SlideShare a Scribd company logo
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Matt Moores
@MooresMt
https://uow.edu.au/~mmoores/
Centre for Environmental Informatics (CEI), University of Wollongong, NSW, Australia
TIDE Hub Seminar Series
joint with Matthew Berry, Mark Nelson, Brian Monaghan and Raymond Longbottom
1 / 19
Introduction
Physical model F

t; ~
θ

Unknown parameters ~
θ = {θ1, . . . , θk}
Initial conditions F0 and derivatives ∂F
∂t , etc.
2 / 19
Introduction
Physical model F

t; ~
θ

Unknown parameters ~
θ = {θ1, . . . , θk}
Initial conditions F0 and derivatives ∂F
∂t , etc.
Observed data yt at times t = 1, . . . , T
yt = F

t; ~
θ

+ εt
where εt is random noise.
2 / 19
Example
Growth curve:
dF
dt
= −βγt
log γ
3 / 19
Example
Growth curve:
dF
dt
= −βγt
log γ
Solution:
F

ti; ~
θ

= α − βγti
at time points t1, . . . , tn with initial condition F0 = α − β.
3 / 19
Example
Growth curve:
dF
dt
= −βγt
log γ
Solution:
F

ti; ~
θ

= α − βγti
at time points t1, . . . , tn with initial condition F0 = α − β.
Noisy observations:
yi = F(ti; α, β, γ) + εi
where εi ∼ N(0, σ2
) is additive Gaussian noise.
Unknown parameters ~
θ = {α, β, γ, σ2
}
3 / 19
Observed Data for n = 27 dugongs
4 / 19
Nonlinear Least Squares
nlm - nls(y ~ alpha - beta * gammˆt, data=dat,
start=list(alpha=1, beta=1, gamm=0.9))
summary(nlm)
##
## Formula: y ~ alpha - beta * gamm^t
##
## Parameters:
## Estimate Std. Error t value Pr(|t|)
## alpha 2.65807 0.06151 43.21  2e-16 ***
## beta 0.96352 0.06968 13.83 6.3e-13 ***
## gamm 0.87146 0.02460 35.42  2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09525 on 24 degrees of freedom
5 / 19
Drawbacks
No guarantee of convexity:
will only find the nearest local optimum
results are completely dependent on initialization
6 / 19
Drawbacks
No guarantee of convexity:
will only find the nearest local optimum
results are completely dependent on initialization
Standard errors are underestimated:
95% profile CI for α and β only achieve ~83% coverage
6 / 19
Inverse Problem
Find parameters ~
θ consistent with ~
y
7 / 19
Inverse Problem
Find parameters ~
θ consistent with ~
y
Physical model F : Θ → Y doesn’t need to be invertible:
although lack of identifiability for ~
θ can create problems
we don’t need F in closed form — can use numeric solver for DE
7 / 19
Inverse Problem
Find parameters ~
θ consistent with ~
y
Physical model F : Θ → Y doesn’t need to be invertible:
although lack of identifiability for ~
θ can create problems
we don’t need F in closed form — can use numeric solver for DE
Likelihood L(~
y | ~
θ) is based on
E[Yi | ~
θ] = F

ti; ~
θ

as well as distribution of random noise (not necessarily Gaussian)
7 / 19
Bayesian Inference
We assign prior distributions to the parameters ~
θ:
π(log{α}) ∼ N(0, 100)
π(log{β}) ∼ N(0, 100)
π(logit{γ}) ∼ N(0, 100)
π

1
σ2

∼ Ga
ν0
2
,
2
ν0s2
0
!
8 / 19
Astfalck, Cripps, Gosling, Hodkiewicz  Milne (2018) Ocean Engineering 161: 268–276.
Bayesian Inference
We assign prior distributions to the parameters ~
θ:
π(log{α}) ∼ N(0, 100)
π(log{β}) ∼ N(0, 100)
π(logit{γ}) ∼ N(0, 100)
π

