SlideShare a Scribd company logo
2
Most read
4
Most read
17
Most read
© 2017 IBM Corporation
Spark 2.x Troubleshooting Guide
IBM Big Data Performance
Jesse Chen, jesse.f.chen@gmail.com
3/2017
© 2017 IBM Corporation2
Troubleshooting Spark 2.x
§  Building Spark
§  Running Spark
-  ‘--verbose’
-  Missing external JARs
-  OOM on Spark driver
-  OOM on executors
-  GC policies
-  Spark Thrift Server for JDBC apps
-  HDFS block distribution
-  HDFS blocksize vs Parquet blocksize
§  Profiling Spark
-  Collecting thread & heap dumps in-flight
-  Collecting core dumps after jobs fail
© 2017 IBM Corporation3
Lots of errors when building a new Spark release on my own…
§  Run ‘make-distribution.sh’ (generates ‘bin/spark-shell’, ‘bin/spark-submit’, etc.)
§  Does not always work
-  Wrong JRE version or no JRE found
-  No Maven installed
-  Support for certain components not default, e.g., ‘hive’ support
§  TIP #1: Always explicitly set the following in ‘.bashrc’ for ‘root’
# for Spark distribution compiling
export JAVA_HOME=/usr/jdk64/java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64
export JRE_HOME=$JAVA_HOME/jre
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH
#set maven environment
M2_HOME=/TestAutomation/downloads/tmp/spark-master/build/apache-maven-3.3.9
export MAVEN_OPTS="-Xms256m -Xmx2048m -XX:MaxPermSize=512m"
export PATH=$M2_HOME/bin:$PATH
§  TIP #2: Specify support you want explicitly
-  To build Spark with YARN and Hive support, do:
./dev/make-distribution.sh --name spark-master-2.1 --tgz -Pyarn -Phadoop-2.7 -
Dhadoop.version=2.7.2 -Phive -Phive-thriftserver
© 2017 IBM Corporation4
Building a Spark release is extremely slow …
§  Use more cores to speed up the build process (default uses only 1 core)
§  Rebuild only modified source code (default is “clean”)
Edit the file ‘./dev/make-distribution.sh’, change line
BUILD_COMMAND=("$MVN" –T 1C clean package -DskipTests $@)
To:
BUILD_COMMAND=("$MVN" -T 48C package -DskipTests $@)
** Assuming your have 48 cores on your build machine
** Assuming you don’t need to always build clean, for iterative changes
§  Can cut build time from 45 min to 15 min on a typical 128GB-RAM 48-core node
© 2017 IBM Corporation5
Don’t know what settings used when running Spark …
§  Always use ‘–-verbose’ option on ‘spark-submit’ command to run your workload
§  Prints
-  All default properties
-  Command line options
-  Settings from spark ‘conf’ file
-  Settings from CLI
§  Example output
Spark properties used, including those specified through
--conf and those from the properties file /TestAutomation/spark-2.0/conf/spark-defaults.conf:
spark.yarn.queue -> default
spark.local.dir -> /data1/tmp,/data2/tmp,/data3/tmp,/data4/tmp
spark.history.kerberos.principal -> none
spark.sql.broadcastTimeout -> 800
spark.hadoop.yarn.timeline-service.enabled -> false
spark.yarn.max.executor.failures -> 3
spark.driver.memory -> 10g
spark.network.timeout -> 800
spark.yarn.historyServer.address -> node458.xyz.com:18080
spark.eventLog.enabled -> true
spark.history.ui.port -> 18080
spark.rpc.askTimeout -> 800
…
§  Example command:
spark-submit --driver-memory 10g --verbose --master yarn --executor-memory ….
© 2017 IBM Corporation6
Missing external jars
§  Compiled OK, but run-time NoClassDefFoundError:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/kafka/clients/producer/KafkaProducer
at java.lang.Class.getDeclaredMethods0(Native Method)
at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
at java.lang.Class.privateGetMethodRecursive(Class.java:3048)
at java.lang.Class.getMethod0(Class.java:3018)
§  Use ‘--packages’ to include comma-separated list of Maven coordinates of JARs
§  Example
spark-submit --driver-memory 12g --verbose --master yarn-client --executor-memory 4096m --num-executors 20
--class com.ibm.biginsights.pqa.spark.SparkStreamingTest --packages org.apache.spark:spark-streaming-
kafka_2.10:1.5.1 …
§  This includes JARs on both driver and executor classpaths
§  Order of look-up
-  The local Maven repo – local machine
-  Maven central - Web
-  Additional remote repositories specified in –repositories
© 2017 IBM Corporation7
OutOfMemory related to Spark driver
§  Types of OOM related to Spark driver heap size
15/10/06 17:10:00 ERROR akka.ErrorMonitor: Uncaught fatal error from thread [sparkDriver-
