SlideShare a Scribd company logo
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
DOI : 10.5121/ijccms.2013.2303 31
SYNCHRONIZATION OF A FOUR-WING
HYPERCHAOTIC SYSTEM
Masoud Taleb Ziabari 1
and Ali Reza Sahab 2
1
Faculty of Engineering, Computer Engineering Group, Ahrar University, Rasht, Iran.
2
Faculty of Engineering, Electrical Engineering Group, Islamic Azad University, Lahijan
Branch, Iran.
ABSTRACT
This paper presents synchronization of a four-dimensional autonomous hyperchaotic system based on the
generalized augmented Lü system. Based on the Lyapunov stability theory an active control law is derived
such that the two four-dimensional autonomous hyper-chaotic systems are to be synchronized. Numerical
simulations are presented to demonstrate the effectiveness of the synchronization schemes.
KEYWORDS
Four-dimensional autonomous hyperchaotic system, Lyapunov, Active control, Synchronization.
1. INTRODUCTION
Over the last decades, chaos synchronization have been attracted increasingly attentions [1-10].
[2] investigated adaptive control and synchronization of the uncertain Sprott-H system (Sprott,
1994) with unknown parameters. [3] derived new results for the hybrid synchronization of
identical hyperchaotic Liu systems (Liu, Liu and Zhang, 2008) via sliding mode control. In
hybrid synchronization of master and slave systems, the odd states of the two systems were
completely synchronized, while their even states were antisynchronized. the problem of state
feedback controller design for the output regulation of Sprott-K chaotic system, which is one of
the simple, classical, three-dimensional chaotic systems discovered by J.C. Sprott (1994) was
investigated in [4]. [5] presented hyperchaos anti-synchronization of different hyperchaotic
systems using Active Generalized Backstepping Method (AGBM). The proposed technique was
applied to achieve hyperchaos anti-synchronization for the Lorenz and Lu dynamical systems. In
[6], active controller has been designed to solve the output regulation problem for the Sprott-P
chaotic system (1994) and a complete solution for the tracking of constant reference signals (set-
point signals). [7] solved the output regulation problem of Sprott-F chaotic system, which is one
of the classical chaotic systems discovered by J.C. Sprott (1994). [8] derived new results on the
active controller design for the output regulation problem of the Sprott-K chaotic system, which
is one of the classical chaotic systems discovered by J.C. Sprott (1994). In [9], chaos
synchronization problems of a new 3D chaotic system via three different methods was
investigated. Active control and backstepping design methods were adopted when system
parameters were known, and adaptive control method was applied when system parameters are
unknown. [10] presented chaos synchronization of two different Sprott systems. Chaos
synchronization of them by using active control was achieved.
The rest of the paper is organized as follows: In section 2, a four-wing hyperchaotic system is
presented. In section 3, synchronization between two four-wing hyperchaotic systems are
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
32
achieved by active control. In section 4, Represents simulation results. Finally, in section 5,
Provides conclusion of this work.
2. SYSTEM DESCRIPTION
Recently, Xue Wei et al constructed the Four-Wing hyperchaotic system [11]. The system is
described by.
̇ ( )
̇
̇
̇
(1)
Where are positive constants and are variables of the system, when
, the system (1) is chaotic. See Figure 1 and Figure 2.
Figure 1. Time response of the system (1).
0 1 2 3 4 5 6 7 8 9 10
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time (sec)
TrajectoryofStates
x
y
z
w
-200
-100
0
100
200
-200
-100
0
100
200
-150
-100
-50
0
50
100
150
xy
z
-200
-100
0
100
200
-200
-100
0
100
200
-20
-15
-10
-5
0
5
10
xy
w
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
33
Figure 2. Phase portraits of the four-wing hyperchaotic attractors (1).
3. SYNCHRONIZATION VIA ACTIVE CONTROL
In this section, the active control method is applied to synchronize two identical four-wing
hyperchaotic systems with known parameters and some global asymptotic synchronization
conditions are obtained. Suppose the drive system takes the following form
̇ ( )
̇
̇
̇
(2)
and the response system is given as follows
̇ ( ) ( )
̇ ( )
̇ ( )
̇ ( )
(3)
Where ( ) ( ) ( ) ( ) are control functions to be determined for achieving
synchronization between the two systems (2) and (3). Define state errors between systems (2) and
(3) as follows
(4)
We obtain the following error dynamical system by subtracting the drive system (2) from the
response system (3)
̇ ( ) ( ) ( )
̇ ( )
̇ ( )
̇ ( )
(5)
Define the following active control functions ( ) ( ) ( ) ( )
-200
-100
0
100
200
-200
-100
0
100
200
-20
-15
-10
-5
0
5
10
xz
w
-200
-100
0
100
200
-200
-100
0
100
200
-20
-15
-10
-5
0
5
10
yz
w
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
34
( ) ( )
( ) ( )
( ) ( )
( ) ( )
(6)
Where ( ) ( ) ( ) ( ) are control inputs. Substituting equation (6) into equation (5)
