O2 O1 O4 Sr O4 Spontaneous Polarization a b c polar mode Eu (deg. 2)
  • 39. Previous ab-initio calculations in SBT Stachiotti et al. 2000 (110) (100) • Unstable Eu polar mode • Strong contribution of Bi displacement : Bi-O(2) hybridization
  • 40. SBT – An Usual Ferroelectric? NO ! I4/mmm F2mm Eu A21am Amam Abam X3 - X2 + high and low T structures From symmetry analysis (group/ subgroup relations) the Eu mode alone cannot explain the complete phase transition Ferroelectric Phase = mode Eu + mode X3- + mode X2+
  • 41. Frozen distortions in SBT - mode X3 + mode X2 Hervoches et al. 2002Shimakawa et al. 1999 Ferroelectric Phase = mode Eu + mode X3- + mode X2+ eEu eX3 eX2 QEu = 0.82 QX3= -1.20 QX2= -0.35 Eigenvectors: Mode Amplitudes (bohrs) :
  • 42. All Aurivillius: “Atypical” Ferroelectrics: Prototype tetragonal paraelectric phase Ferroelectric orthorhombic phase Not possible through the freezing of a polar mode! •A single order parameter can not produce this transition. According to Landau theory: •Either discontinuous transition or intermediate phases
  • 44. Comparing calculated and exp. soft-modes Eigenvectors: Ferroelectric Phase = mode Eu + mode X3- + mode X2+ In general, good agreement with experimental frozen modes Except !…. The experimental frozen mode X2 +
  • 45. + Comparing exp. and calculated X2 Modes a b c “Part 1” “Part 2” a b c 2 coincides approx. with calculated soft-mode X + Two independent normal- modes coincides approx. with a 2second (hard) mode X +
  • 46. Energy Landscape around the tetragonal configuration 2 2 2Energy = Eo + ½ Eu QEu + ½ X3 QX3 + ½ X2 QX2 + …… QEu QX3 QX2 QEu ground state Tc1 Tc2 Tc1 Tc2 QX3 Eu < 0, X3 <0 Transition Sequence: Thermal Free Energy = Fo + ½ Eu(T)Q 2 + ½  (T)Q 2 + ½  Q 2 + …… Eu X3 X3 X2 X2
  • 47. ENERGY MAP – SBT Main axes QX3 (bohr) QEu(bohr) E(mRy) E(mRy) 33 mRy 26 mRy QEu QX3 Space GroupAmam EX3 = -40.2 QX3 2 + 10.9 QX3 4 + 0.87QX3 6 QEu QX3 Space Group F2mm EEu = -19.9 QEu 2+ 2.6 QEu 4+ 0.52 QEu 6
  • 48. ENERGY MAP – SBT: Coupling Eu –X3 - QEu QX3 QEu QX31.25 EEu = -19.9 QEu 2+ 2.6 QEu 4+ 0.51 QEu 6 EEu = +3.1 QEu 2+ 1.6 QEu 4+ 0.53 QEu 6 +14.7 QEu 2 QX3 2 - 0.63 QEu 4QX3 2 Strong biquadratic coupling Eu –X3 -
  • 49. SBT – Energy Map: Coupling Eu –X3 - Predicted Ground State: Only mode X3 - frozen ! Space group Amam -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1 0 1 2 QX3 QEu Essential reason: Strong biquadratic coupling penalizes “mixed” states Something missing? •coupling with X2 +QX2=0
  • 50. Coupling with X2 + • Coupling with soft X2 + mode relatively weak ! • Strong renormalization of hard (second) X2 + mode
  • 51. Energy landscape in SBT including only soft X2 + mode with additional hard X2 + mode only with the additional hard X2 + mode the experimentally observed combination of 3 different modes can be established
  • 52. Phase diagram for Bi2SrTa2O9 - SBT •Finite temperature renormalization of the T=0 energy map •Landau theory suggests linear T-variation of the quadratic stiffness coefficients Eu and  - X3 The topolgy of this phase diagram predicts two second order phase transitions and implies the existence of an intermediate phase of Amam symmetry. A single first order PT is impossible.