akka.actor.default-dispatcher-29] shutting down ActorSystem [sparkDriver]
java.lang.OutOfMemoryError: Java heap space
Exception in thread "task-result-getter-0" java.lang.OutOfMemoryError: Java heap space
Subsequent error: Exception in thread "ResponseProcessor for block
BP-1697216913-9.30.104.154-1438974319723:blk_1073847224_106652" java.lang.OutOfMemoryError: Java heap
space
WARN nio.AbstractNioSelector: Unexpected exception in the selector loop.
java.lang.OutOfMemoryError: Java heap space at
org.jboss.netty.buffer.HeapChannelBuffer.<init>(HeapChannelBuffer.java:42)
§  Increase ‘--driver-memory’ usually resolves these
§  Default 512M is usually too small for serious workloads
§  Example: 8GB minimum needed for Spark SQL running TPCDS @ 1TB
§  Typical workloads that need large driver heap size
-  Spark SQL
-  Spark Streaming
© 2017 IBM Corporation8
OOM – GC overhead limit exceeded
15/12/09 19:57:02 WARN scheduler.TaskSetManager: Lost task 175.0 in stage 68.0 (TID 7588,
rhel8.cisco.com): java.lang.OutOfMemoryError: GC overhead limit exceeded
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:478)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:55)
§  Too much time is being spent in garbage collection (98% of the total time)
§  Less than 2% of the heap is recovered
§  From ‘top’, often see “1 CPU core fully used at 100%” but no work is done
§  Tuning #1: Increase executor heapsize
spark-submit … --executor-memory 4096m --num-executors 20 …
§  OR Tuning #2: Change GC policy (next slide)
© 2017 IBM Corporation9
GC policies
§  Choose between -XX:UseG1GC & -XX:UseParallelGC
§  Show current GC settings
% /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -XX:+PrintFlagsFinal
uintx GCHeapFreeLimit = 2 {product}
uintx GCLockerEdenExpansionPercent = 5 {product}
uintx GCLogFileSize = 8192 {product}
uintx GCTimeLimit = 98 {product}
uintx GCTimeRatio = 99 {product}
bool UseG1GC = false {product}
bool UseParallelGC := true {product}
§  Tuning options
-  Spark default is -XX:UseParallelGC
-  Try overwrite with –XX:G1GC
§  Performance Impact: “Mythical at best”, “It depends”
§  Default is pretty good!
§  Databricks blog on Tuning GC for Spark
-  https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark-
applications.html
© 2017 IBM Corporation10
Support JDBC Apps via Spark Thrift Server
§  Spark SQL can act as a distributed query engine using its JDBC/ODBC interface
§  Supported by running the Thrift JDBC/ODBC server
§  Has a single SparkContext with multiple sessions supporting
-  Concurrency
-  re-usable connections (pool)
-  Shared cache (e.g., catalog, tables, etc.)
§  Can specify any amount of memory, CPUs through standard Spark-submit parameters:
-  Driver-memory
-  Executor-memory
-  Num-executors, etc.
§  Example, to start Thrift Server with 2.3TB of memory, 800 cores and YARN mode:
% $SPARK_HOME/sbin/start-thriftserver.sh --driver-memory 12g --verbose --master yarn --executor-memory 16g
--num-executors 100 --executor-cores 8 --conf spark.hadoop.yarn.timeline-service.enabled=false --conf
spark.yarn.executor.memoryOverhead=8192 --conf spark.driver.maxResultSize=5g
§  Default number of workers (sessions) = 500
§  Client tool bundled with Spark 2.0: Beeline
% $SPARK_HOME/bin/beeline -u "jdbc:hive2://node460.xyz.com:10013/my1tbdb" -n spark --force=true -f /test/
query_00_01_96.sql
© 2017 IBM Corporation11
Not all CPUs are busy …
§  Designed for big data
§  More cores and more memory always better (well, until it breaks!)
§  Ways to max out your cluster, for example:
-  40 vCores per node
-  128GB memory per node
-  5-node cluster = 200 vCores, ~500GB RAM
§  Method #1 – Start with evenly divided memory and cores
--executor-memory 2500m --num-executors 200
Total # of executors = 200 (default: 1-core each)
# of executors/node = 40 (fully using all cores)
Total memory used = 500 GB
§  Method #2 – When heap size non-negotiable
--executor-memory 6g --num-executors 80
Total # of executors = 80 (1-core each)
# of executors/node = 16 (40% CPU utilization)
Total memory used ~= 500 GB
Can increase cores per executor as:
--executor-memory 6g --num-executors 80 –executor-cores 2
Forcing 80% utilization, boosting 33% performance!
© 2017 IBM Corporation12
Spread out Spark “scratch” space