yields
̇ ( ) ( )
̇ ( )
̇ ( )
̇ ( )
(7)
Thus, the error system (7) to be controlled with control inputs ( ) ( ) ( ) and ( ) as
functions of error states and . When system (7) is stabilized by control inputs
( ) ( ) ( ) and ( ), and will converage to zeroes as time tends to
infinity. Which implies that system (2) and (3) are synchronized. To achieve this purpose, we
choose control inputs by using active control such that
( ) ( )
( ) ( )
( ) ( )
( )
(8)
we select the gains of controllers (6) in the following form
(9)
And Lyapunov function as
( ) (10)
Therefore, the function ̇ ( ) would be obtained negative definite
̇ ( ) (11)
4. NUMERICAL SIMULATION
The active control is used as an approach to synchronize two four-wing hyperchaotic systems.
The initial values of the drive and response systems are ( ) ( ) ( )
( ) and ( ) ( ) ( ) ( ) respectively. The time
response of states for drive system (2) and the response system (3) via active control
shown in Figure 3 to Figure 6. Synchronization errors ( ) in the four-wing
hyperchaotic systems shown in Figure 7. The time response of the control inputs ( )
for the synchronization four-wing hyperchaotic systems shown in Figure 8.
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
35
Figure 3. The time response of signal ( ) for drive system (2) and response system (3).
Figure 4. The time response of signal ( ) for drive system (2) and response system (3).
Figure 5. The time response of signal ( ) for drive system (2) and response system (3).
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40
-30
-20
-10
0
10
20
Time (sec)
TrajectoryofxState
x1
x2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10
-5
0
5
10
15
20
25
30
Time (sec)
TrajectoryofyState
y1
y2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
Time (sec)
TrajectoryofzState
z1
z2
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
36
Figure 6. The time response of signal ( ) for drive system (2) and response system (3).
Figure 7. Synchronization errors ( ) in drive system (2) and response system (3).
Figure 8. The time response of the control inputs ( ) for drive system (2) and response system (3).
5. CONCLUSIONS
We investigate chaos synchronization of a four-dimensional autonomous hyperchaotic system
based on the generalized augmented Lü system via active control in this paper. Based on the
Lyapunov stability theory, corresponding controller is designed to achieve synchronization
between two identical four-wing hyperchaotic systems. Numerical simulations show that the
proposed method work effectively.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10
-8
-6
-4
-2
0
2
4
6
8
Time (sec)
TrajectoryofwState
w1
w2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20
-15
-10
-5
0
5
10
15
20
Time (sec)
TrajectoryofErrors
ex
ey
ez
ew
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60
-50
-40
-30
-20
-10
0
10
20
Time (sec)
ControlSignals
u1
u2
u3
u4
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013
37
REFERENCES
[1] Pecora, Carroll. Synchronization in Chaotic Systems. Phys.Rev. Lett,64, (1990) 821-823.
[2] Dr. V. Sundarapandian, Adaptive Control and Synchronization of the Uncertain Sprott H System,
International Journal of Advances in Science and Technology, Vol. 2, No.4, 2011.
[3] Sundarapandian Vaidyanathan, HYBRID SYNCHRONIZATION OF HYPERCHAOTIC LIU
SYSTEMS VIA SLIDING MODE CONTROL, International Journal of Chaos, Control, Modelling
and Simulation (IJCCMS) Vol.1, No.1, September 2012.
[4] Sundarapandian Vaidyanathan, STATE FEEDBACK CONTROLLER DESIGN FOR THE
OUTPUT REGULATION OF SPROTT-H SYSTEM, International Journal of Information Sciences
and Techniques (IJIST) Vol.1, No.3, November 2011.
[5] Ali Reza Sahab and Masoud Taleb Ziabari, ANTI-SYNCHRONIZATON OF TWO DIFFERENT
HYPERCHAOTIC SYSTEMS VIA ACTIVE GENERALIZED BACKSTEPPING METHOD,
International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.1, March
2013.
[6] Sundarapandian Vaidyanathan, ACTIVE CONTROLLER DESIGN FOR REGULATING THE
OUTPUT OF THE SPROTT-P SYSTEM, International Journal of Chaos, Control, Modelling and
Simulation (IJCCMS) Vol.2, No.1, March 2013.
[7] Sundarapandian Vaidyanathan, OUTPUT REGULATION OF SPROTT-F CHAOTIC SYSTEM BY
STATE FEEDBACK CONTROL, International Journal of Control Theory and Computer Modelling
(IJCTCM) Vol.2, No.2, March 2012,.
[8] Sundarapandian Vaidyanathan, ACTIVE CONTROLLER DESIGN FOR THE OUTPUT
REGULATION OF SPROTT-K CHAOTIC SYSTEM, Computer Science & Engineering: An
International Journal (CSEIJ), Vol.2, No.3, June 2012.
[9] Yue Wu, Xiaobing Zhou, Jia Chen, Bei Hui, Chaos synchronization of a new 3D chaotic system,
Chaos, Solitons and Fractals 42 (2009) 1812–1819.
[10] Dengguo Xu, Chaos Synchronization between Two Different Sprott Systems, Adv. Theor. Appl.
Mech., Vol. 3, 2010, no. 4, 195 – 201.
[11] Xue Wei, Fang Yunfei, Li Qiang, A Novel Four-Wing Hyper-Chaotic System and Its Circuit
Implementation, 2012 International Workshop on Information and Electronics Engineering (IWIEE),
Procedia Engineering 29 (2012) 1264-1269.