1
σ2

∼ Ga
ν0
2
,
2
ν0s2
0
!
Then the joint posterior distribution is:
π

~
θ | ~
y

=
L(~
y | ~
θ)π(~
θ)
π(~
y)
where the normalising constant π(~
y) =
R ∞
0
R ∞
0
R ∞
0
R 1
0 L(~
y | α, β, γ, σ) dπ(γ)dπ(β)dπ(α)dπ(σ)
is intractable.
8 / 19
Astfalck, Cripps, Gosling, Hodkiewicz  Milne (2018) Ocean Engineering 161: 268–276.
Markov Chain Monte Carlo
Algorithm 1 Random-walk Metropolis sampler for π

~
θ | ~
y

1: Initialize α0 ∼ π(log{α}), β0 ∼ π(log{β}), γ0 ∼ π(logit{γ}), σ0 ∼ π

1
σ2

2: Solve ~
µ0 = ~
F

~
t; α0, β0, γ0

and calculate `0 = log

L(~
y | ~
µ0, σ2
0)
	
3: for iterations j = 1, . . . , J do
4: Propose log{α∗} ∼ N(log{αj−1}, σ2
α), log{β∗} ∼ N(log{βj−1}, σ2
β), logit{γ∗} ∼
N(logit{γj−1}, σ2
γ)
5: Solve ~
µ∗ = ~
F

~
t; α∗, β∗, γ∗

6: Propose σ∗ ∼ π

1
σ2 | ~
µ∗,~
y

and calculate `∗ = log

L(~
y | ~
µ∗, σ2
∗)
	
7: Calculate
ρt =
exp{`∗}π(~
θ∗)q(~
θj−1 | ~
θ∗)
exp{`j−1}π(~
θj−1)q(~
θ∗ | ~
θj−1)
8: Accept ~
θj = ~
θ∗ with probability min{ρt, 1} else ~
θj = ~
θj−1
9: end for 9 / 19
Markov Chains
10 / 19
Posterior Distributions
11 / 19
95% Predictive Interval
12 / 19
Thermogravimetric Analysis
The TGA model for a single reaction involves the Arrhenius equations:
dM
dt
= −MA exp

−
E
RT

dT
dt
= α
where M is mass fraction, T is temperature, R is the ideal gas constant. The initial mass M0,
the initial temperature T0, and the heating rate α are experimentally controlled.
The unknown parameters ~
θ are
A pre-exponential factor
E activation energy
σ2 variance of the additive Gaussian noise
13 / 19
Reparameterisation
We have good prior information for E (physically interpretable) and σ2 (measurement noise),
but not for A.
The distributions for A and E are also very highly correlated, slowing the mixing of MCMC.
14 / 19
Reparameterisation
We have good prior information for E (physically interpretable) and σ2 (measurement noise),
but not for A.
The distributions for A and E are also very highly correlated, slowing the mixing of MCMC.
Instead, we reparameterise the model in terms of the temperature, Tm, at which the rate dM
dt is
maximised:
A exp

−
E
RTm

=
E
RT2
m
α
In our MCMC algorithm, we first propose q(E∗ | Ej−1), then propose q(Tm∗ | Tm,j−1). The
value of A∗ can then be obtained from the equation above.
We solve ~
F