§  Typical error
stage 89.3 failed 4 times, most recent failure:
Lost task 38.4 in stage 89.3 (TID 30100, rhel4.cisco.com): java.io.IOException: No space left on device
at java.io.FileOutputStream.writeBytes(Native Method)
at java.io.FileOutputStream.write(FileOutputStream.java:326)
at org.apache.spark.storage.TimeTrackingOutputStream.write(TimeTrackingOutputStream.java:58)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
§ 
Complains about ‘/tmp’ is full
§  Controlled by ‘spark.local.dir’ parameter
-  Default is ‘/tmp’
-  Stores map output files and RDDs
§  Two reasons ‘/tmp’ is not an ideal place for Spark “scratch” space
-  ‘/tmp’ usually is small and for OS
-  ‘/tmp’ usually is a single disk, a potential IO bottleneck
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.local.dir /data/disk1/tmp,/data/disk2/tmp,/data/disk3/tmp,/data/disk4/tmp,…
© 2017 IBM Corporation13
Max result size exceeded
§  Typical error
stream5/query_05_22_77.sql.out:Error: org.apache.spark.SparkException: Job aborted due to stage failure:
Total size of serialized results of 381610 tasks (5.0 GB) is bigger than spark.driver.maxResultSize (5.0
GB) (state=,code=0))
§  Likely to occur with complex SQL on large data volumes
§  Limit of total size of serialized results of all partitions for each Spark action (e.g., collect)
§  Controlled by ‘spark.driver.maxResultSize’ parameter
-  Default is 1G
-  Can be ‘0’ or ‘unlimited’
-  ‘unlimited’ will throw OOM on driver
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.driver.maxResultSize 5g
** 5G is a learned value for Spark SQL running TPCDS queries at 1TB scale factors
© 2017 IBM Corporation14
Catalyst errors
§  Typical error
stream7/query_07_24_48.sql.out:Error: org.apache.spark.sql.catalyst.errors.package$TreeNodeException:
execute, tree: at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute
$1.apply(ShuffleExchange.scala:122)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute
$1.apply(ShuffleExchange.scala:113)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
... 96 more
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [800 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:190)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190)
... 208 more
§  On surface appears to be Catalyst error (optimizer)
§  Actually an internal Spark timeout error most likely to occur under concurrency
java.util.concurrent.TimeoutException: Futures timed out after [800 seconds]
§  Controlled by an unpublished Spark setting ‘spark.sql.broadcastTimeout’ parameter
-  Default in source code shows 300 seconds
§  To fix, add the following line to ‘spark-defaults.conf’ file or as CLI --conf
spark.sql.broadcastTimeout 1200
**1200 is the longest running query in a SQL workload in our case.
© 2017 IBM Corporation15
Other timeouts
§  Typical errors
16/07/09 01:14:18 ERROR spark.ContextCleaner: Error cleaning broadcast 28267
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [800 seconds]. This timeout is
controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$
$createRpcTimeoutException(RpcTimeout.scala:48)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:143)
And timeout exceptions related to the following:
spark.core.connection.ack.wait.timeout
spark.akka.timeout
spark.storage.blockManagerSlaveTimeoutMs
spark.shuffle.io.connectionTimeout
spark.rpc.askTimeout
spark.rpc.lookupTimeout
§  Depending on system resource usage, any of the above can occur (e.g., no heartbeats)
§  You can tune each individual setting OR use an “umbrella” timeout setting
§  Controlled by ‘spark.network.timeout’ parameter
-  Default is 120 seconds
-  Overrides all above timeout values
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.network.timeout 700
© 2017 IBM Corporation16
Out of space on a few data nodes …
§  Unbalanced HDFS forces more IO over network
§  Run command ‘hdfs balancer’ to start rebalancing
§  dfs.datanode.balance.bandwidthPerSec
-  Default 6250000 or 6.25 MB/s network bandwidth
-  Increased to 6 GB/s on F1 to take advantage of fat pipe
§  dfs.datanode.balance.max.concurrent.moves
-  Default is undefined
-  Add this setting in hdfs-site
-  Set to 500 concurrent threads
-  Example shows 5.4 TB/hour balancing rate
16/10/05 10:17:24 INFO balancer.Balancer: 0 over-utilized: []