More Related Content

PDF
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
ijait
 
PDF
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
ijctcm
 
PDF
Control of new 3 d chaotic system
Zac Darcy
 
PDF
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
ijccmsjournal
 
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
IJCSEA Journal
 
PPTX
Modelling and Control of Ground Test Set-up of Attitude of Satellite
A. Bilal Özcan
 
PPTX
Attitude Control of Satellite Test Setup Using Reaction Wheels
A. Bilal Özcan
 
PDF
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
ijistjournal
 
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
ijait
 
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
ijctcm
 
Control of new 3 d chaotic system
Zac Darcy
 
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
ijccmsjournal
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
IJCSEA Journal
 
Modelling and Control of Ground Test Set-up of Attitude of Satellite
A. Bilal Özcan
 
Attitude Control of Satellite Test Setup Using Reaction Wheels
A. Bilal Özcan
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
ijistjournal
 

What's hot (20)

PDF
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
ijitjournal
 
PDF
Simple Exponential Observer Design for the Generalized Liu Chaotic System
ijtsrd
 
PDF
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
Zac Darcy
 
PDF
Function projective synchronization
ijcseit
 
PDF
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
ijistjournal
 
PDF
THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UN...
IJCSEA Journal
 
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM
ijait
 
PDF
Robust Adaptive Controller for Uncertain Nonlinear Systems
IJITCA Journal
 
PDF
Ac03101660176
ijceronline
 
PDF
Neural Network Control Based on Adaptive Observer for Quadrotor Helicopter
IJITCA Journal
 
PDF
AN INVESTIGATION ON FUZZY LOGIC CONTROLLERS (TAKAGI-SUGENO & MAMDANI) IN INVE...
ijfls
 
PDF
D025030035
inventionjournals
 
PPT
ICCCNT1108-9
Anish Acharya
 
PDF
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
IJECEIAES
 
PDF
Automatic control and mixed sensitivity Hinf control
René Galindo
 
PDF
Optimal PID Controller Design for Speed Control of a Separately Excited DC Mo...
ijscmcj
 
