This document discusses dynamic programming and greedy algorithms. It begins by defining dynamic programming as a technique for solving problems with overlapping subproblems. Examples provided include computing the Fibonacci numbers and binomial coefficients. Greedy algorithms are introduced as constructing solutions piece by piece through locally optimal choices. Applications discussed are the change-making problem, minimum spanning trees using Prim's and Kruskal's algorithms, and single-source shortest paths. Floyd's algorithm for all pairs shortest paths and optimal binary search trees are also summarized.