16/10/05 10:17:24 INFO balancer.Balancer: 0 underutilized: []
The cluster is balanced. Exiting...
Oct 5, 2016 10:17:24 AM         337   19.71 TB  0 B -1 B
Oct 5, 2016 10:17:24 AM  Balancing took 3.6939516666666665 hours
© 2017 IBM Corporation17
What block size to use in HDFS and in Parquet?
Take-away:
Keep block size for both at default (128MB)
Parquet Block
HDFS Block HDFS Block HDFS Block HDFS Block
Parquet Block Parquet Block
HDFS Block HDFS Block HDFS Block HDFS Block
Parquet Block Parquet Block Parquet Block Parquet Block
Remote reads occur when block boundaries cross
Slows down scan time
Prefer row group boundaries be at block boundaries
© 2017 IBM Corporation18
In-flight capturing of executor thread & heap dumps
§  Typically run as YARN containers across multiple nodes, e.g.,
yarn 355583 355580 91 09:15 ? 00:05:35 /usr/jdk64/java-1.8.0-
openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -server -XX:OnOutOfMemoryError=kill %p -Xms6144m -Xmx6144m -
Djava.io.tmpdir=/data6/hadoop/yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/
container_1452558922304_0075_01_000020/tmp -Dspark.driver.port=3110 -Dspark.history.ui.port=18080 -
Dspark.yarn.app.container.log.dir=/data1/hadoop/yarn/log/application_1452558922304_0075/
container_1452558922304_0075_01_000020 org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url
akka.tcp://sparkDriver@9.30.104.154:3110/user/CoarseGrainedScheduler --executor-id 19 –hostname
node133.yxz.com --cores 1 --app-id application_1452558922304_0075 --user-class-path file:/data6/hadoop/
yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/
container_1452558922304_0075_01_000020/__app__.jar
§  OpenJDK has a set of tools for Java thread and heap dumps
jmap, jstack, jstat, jhat, etc.
§  Typical location of OpenJDK tools for IBM Hadoop platform
/usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/
§  To get a full thread dump
% jstack –l 355583 > /TestAutomation/results/twitter/javacore.355583.1
% jstack –l –F 355583 > /TestAutomation/results/twitter/javacore-hung.355583.1
Use –F to attach to a non-responsive JVM
§  To get a full heap dump
% jmap -dump:live,format=b,file=/TestAutomation/results/dump.355583.2 355583
Dumping heap to /TestAutomation/results/sparkstreamtests/dump.355583.2 ...
Heap dump file created
© 2017 IBM Corporation19
Can’t find core dumps even when Spark says there are ….
§  Core dumps created by Spark jobs
16/11/14 16:45:05 WARN scheduler.TaskSetManager: Lost task 692.0 in stage 4.0 (TID 129021, node12.xyz.com,
executor 824): ExecutorLostFailure (executor 824 exited caused by one of the running tasks) Reason:
Container marked as failed: container_e69_1479156026828_0006_01_000825 on host: node12.xyz.com. Exit status:
134. Diagnostics: Exception from container-launch.
Exit code: 134
Container id: container_e69_1479156026828_0006_01_000825
Exception message: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/java-1.8.0-
openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/yarn/local/
….ontainer.log.dir=/data5/hadoop/…container_e69_1479156026828_0006_01_000825/com.univocity_univocity-
parsers-1.5.1.jar > /data5/hadoop/yarn/log/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/log/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/stderr
Stack trace: ExitCodeException exitCode=134: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/
java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/-…
container_e69_1479156026828_0006_01_000825/com.univocity_univocity-parsers-1.5.1.jar > /data5/hadoop/yarn/
log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/
log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stderr
§  YARN settings for core dump file retention
yarn.nodemanager.delete.debug-delay-sec default is 0, files deleted right after application finishes
Set it to enough time to get to files and copy them for debugging
§  Steps: 1. Find the hostname in the error log; 2. Find the local directory where ‘stderr’
resides; 3. Open the ‘stderr’, you will find lines similar to:
/data2/hadoop/yarn/local/usercache/spark/appcache/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/hs_err_pid3694385.log
§  and core dump files too!
§  More on this setting https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-common/yarn-
default.xml
1
2