PDF
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
journalBEEI
 
PDF
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
toukaigi
 
PPTX
Simulation of inverted pendulum presentation
Pourya Parsa
 
PDF
Ips csmc 14.06.2016
SaurabhSaini91
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
ijitjournal
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
ijtsrd
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
Zac Darcy
 
Function projective synchronization
ijcseit
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
ijistjournal
 
THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UN...
IJCSEA Journal
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM
ijait
 
Robust Adaptive Controller for Uncertain Nonlinear Systems
IJITCA Journal
 
Ac03101660176
ijceronline
 
Neural Network Control Based on Adaptive Observer for Quadrotor Helicopter
IJITCA Journal
 
AN INVESTIGATION ON FUZZY LOGIC CONTROLLERS (TAKAGI-SUGENO & MAMDANI) IN INVE...
ijfls
 
D025030035
inventionjournals
 
ICCCNT1108-9
Anish Acharya
 
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
IJECEIAES
 
Automatic control and mixed sensitivity Hinf control
René Galindo
 
Optimal PID Controller Design for Speed Control of a Separately Excited DC Mo...
ijscmcj
 
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
journalBEEI
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
toukaigi
 
Simulation of inverted pendulum presentation
Pourya Parsa
 
Ips csmc 14.06.2016
SaurabhSaini91
 
Ad

Viewers also liked (20)

PDF
SIMMECHANICS VISUALIZATION OF EXPERIMENTAL MODEL OVERHEAD CRANE, ITS LINEARIZ...
ijccmsjournal
 
PDF
2313ijccms05SIMULATIVE STUDY OF NONLINEAR DYNAMICS IN SINGLE STAGE BOOST CONV...
ijccmsjournal
 
PDF
Computational Complexity Comparison Of Multi-Sensor Single Target Data Fusion...
ijccmsjournal
 
PDF
A comparative study of controllers for stabilizing a rotary inverted pendulum
ijccmsjournal
 
PDF
Integration Of Gis And Optimization Routines For The Vehicle Routing Problem
ijccmsjournal
 
PPT
FED GOV CON - Comply, Compete & Win - GSA Schedules / Govt Contracting with P...
JSchaus & Associates
 
PPT
FED GOV CON - Grant Writing & SBIR's
JSchaus & Associates
 
PDF
Infográfico - Manutenção e Acompanhamento Mensal
Agência M2BR
 
PDF
Certificate IV in Training and Assessment
Simon Cox
 
PPT
T16º
cprgraus
 
PPTX
Trabajo Redes Informaticas
Facu Garbino
 
ODP
La nube- dropbox- slide share- mega
TONY LIKE
 
PDF
What is responsive design
Evgeny Tsarkov
 
PPTX
Capture - Day 1 - 12:30 "What is the Future of Programmatic?" with Ve Interac...
PerformanceIN
 
PPTX
Andrew goodwin's theory
Abi Brewer
 
DOCX
Centeno daniel
Daniel Bejarano
 
DOCX
Tentative agenda cjar convention 2015
cjarindia
 
PPTX
Foro expo
David Sampedro
 
PPTX
presentación
mariadelosangeles123
 
PPTX
Rural marketing module 3
Roy Thomas
 
SIMMECHANICS VISUALIZATION OF EXPERIMENTAL MODEL OVERHEAD CRANE, ITS LINEARIZ...
ijccmsjournal
 
2313ijccms05SIMULATIVE STUDY OF NONLINEAR DYNAMICS IN SINGLE STAGE BOOST CONV...
ijccmsjournal
 
Computational Complexity Comparison Of Multi-Sensor Single Target Data Fusion...
ijccmsjournal
 
A comparative study of controllers for stabilizing a rotary inverted pendulum
ijccmsjournal
 
Integration Of Gis And Optimization Routines For The Vehicle Routing Problem
ijccmsjournal
 
FED GOV CON - Comply, Compete & Win - GSA Schedules / Govt Contracting with P...
JSchaus & Associates
 
FED GOV CON - Grant Writing & SBIR's
JSchaus & Associates
 
Infográfico - Manutenção e Acompanhamento Mensal
Agência M2BR
 
Certificate IV in Training and Assessment
Simon Cox
 
T16º
cprgraus
 
Trabajo Redes Informaticas
Facu Garbino
 
La nube- dropbox- slide share- mega
TONY LIKE
 
What is responsive design
Evgeny Tsarkov
 
Capture - Day 1 - 12:30 "What is the Future of Programmatic?" with Ve Interac...
PerformanceIN
 