~
t; E∗, A∗

numerically using a Runge-Kutta method.
14 / 19
Posterior Distributions
634.6 634.7 634.8 634.9 635.0 635.1 635.2 635.3
Tm
0
1
2
3
4
5
84750 85000 85250 85500 85750 86000 86250 86500 86750
E
0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.08 0.10 0.12 0.14
0
10
20
30
40
50
2400000 2600000 2800000 3000000 3200000 3400000 3600000
A
0.0000000
0.0000005
0.0000010
0.0000015
0.0000020
0.0000025
15 / 19
Posterior for Functions of ~
θ
A function of a random variable is also a random variable.
Now that we have random samples from our posterior π(A, E, Tm, σ2 | ~
y), we can use our
model to obtain predictions for any measurable function of the parameters, g(A, E, Tm).
16 / 19
Posterior for Functions of ~
θ
A function of a random variable is also a random variable.
Now that we have random samples from our posterior π(A, E, Tm, σ2 | ~
y), we can use our
model to obtain predictions for any measurable function of the parameters, g(A, E, Tm).
For example, the critical length of a stockpile:
Lcr = g(A, E, Tm) = K
v
u
u
texp
n
E
RT2
m
o
A
RT2
m
E
E[g(A, E, Tm) | ~
y] =
Z 1000
0
Z ∞
0
Z ∞
0
g(A, E, Tm) dπ(A, E, Tm | ~
y)
≈
J
X
j=1
g(Aj, Ej, Tj)
where K is a constant and {Aj, Ej, Tj}J
j=1 are the MCMC samples (after discarding burn-in).
16 / 19
Posterior for Lcr
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
17 / 19
Advanced Methods
Parallel and distributed computation
Sequential updating of π(~
θ | ~
y) and streaming inference
Spatio-temporal modelling of F(x, y, z, t; ~
θ)
Emulation of the forward map Θ → Y
(e.g. using artificial neural networks)
Approximating the likelihood L (e.g. ABC)
Accounting for multi-modality
(e.g. ill-posed problems)
Accounting for error in the numerical solver (probabilistic numerics)
Accounting for model misspecification (discrepancy function)
Multi-level Monte Carlo methods
Hamiltonian Monte Carlo 18 / 19
Further Reading
R. J. Longbottom, B. J. Monaghan, D. J. Pinson, N. A. S. Webster  S. J. Chew
In situ Phase Analysis during Self-sintering of BOS Filter Cake for Improved Recycling.
ISIJ International 60(11): 2436–2445, 2020.
A. M. Stuart
Inverse problems: A Bayesian perspective.
Acta Numerica 19: 451—559, 2010.
L.C. Astfalck, E.J. Cripps, J.P. Gosling, M.R. Hodkiewicz  I.A. Milne
Expert elicitation of directional metocean parameters. Ocean Engineering 161: 268–276, 2018.
B. P. Carlin  A. E. Gelfand
An iterative Monte Carlo method for nonconjugate Bayesian analysis.
Statistics  Computing 1(2): 119–128, 1991.
19 / 19

More Related Content

What's hot (18)

PDF
Graph Kernelpdf
pratik shukla
 
PDF
SPU Optimizations-part 1
Naughty Dog
 
PDF
A Note on Latent LSTM Allocation
Tomonari Masada
 
PDF
Feedback Vertex Set
Mag-Stellon Nadarajah
 
PDF
The all-electron GW method based on WIEN2k: Implementation and applications.
ABDERRAHMANE REGGAD
 
PDF
Multilayer Neural Networks
ESCOM
 
PDF
Lecture9 xing
Tianlu Wang
 
PDF
A nonlinear approximation of the Bayesian Update formula
Alexander Litvinenko
 
PDF
Random Number Generators 2018
rinnocente
 
PPT
Convex Optimization Modelling with CVXOPT
andrewmart11
 
PDF
A study of the worst case ratio of a simple algorithm for simple assembly lin...
narmo
 
PDF
ADAPTIVE FUZZY KERNEL CLUSTERING ALGORITHM
ijfls
 
PPTX
Aaex4 group2(中英夾雜)
Shiang-Yun Yang
 
PDF
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
 
PPTX
Aaex7 group2(中英夾雜)
Shiang-Yun Yang
 
PDF
Subquad multi ff
Fabian Velazquez
 
PDF
Linear Cryptanalysis Lecture 線形解読法
Kai Katsumata
 
PDF
Minimum spanning tree
Amit Kumar Rathi
 
Graph Kernelpdf
pratik shukla
 
SPU Optimizations-part 1
Naughty Dog
 
A Note on Latent LSTM Allocation
Tomonari Masada
 
Feedback Vertex Set
Mag-Stellon Nadarajah
 
The all-electron GW method based on WIEN2k: Implementation and applications.
ABDERRAHMANE REGGAD
 
