This document proposes a novel technique to infer user search goals using feedback sessions. It aims to address limitations in existing approaches like noisy search results, small numbers of clicked URLs, and lack of consideration of user feedback. The proposed approach generates feedback sessions from user click logs, pre-processes the data, extracts keywords from restructured results, re-ranks the results based on keywords and user history, and categorizes the re-ranked results using predefined categories. The technique is evaluated using Average Precision, which compares it to other clustering and classification algorithms. The goal is to improve information retrieval by better representing user search interests and needs.