Andrew goodwin's theory
Abi Brewer
 
Centeno daniel
Daniel Bejarano
 
Tentative agenda cjar convention 2015
cjarindia
 
Foro expo
David Sampedro
 
presentación
mariadelosangeles123
 
Rural marketing module 3
Roy Thomas
 
Ad

Similar to SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM (20)

PDF
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
PDF
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
aciijournal
 
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
aciijournal
 
PDF
Hyperchaos Synchronization Using GBM
aciijournal
 
PDF
Advanced Computational Intelligence: An International Journal (ACII)
aciijournal
 
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
aciijournal
 
PDF
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
IJITCA Journal
 
PDF
The International Journal of Information Technology, Control and Automation (...
IJITCA Journal
 
PDF
STABILITY ANALYSIS AND CONTROL OF A 3-D AUTONOMOUS AI-YUAN-ZHI-HAO HYPERCHAOT...
ijscai
 
PDF
Quasi sliding mode control of chaos in fractional order duffing system
kishorebingi
 
PDF
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
ijistjournal
 
PDF
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
ijistjournal
 
PDF
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
ijistjournal
 
PDF
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
ijistjournal
 
PDF
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
ijcsa
 
PDF
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
PDF
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
PDF
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
PDF
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
HYPERCHAOS SYNCHRONIZATION USING GBM
aciijournal
 
HYPERCHAOS SYNCHRONIZATION USING GBM
aciijournal
 
Hyperchaos Synchronization Using GBM
aciijournal
 
Advanced Computational Intelligence: An International Journal (ACII)
aciijournal
 
HYPERCHAOS SYNCHRONIZATION USING GBM
aciijournal
 
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
IJITCA Journal
 
The International Journal of Information Technology, Control and Automation (...
IJITCA Journal
 
STABILITY ANALYSIS AND CONTROL OF A 3-D AUTONOMOUS AI-YUAN-ZHI-HAO HYPERCHAOT...
ijscai
 
Quasi sliding mode control of chaos in fractional order duffing system
kishorebingi
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
ijistjournal
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
ijistjournal
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
ijistjournal
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
ijistjournal
 
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
ijcsa
 
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 
A NEW HYPERCHAOTIC SYSTEM WITH COEXISTING ATTRACTORS: ITS CONTROL, SYNCHRONIZ...
ijccmsjournal
 

Recently uploaded (20)

PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PDF
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
PDF
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
PDF
How-Cloud-Computing-Impacts-Businesses-in-2025-and-Beyond.pdf
Artjoker Software Development Company
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PDF
Software Development Methodologies in 2025
KodekX
 
PDF
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
NewMind AI Weekly Chronicles - July'25 - Week IV
NewMind AI
 
PDF
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
How-Cloud-Computing-Impacts-Businesses-in-2025-and-Beyond.pdf
Artjoker Software Development Company
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
Software Development Methodologies in 2025
KodekX
 
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
NewMind AI Weekly Chronicles - July'25 - Week IV
NewMind AI
 