Multilayer Neural Networks
ESCOM
 
Lecture9 xing
Tianlu Wang
 
A nonlinear approximation of the Bayesian Update formula
Alexander Litvinenko
 
Random Number Generators 2018
rinnocente
 
Convex Optimization Modelling with CVXOPT
andrewmart11
 
A study of the worst case ratio of a simple algorithm for simple assembly lin...
narmo
 
ADAPTIVE FUZZY KERNEL CLUSTERING ALGORITHM
ijfls
 
Aaex4 group2(中英夾雜)
Shiang-Yun Yang
 
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
 
Aaex7 group2(中英夾雜)
Shiang-Yun Yang
 
Subquad multi ff
Fabian Velazquez
 
Linear Cryptanalysis Lecture 線形解読法
Kai Katsumata
 
Minimum spanning tree
Amit Kumar Rathi
 

Similar to Bayesian Inference and Uncertainty Quantification for Inverse Problems (20)

PDF
Maximum likelihood estimation of regularisation parameters in inverse problem...
Valentin De Bortoli
 
PDF
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
MBIP-book.pdf
VaideshSiva1
 
PDF
Baum3
dmolina87
 
PDF
MUMS: Transition & SPUQ Workshop - Complexities in Bayesian Inverse Problems:...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
The Statistical and Applied Mathematical Sciences Institute
 
PPTX
Monte Carlo Berkeley.pptx
HaibinSu2
 
PDF
Inference for stochastic differential equations via approximate Bayesian comp...
Umberto Picchini
 
PDF
How many components in a mixture?
Christian Robert
 
PDF
Testing for mixtures at BNP 13
Christian Robert
 
PDF
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
R package bayesImageS: Scalable Inference for Intractable Likelihoods
Matt Moores
 
PDF
NCE, GANs & VAEs (and maybe BAC)
Christian Robert
 
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
QMC: Transition Workshop - Probability Models for Discretization Uncertainty ...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Factorized Asymptotic Bayesian Inference for Latent Feature Models
Kohei Hayashi
 
PPTX
Partha Sengupta_structural analysis.pptx
JimmyPhoenix2
 
PDF
Multiple estimators for Monte Carlo approximations
Christian Robert
 
PDF
Likelihood free computational statistics
Pierre Pudlo
 
PDF
Minimum mean square error estimation and approximation of the Bayesian update
Alexander Litvinenko
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Valentin De Bortoli
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
The Statistical and Applied Mathematical Sciences Institute
 
MBIP-book.pdf
VaideshSiva1
 
Baum3
dmolina87
 
MUMS: Transition & SPUQ Workshop - Complexities in Bayesian Inverse Problems:...
The Statistical and Applied Mathematical Sciences Institute
 
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
The Statistical and Applied Mathematical Sciences Institute
 
Monte Carlo Berkeley.pptx
HaibinSu2
 
Inference for stochastic differential equations via approximate Bayesian comp...
Umberto Picchini
 
How many components in a mixture?
Christian Robert
 
Testing for mixtures at BNP 13
Christian Robert
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
The Statistical and Applied Mathematical Sciences Institute
 
R package bayesImageS: Scalable Inference for Intractable Likelihoods
Matt Moores
 
NCE, GANs & VAEs (and maybe BAC)
Christian Robert
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
QMC: Transition Workshop - Probability Models for Discretization Uncertainty ...
The Statistical and Applied Mathematical Sciences Institute
 