  • 53. Pyrochlore Y2Nb2O7 Insulating and non-magnetic 4d TM-oxide P.Blaha, D.Singh, K.Schwarz, PRL in print (2004) Metal Sublattice: Corner-shared tetrahedral network
  • 54. Pyrochlore structure of Y2Nb2O7: ■ Experimental structure from powder diffraction (Fukazawa,Maeno): ■ Pyrochlore structure: Fd-3m, a0=10.33 Å ■ 22 atoms (2 FU/cell) ■ One free parameter for O2: (0.344,1/8,1/8) ■ Corner shared Nb - O octahedra ■ Corner shared O1 - Y tetrahedra ■ Y surrounded by 8 oxygens (~ cube) ■ Metal sublattices ■ Nb-tetrahedra (empty) ■ Y-tetrahedra (around O) ■ Insulator ■ Nonmagnetic Nb Nb Y O1O2 Y metal sublattice Nb Y.Maeno et al, Nature 372, 532 (1994) H.Fukazawa, Y.Maeno,Phys.Rev. B 67, 054410 (2003)
  • 55. First theoretical results: O-2p Nb-t2g Nb-eg 3+ 4+ 2- ■ Ionic model: Y2 Nb2 O7 Nb4+: 4d1 ■ € metallic or localized system with spin ½ (neither one observed in exp.) ■ LDA gives nonmagnetic metallic ground-state with conventional t2g-eg splitting due to the octahedral crystal field of the oxygen atoms. “degenerate” t2g states are only partly filled. EF EF
  • 56. How could one obtain a non-magnetic insulator ? ■ Antiferromagnetic s=1/2 solution ■ (on geometrically frustrated lattice !?) ■ Localization, strong e--e- correlation: ■ 4d (not 3d !) electrons, ■ thus correlation should be small (Hubbard-U ~ 2-3 eV) ■ LDA+U with U=6 eV gives insulator (FM ground state, no AFM) ■ bandwidth of t2g bands: 2.5 eV (similar to U) ■ structural distortion, which breaks the dominant octahedral crystal field ■ € Search for phonon-instabilities ■ 88 atom supercell, 46 symmetry adapted selected distortions from PHONON; resulting forces € back into PHONON
  • 57. Phonon-bandstructure of Y2Nb2O7 (100) (110) (111) ■ strong Phonon-instabilities, lowest at X, K, L ■ select a certain (unstable) phonon, freeze it with certain amplitude into the structure and perform full structural optimization
  • 58. , X and K-point phonons: ■ energy lower than in ideal pyrochlore structure, but still not insulating EF
  • 59. L-point (111) phonon: ■ Relaxed structure is an Insulator ■ energy gain of 0.5 eV/FU gap metal EF
  • 60. Relaxed structure: ■ Primitive supercell with 88 atoms ■ all atoms inequivalent due to numerical optimization of the positions in P1 ■ Symmetrization using KPLOT (R.Hundt, J.C.Schön, A.Hannemann, M.Jansen: Determination of symmetries and idealized cell parameters for simulated structures, J.Appl.Cryst. 32, 413-416 (1999)) ■ Tests possible symmetries with increasing tolerance ■ Space group € P-43m, 88 atoms/cell, ■ Inequivalent atoms: ■ 2 Y ■ 2 Nb ■ 3 O1 ■ 5 O2
  • 61. Relaxed structure Nb2 Nb1 Experimental (ideal) relaxed: Nb2 moves „off-center“, O octahedra changes little, Nb2-Nb2 bonds ?
  • 62. Main change in structural relaxation Original pyrochlore Relaxed structure Nb1NbNb equal large 3.65 Å Nb2 small 2.91 Å 3.90 Å Nb1 - Nb2 3.89 Å Nb1–triangle: 3.40Å
  • 63. Chemical bonding: original structure peak A: Nb-Nb bonds within the Nb tetrahedra by d-z2 orbitals O-2p (Nb-4d) (Y-4d) Nb t2g Nb Y O peak A B
  • 64. Chemical bonding: original structure Nb t2g O-2p (Nb-4d) (Y-4d) peak A B peak B: mixture of all 3 t2g orbitals Nb Y O
  • 65. DOS of relaxed structure O-2p (Nb-4d) (Y-4d) Nb-4d (O-2p), Y-4d Nb1 B Nb2 A EF gap Nb2 C
  • 66. Peak A (Nb2) 4-center bond (d-z2) O-2p (Nb-4d) (Y-4d) Nb-4d (O-2p), Y-4d Nb1 B Nb2 A Nb2 C EF gap Nb1 Nb1 Nb1 Nb2 Nb2 Nb2 Nb2
  • 67. Peak B (Nb1) 3-center bond (new !) O-2p (Nb-4d) (Y-4d) Nb-4d (O-2p), Y-4d Nb1 B Nb2 A Nb2 C EF gap Nb1 Nb1 Nb1 Nb1 Nb2
  • 68. Peak C (Nb2) 3-center bonds an all 4 faces O-2p (Nb-4d) (Y-4d) Nb-4d (O-2p), Y-4d Nb1 B Nb2 A Nb2 C EF gap Nb1 Nb1Nb1 NbNb2 Nb2 Nb2 Nb2
  • 69. Results for Y2Nb2O7 ■ Orbital ordering of Nb-4d orbitals and structural distortion ! ■ Can be described with LDA !! ■ M-M interaction (second NN): 2 types of bonds: ■ strong Nb-Nb 4-center bonds (only Nb2 dz 2) ■ strong Nb-Nb 3-center bonds (both, on Nb1 and Nb2) ■ Relaxation ■ Two types of Nb ■ Nb1 (12i) highly elongated tetradedron along (111) ■ Nb2 (4e) perfect tetrahedron with short distances ■ Metal/insulator ■ Ideal structure metallic, relaxed structure insulating P.Blaha, D.J.Singh, K.Schwarz, Charge singlets in pyrochlore Y2Nb2O7 Phys.Rev.Lett. (in print) (2004)
  • 70. Advantage/disadvantage of WIEN2k + robust all-electron full-potential method + unbiased basisset, one convergence parameter (LDA-limit) + all elements of periodic table (equal expensive), metals + LDA, GGA, meta-GGA, LDA+U, spin-orbit + many properties + w2web (for novice users) - ? speed (+ memory requirements) + very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry) - less efficient for small spheres (1 bohr) (O: 25 Ry) - large cells (n3, iterative diagonalization not perfect) - no stress tensor - no linear response
  • 71. Thank you for your attention !