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 

SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM

  • 1. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 DOI : 10.5121/ijccms.2013.2303 31 SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM Masoud Taleb Ziabari 1 and Ali Reza Sahab 2 1 Faculty of Engineering, Computer Engineering Group, Ahrar University, Rasht, Iran. 2 Faculty of Engineering, Electrical Engineering Group, Islamic Azad University, Lahijan Branch, Iran. ABSTRACT This paper presents synchronization of a four-dimensional autonomous hyperchaotic system based on the generalized augmented Lü system. Based on the Lyapunov stability theory an active control law is derived such that the two four-dimensional autonomous hyper-chaotic systems are to be synchronized. Numerical simulations are presented to demonstrate the effectiveness of the synchronization schemes. KEYWORDS Four-dimensional autonomous hyperchaotic system, Lyapunov, Active control, Synchronization. 1. INTRODUCTION Over the last decades, chaos synchronization have been attracted increasingly attentions [1-10]. [2] investigated adaptive control and synchronization of the uncertain Sprott-H system (Sprott, 1994) with unknown parameters. [3] derived new results for the hybrid synchronization of identical hyperchaotic Liu systems (Liu, Liu and Zhang, 2008) via sliding mode control. In hybrid synchronization of master and slave systems, the odd states of the two systems were completely synchronized, while their even states were antisynchronized. the problem of state feedback controller design for the output regulation of Sprott-K chaotic system, which is one of the simple, classical, three-dimensional chaotic systems discovered by J.C. Sprott (1994) was investigated in [4]. [5] presented hyperchaos anti-synchronization of different hyperchaotic systems using Active Generalized Backstepping Method (AGBM). The proposed technique was applied to achieve hyperchaos anti-synchronization for the Lorenz and Lu dynamical systems. In [6], active controller has been designed to solve the output regulation problem for the Sprott-P chaotic system (1994) and a complete solution for the tracking of constant reference signals (set- point signals). [7] solved the output regulation problem of Sprott-F chaotic system, which is one of the classical chaotic systems discovered by J.C. Sprott (1994). [8] derived new results on the active controller design for the output regulation problem of the Sprott-K chaotic system, which is one of the classical chaotic systems discovered by J.C. Sprott (1994). In [9], chaos synchronization problems of a new 3D chaotic system via three different methods was investigated. Active control and backstepping design methods were adopted when system parameters were known, and adaptive control method was applied when system parameters are unknown. [10] presented chaos synchronization of two different Sprott systems. Chaos synchronization of them by using active control was achieved. The rest of the paper is organized as follows: In section 2, a four-wing hyperchaotic system is presented. In section 3, synchronization between two four-wing hyperchaotic systems are
  • 2. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 32 achieved by active control. In section 4, Represents simulation results. Finally, in section 5, Provides conclusion of this work. 2. SYSTEM DESCRIPTION Recently, Xue Wei et al constructed the Four-Wing hyperchaotic system [11]. The system is described by. ̇ ( ) ̇ ̇ ̇ (1) Where are positive constants and are variables of the system, when , the system (1) is chaotic. See Figure 1 and Figure 2. Figure 1. Time response of the system (1). 0 1 2 3 4 5 6 7 8 9 10 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time (sec) TrajectoryofStates x y z w -200 -100 0 100 200 -200 -100 0 100 200 -150 -100 -50 0 50 100 150 xy z -200 -100 0 100 200 -200 -100 0 100 200 -20 -15 -10 -5 0 5 10 xy w
  • 3. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 33 Figure 2. Phase portraits of the four-wing hyperchaotic attractors (1). 3. SYNCHRONIZATION VIA ACTIVE CONTROL In this section, the active control method is applied to synchronize two identical four-wing hyperchaotic systems with known parameters and some global asymptotic synchronization conditions are obtained. Suppose the drive system takes the following form ̇ ( ) ̇ ̇ ̇ (2) and the response system is given as follows ̇ ( ) ( ) ̇ ( ) ̇ ( ) ̇ ( ) (3) Where ( ) ( ) ( ) ( ) are control functions to be determined for achieving synchronization between the two systems (2) and (3). Define state errors between systems (2) and (3) as follows (4) We obtain the following error dynamical system by subtracting the drive system (2) from the response system (3) ̇ ( ) ( ) ( ) ̇ ( ) ̇ ( ) ̇ ( ) (5) Define the following active control functions ( ) ( ) ( ) ( ) -200 -100 0 100 200 -200 -100 0 100 200 -20 -15 -10 -5 0 5 10 xz w -200 -100 0 100 200 -200 -100 0 100 200 -20 -15 -10 -5 0 5 10 yz w