Factorized Asymptotic Bayesian Inference for Latent Feature Models
Kohei Hayashi
 
Partha Sengupta_structural analysis.pptx
JimmyPhoenix2
 
Multiple estimators for Monte Carlo approximations
Christian Robert
 
Likelihood free computational statistics
Pierre Pudlo
 
Minimum mean square error estimation and approximation of the Bayesian update
Alexander Litvinenko
 
Ad

More from Matt Moores (13)

PDF
bayesImageS: an R package for Bayesian image analysis
Matt Moores
 
PDF
Exploratory Analysis of Multivariate Data
Matt Moores
 
PDF
Approximate Bayesian computation for the Ising/Potts model
Matt Moores
 
PDF
Importing satellite imagery into R from NASA and the U.S. Geological Survey
Matt Moores
 
PDF
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
PDF
Bayesian modelling and computation for Raman spectroscopy
Matt Moores
 
PDF
Final PhD Seminar
Matt Moores
 
PDF
Precomputation for SMC-ABC with undirected graphical models
Matt Moores
 
PDF
Intro to ABC
Matt Moores
 
PDF
Pre-computation for ABC in image analysis
Matt Moores
 
PDF
Variational Bayes
Matt Moores
 
PDF
Parallel R
Matt Moores
 
PDF
Informative Priors for Segmentation of Medical Images
Matt Moores
 
bayesImageS: an R package for Bayesian image analysis
Matt Moores
 
Exploratory Analysis of Multivariate Data
Matt Moores
 
Approximate Bayesian computation for the Ising/Potts model
Matt Moores
 
Importing satellite imagery into R from NASA and the U.S. Geological Survey
Matt Moores
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
Bayesian modelling and computation for Raman spectroscopy
Matt Moores
 
Final PhD Seminar
Matt Moores
 
Precomputation for SMC-ABC with undirected graphical models
Matt Moores
 
Intro to ABC
Matt Moores
 
Pre-computation for ABC in image analysis
Matt Moores
 
Variational Bayes
Matt Moores
 
Parallel R
Matt Moores
 
Informative Priors for Segmentation of Medical Images
Matt Moores
 
Ad

Recently uploaded (20)

PPT
Cell cycle,cell cycle checkpoint and control
DrMukeshRameshPimpli
 
PPTX
Pharmaceutical Microbiology (sem-3) unit 1.pptx
payalpilaji
 
PPTX
Pratik inorganic chemistry silicon based ppt
akshaythaker18
 
PDF
Continuous Model-Based Engineering of Software-Intensive Systems: Approaches,...
Hugo Bruneliere
 
DOCX
Table - Technique selection matrix in CleaningValidation
Markus Janssen
 
PPTX
Gene Therapy. Introduction, history and types of Gene therapy
Ashwini I Chuncha
 
PDF
Pharma Part 1.pdf #pharmacology #pharmacology
hikmatyt01
 
PDF
Chemokines and Receptors Overview – Key to Immune Cell Signaling
Benjamin Lewis Lewis
 
PDF
WUCHERIA BANCROFTI-converted-compressed.pdf
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PDF
Pharmaceutical Microbiology (sem-3) UNIT IV.pdf
payalpilaji
 
PDF
Phosphates reveal high pH ocean water on Enceladus
Sérgio Sacani
 
PPT
Introduction of animal physiology in vertebrates
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PPTX
Anatomy and physiology of digestive system.pptx
Ashwini I Chuncha
 
PPTX
Structure and uses of DDT, Saccharin..pptx
harsimrankaur204
 
PPTX
LESSON 2 PSYCHOSOCIAL DEVELOPMENT.pptx L
JeanCarolColico1
 
PPTX
Akshay tunneling .pptx_20250331_165945_0000.pptx
akshaythaker18
 
PPT
Conservation-of-Mechanical-Energy-Honors-14.ppt
exieHANNAHEXENGaALME
 
PPT
Human physiology and digestive system
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PPTX
Buoyancy, Archimedes' principle, and Pascal's.pptx
kmistwentyfour
 
DOCX
Book Gap and Brick Theory By Ayank Raj.docx
ayankraj2006
 
Cell cycle,cell cycle checkpoint and control
DrMukeshRameshPimpli
 
Pharmaceutical Microbiology (sem-3) unit 1.pptx
payalpilaji
 
Pratik inorganic chemistry silicon based ppt
akshaythaker18
 
Continuous Model-Based Engineering of Software-Intensive Systems: Approaches,...
Hugo Bruneliere
 
Table - Technique selection matrix in CleaningValidation
Markus Janssen
 
Gene Therapy. Introduction, history and types of Gene therapy
Ashwini I Chuncha
 
Pharma Part 1.pdf #pharmacology #pharmacology
hikmatyt01
 
Chemokines and Receptors Overview – Key to Immune Cell Signaling
Benjamin Lewis Lewis
 
WUCHERIA BANCROFTI-converted-compressed.pdf
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Pharmaceutical Microbiology (sem-3) UNIT IV.pdf
payalpilaji
 
Phosphates reveal high pH ocean water on Enceladus
Sérgio Sacani
 
Introduction of animal physiology in vertebrates
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Anatomy and physiology of digestive system.pptx
Ashwini I Chuncha
 
Structure and uses of DDT, Saccharin..pptx
harsimrankaur204
 
LESSON 2 PSYCHOSOCIAL DEVELOPMENT.pptx L
JeanCarolColico1
 
Akshay tunneling .pptx_20250331_165945_0000.pptx
akshaythaker18
 
Conservation-of-Mechanical-Energy-Honors-14.ppt
exieHANNAHEXENGaALME
 
Human physiology and digestive system
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Buoyancy, Archimedes' principle, and Pascal's.pptx
kmistwentyfour
 