  • 4. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 34 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (6) Where ( ) ( ) ( ) ( ) are control inputs. Substituting equation (6) into equation (5) yields ̇ ( ) ( ) ̇ ( ) ̇ ( ) ̇ ( ) (7) Thus, the error system (7) to be controlled with control inputs ( ) ( ) ( ) and ( ) as functions of error states and . When system (7) is stabilized by control inputs ( ) ( ) ( ) and ( ), and will converage to zeroes as time tends to infinity. Which implies that system (2) and (3) are synchronized. To achieve this purpose, we choose control inputs by using active control such that ( ) ( ) ( ) ( ) ( ) ( ) ( ) (8) we select the gains of controllers (6) in the following form (9) And Lyapunov function as ( ) (10) Therefore, the function ̇ ( ) would be obtained negative definite ̇ ( ) (11) 4. NUMERICAL SIMULATION The active control is used as an approach to synchronize two four-wing hyperchaotic systems. The initial values of the drive and response systems are ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) respectively. The time response of states for drive system (2) and the response system (3) via active control shown in Figure 3 to Figure 6. Synchronization errors ( ) in the four-wing hyperchaotic systems shown in Figure 7. The time response of the control inputs ( ) for the synchronization four-wing hyperchaotic systems shown in Figure 8.
  • 5. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 35 Figure 3. The time response of signal ( ) for drive system (2) and response system (3). Figure 4. The time response of signal ( ) for drive system (2) and response system (3). Figure 5. The time response of signal ( ) for drive system (2) and response system (3). 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -40 -30 -20 -10 0 10 20 Time (sec) TrajectoryofxState x1 x2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -10 -5 0 5 10 15 20 25 30 Time (sec) TrajectoryofyState y1 y2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 Time (sec) TrajectoryofzState z1 z2
  • 6. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 36 Figure 6. The time response of signal ( ) for drive system (2) and response system (3). Figure 7. Synchronization errors ( ) in drive system (2) and response system (3). Figure 8. The time response of the control inputs ( ) for drive system (2) and response system (3). 5. CONCLUSIONS We investigate chaos synchronization of a four-dimensional autonomous hyperchaotic system based on the generalized augmented Lü system via active control in this paper. Based on the Lyapunov stability theory, corresponding controller is designed to achieve synchronization between two identical four-wing hyperchaotic systems. Numerical simulations show that the proposed method work effectively. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -10 -8 -6 -4 -2 0 2 4 6 8 Time (sec) TrajectoryofwState w1 w2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -20 -15 -10 -5 0 5 10 15 20 Time (sec) TrajectoryofErrors ex ey ez ew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -60 -50 -40 -30 -20 -10 0 10 20 Time (sec) ControlSignals u1 u2 u3 u4
  • 7. International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.3, September 2013 37 REFERENCES [1] Pecora, Carroll. Synchronization in Chaotic Systems. Phys.Rev. Lett,64, (1990) 821-823. [2] Dr. V. Sundarapandian, Adaptive Control and Synchronization of the Uncertain Sprott H System, International Journal of Advances in Science and Technology, Vol. 2, No.4, 2011. [3] Sundarapandian Vaidyanathan, HYBRID SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEMS VIA SLIDING MODE CONTROL, International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.1, No.1, September 2012. [4] Sundarapandian Vaidyanathan, STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM, International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011. [5] Ali Reza Sahab and Masoud Taleb Ziabari, ANTI-SYNCHRONIZATON OF TWO DIFFERENT HYPERCHAOTIC SYSTEMS VIA ACTIVE GENERALIZED BACKSTEPPING METHOD, International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.1, March 2013. [6] Sundarapandian Vaidyanathan, ACTIVE CONTROLLER DESIGN FOR REGULATING THE OUTPUT OF THE SPROTT-P SYSTEM, International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.2, No.1, March 2013. [7] Sundarapandian Vaidyanathan, OUTPUT REGULATION OF SPROTT-F CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL, International Journal of Control Theory and Computer Modelling (IJCTCM) Vol.2, No.2, March 2012,. [8] Sundarapandian Vaidyanathan, ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-K CHAOTIC SYSTEM, Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.3, June 2012. [9] Yue Wu, Xiaobing Zhou, Jia Chen, Bei Hui, Chaos synchronization of a new 3D chaotic system, Chaos, Solitons and Fractals 42 (2009) 1812–1819. [10] Dengguo Xu, Chaos Synchronization between Two Different Sprott Systems, Adv. Theor. Appl. Mech., Vol. 3, 2010, no. 4, 195 – 201. [11] Xue Wei, Fang Yunfei, Li Qiang, A Novel Four-Wing Hyper-Chaotic System and Its Circuit Implementation, 2012 International Workshop on Information and Electronics Engineering (IWIEE), Procedia Engineering 29 (2012) 1264-1269.