Book Gap and Brick Theory By Ayank Raj.docx
ayankraj2006
 

Bayesian Inference and Uncertainty Quantification for Inverse Problems

  • 1. Bayesian Inference and Uncertainty Quantification for Inverse Problems Matt Moores @MooresMt https://uow.edu.au/~mmoores/ Centre for Environmental Informatics (CEI), University of Wollongong, NSW, Australia TIDE Hub Seminar Series joint with Matthew Berry, Mark Nelson, Brian Monaghan and Raymond Longbottom 1 / 19
  • 2. Introduction Physical model F t; ~ θ Unknown parameters ~ θ = {θ1, . . . , θk} Initial conditions F0 and derivatives ∂F ∂t , etc. 2 / 19
  • 3. Introduction Physical model F t; ~ θ Unknown parameters ~ θ = {θ1, . . . , θk} Initial conditions F0 and derivatives ∂F ∂t , etc. Observed data yt at times t = 1, . . . , T yt = F t; ~ θ + εt where εt is random noise. 2 / 19
  • 5. Example Growth curve: dF dt = −βγt log γ Solution: F ti; ~ θ = α − βγti at time points t1, . . . , tn with initial condition F0 = α − β. 3 / 19
  • 6. Example Growth curve: dF dt = −βγt log γ Solution: F ti; ~ θ = α − βγti at time points t1, . . . , tn with initial condition F0 = α − β. Noisy observations: yi = F(ti; α, β, γ) + εi where εi ∼ N(0, σ2 ) is additive Gaussian noise. Unknown parameters ~ θ = {α, β, γ, σ2 } 3 / 19
  • 7. Observed Data for n = 27 dugongs 4 / 19
  • 8. Nonlinear Least Squares nlm - nls(y ~ alpha - beta * gammˆt, data=dat, start=list(alpha=1, beta=1, gamm=0.9)) summary(nlm) ## ## Formula: y ~ alpha - beta * gamm^t ## ## Parameters: ## Estimate Std. Error t value Pr(|t|) ## alpha 2.65807 0.06151 43.21 2e-16 *** ## beta 0.96352 0.06968 13.83 6.3e-13 *** ## gamm 0.87146 0.02460 35.42 2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.09525 on 24 degrees of freedom 5 / 19
  • 9. Drawbacks No guarantee of convexity: will only find the nearest local optimum results are completely dependent on initialization 6 / 19
  • 10. Drawbacks No guarantee of convexity: will only find the nearest local optimum results are completely dependent on initialization Standard errors are underestimated: 95% profile CI for α and β only achieve ~83% coverage 6 / 19
  • 11. Inverse Problem Find parameters ~ θ consistent with ~ y 7 / 19
  • 12. Inverse Problem Find parameters ~ θ consistent with ~ y Physical model F : Θ → Y doesn’t need to be invertible: although lack of identifiability for ~ θ can create problems we don’t need F in closed form — can use numeric solver for DE 7 / 19
  • 13. Inverse Problem Find parameters ~ θ consistent with ~ y Physical model F : Θ → Y doesn’t need to be invertible: although lack of identifiability for ~ θ can create problems we don’t need F in closed form — can use numeric solver for DE Likelihood L(~ y | ~ θ) is based on E[Yi | ~ θ] = F ti; ~ θ as well as distribution of random noise (not necessarily Gaussian) 7 / 19
  • 14. Bayesian Inference We assign prior distributions to the parameters ~ θ: π(log{α}) ∼ N(0, 100) π(log{β}) ∼ N(0, 100) π(logit{γ}) ∼ N(0, 100) π 1 σ2 ∼ Ga ν0 2 , 2 ν0s2 0 ! 8 / 19 Astfalck, Cripps, Gosling, Hodkiewicz Milne (2018) Ocean Engineering 161: 268–276.
  • 15. Bayesian Inference We assign prior distributions to the parameters ~ θ: π(log{α}) ∼ N(0, 100) π(log{β}) ∼ N(0, 100) π(logit{γ}) ∼ N(0, 100) π 1 σ2 ∼ Ga ν0 2 , 2 ν0s2 0 ! Then the joint posterior distribution is: π ~ θ | ~ y = L(~ y | ~ θ)π(~ θ) π(~ y) where the normalising constant π(~ y) = R ∞ 0 R ∞ 0 R ∞ 0 R 1 0 L(~ y | α, β, γ, σ) dπ(γ)dπ(β)dπ(α)dπ(σ) is intractable. 8 / 19 Astfalck, Cripps, Gosling, Hodkiewicz Milne (2018) Ocean Engineering 161: 268–276.
  • 16. Markov Chain Monte Carlo Algorithm 1 Random-walk Metropolis sampler for π ~ θ | ~ y 1: Initialize α0 ∼ π(log{α}), β0 ∼ π(log{β}), γ0 ∼ π(logit{γ}), σ0 ∼ π 1 σ2 2: Solve ~ µ0 = ~ F ~ t; α0, β0, γ0 and calculate `0 = log L(~ y | ~ µ0, σ2 0) 3: for iterations j = 1, . . . , J do 4: Propose log{α∗} ∼ N(log{αj−1}, σ2 α), log{β∗} ∼ N(log{βj−1}, σ2 β), logit{γ∗} ∼ N(logit{γj−1}, σ2 γ) 5: Solve ~ µ∗ = ~ F ~ t; α∗, β∗, γ∗ 6: Propose σ∗ ∼ π 1 σ2 | ~ µ∗,~ y and calculate `∗ = log L(~ y | ~ µ∗, σ2 ∗) 7: Calculate ρt = exp{`∗}π(~ θ∗)q(~ θj−1 | ~ θ∗) exp{`j−1}π(~ θj−1)q(~ θ∗ | ~ θj−1) 8: Accept ~ θj = ~ θ∗ with probability min{ρt, 1} else ~ θj = ~ θj−1 9: end for 9 / 19
  • 20. Thermogravimetric Analysis The TGA model for a single reaction involves the Arrhenius equations: dM dt = −MA exp − E RT dT dt = α where M is mass fraction, T is temperature, R is the ideal gas constant. The initial mass M0, the initial temperature T0, and the heating rate α are experimentally controlled. The unknown parameters ~ θ are A pre-exponential factor E activation energy σ2 variance of the additive Gaussian noise 13 / 19
  • 21. Reparameterisation We have good prior information for E (physically interpretable) and σ2 (measurement noise), but not for A. The distributions for A and E are also very highly correlated, slowing the mixing of MCMC. 14 / 19
  • 22. Reparameterisation We have good prior information for E (physically interpretable) and σ2 (measurement noise), but not for A. The distributions for A and E are also very highly correlated, slowing the mixing of MCMC. Instead, we reparameterise the model in terms of the temperature, Tm, at which the rate dM dt is maximised: A exp − E RTm = E RT2 m α In our MCMC algorithm, we first propose q(E∗ | Ej−1), then propose q(Tm∗ | Tm,j−1). The value of A∗ can then be obtained from the equation above. We solve ~ F ~ t; E∗, A∗ numerically using a Runge-Kutta method. 14 / 19
  • 23. Posterior Distributions 634.6 634.7 634.8 634.9 635.0 635.1 635.2 635.3 Tm 0 1 2 3 4 5 84750 85000 85250 85500 85750 86000 86250 86500 86750 E 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.08 0.10 0.12 0.14 0 10 20 30 40 50 2400000 2600000 2800000 3000000 3200000 3400000 3600000 A 0.0000000 0.0000005 0.0000010 0.0000015 0.0000020 0.0000025 15 / 19
  • 24. Posterior for Functions of ~ θ A function of a random variable is also a random variable. Now that we have random samples from our posterior π(A, E, Tm, σ2 | ~ y), we can use our model to obtain predictions for any measurable function of the parameters, g(A, E, Tm). 16 / 19
  • 25. Posterior for Functions of ~ θ A function of a random variable is also a random variable. Now that we have random samples from our posterior π(A, E, Tm, σ2 | ~ y), we can use our model to obtain predictions for any measurable function of the parameters, g(A, E, Tm). For example, the critical length of a stockpile: Lcr = g(A, E, Tm) = K v u u texp n E RT2 m o A RT2 m E E[g(A, E, Tm) | ~ y] = Z 1000 0 Z ∞ 0 Z ∞ 0 g(A, E, Tm) dπ(A, E, Tm | ~ y) ≈ J X j=1 g(Aj, Ej, Tj) where K is a constant and {Aj, Ej, Tj}J j=1 are the MCMC samples (after discarding burn-in). 16 / 19
  • 27. Advanced Methods Parallel and distributed computation Sequential updating of π(~ θ | ~ y) and streaming inference Spatio-temporal modelling of F(x, y, z, t; ~ θ) Emulation of the forward map Θ → Y (e.g. using artificial neural networks) Approximating the likelihood L (e.g. ABC) Accounting for multi-modality (e.g. ill-posed problems) Accounting for error in the numerical solver (probabilistic numerics) Accounting for model misspecification (discrepancy function) Multi-level Monte Carlo methods Hamiltonian Monte Carlo 18 / 19
  • 28. Further Reading R. J. Longbottom, B. J. Monaghan, D. J. Pinson, N. A. S. Webster S. J. Chew In situ Phase Analysis during Self-sintering of BOS Filter Cake for Improved Recycling. ISIJ International 60(11): 2436–2445, 2020. A. M. Stuart Inverse problems: A Bayesian perspective. Acta Numerica 19: 451—559, 2010. L.C. Astfalck, E.J. Cripps, J.P. Gosling, M.R. Hodkiewicz I.A. Milne Expert elicitation of directional metocean parameters. Ocean Engineering 161: 268–276, 2018. B. P. Carlin A. E. Gelfand An iterative Monte Carlo method for nonconjugate Bayesian analysis. Statistics Computing 1(2): 119–128, 1991. 19 / 19