More Related Content

What's hot (20)

PDF
How Prometheus Store the Data
Hao Chen
 
PDF
Getting Started with Apache Spark on Kubernetes
Databricks
 
PDF
Top 5 mistakes when writing Spark applications
hadooparchbook
 
PPTX
Integrating microservices with apache camel on kubernetes
Claus Ibsen
 
PDF
Apache Spark Core – Practical Optimization
Databricks
 
PDF
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
PDF
왜 쿠버네티스는 systemd로 cgroup을 관리하려고 할까요
Jo Hoon
 
PPTX
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
ODP
Stream processing using Kafka
Knoldus Inc.
 
PPTX
Apache Spark overview
DataArt
 
PPTX
Apache Spark Core
Girish Khanzode
 
PPTX
Programming in Spark using PySpark
Mostafa
 
PDF
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
PDF
Apache Spark Overview
Vadim Y. Bichutskiy
 
PDF
Spark performance tuning - Maksud Ibrahimov
Maksud Ibrahimov
 
PDF
Understanding Memory Management In Spark For Fun And Profit
Spark Summit
 
PDF
From Query Plan to Query Performance: Supercharging your Apache Spark Queries...
Databricks
 
PDF
Spark Performance Tuning .pdf
Amit Raj
 
PDF
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
confluent
 
PPTX
Monitoring Spark Applications
Tzach Zohar
 
How Prometheus Store the Data
Hao Chen
 
Getting Started with Apache Spark on Kubernetes
Databricks
 
Top 5 mistakes when writing Spark applications
hadooparchbook
 
Integrating microservices with apache camel on kubernetes
Claus Ibsen
 
Apache Spark Core – Practical Optimization
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
왜 쿠버네티스는 systemd로 cgroup을 관리하려고 할까요
Jo Hoon
 
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Stream processing using Kafka
Knoldus Inc.
 
Apache Spark overview
DataArt
 
Apache Spark Core
Girish Khanzode
 
Programming in Spark using PySpark
Mostafa
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
Apache Spark Overview
Vadim Y. Bichutskiy
 
Spark performance tuning - Maksud Ibrahimov
Maksud Ibrahimov
 
Understanding Memory Management In Spark For Fun And Profit
Spark Summit
 
From Query Plan to Query Performance: Supercharging your Apache Spark Queries...
Databricks
 
Spark Performance Tuning .pdf
Amit Raj
 
Performance Tuning RocksDB for Kafka Streams' State Stores (Dhruba Borthakur,...
confluent
 
Monitoring Spark Applications
Tzach Zohar
 

Viewers also liked (20)

PDF
Why your Spark job is failing
Sandy Ryza
 
PPTX
Extreme Apache Spark: how in 3 months we created a pipeline that can process ...
Josef A. Habdank
 
PPTX
Intro to Spark development
Spark Summit
 
PDF
Advanced Data Science on Spark-(Reza Zadeh, Stanford)
Spark Summit
 
PDF
Dev Ops Training
Spark Summit
 
PDF
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Databricks
 
PDF
SQL to Hive Cheat Sheet
Hortonworks
 
PDF
Dynamically Allocate Cluster Resources to your Spark Application
DataWorks Summit
 
PDF
Spark on yarn
datamantra
 
PDF
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Databricks
 
PDF
Productionizing Spark and the Spark Job Server
Evan Chan
 
PPTX
Get most out of Spark on YARN
DataWorks Summit
 
PPTX
Hadoop and Spark Analytics over Better Storage
Sandeep Patil
 
PPTX
Producing Spark on YARN for ETL
DataWorks Summit/Hadoop Summit
 
PDF
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
gethue
 
PPT
SocSciBot(01 Mar2010) - Korean Manual
WCU Webometrics Institute
 
PPTX
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
DataWorks Summit
 
PPTX
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
PPTX
Apache Spark Model Deployment
Databricks
 
PPT
Proxy Servers
Sourav Roy
 
Why your Spark job is failing
Sandy Ryza
 
Extreme Apache Spark: how in 3 months we created a pipeline that can process ...
Josef A. Habdank
 
Intro to Spark development
Spark Summit
 
Advanced Data Science on Spark-(Reza Zadeh, Stanford)
Spark Summit
 
Dev Ops Training
Spark Summit
 
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Databricks
 
SQL to Hive Cheat Sheet
Hortonworks
 
Dynamically Allocate Cluster Resources to your Spark Application
DataWorks Summit
 
Spark on yarn
datamantra
 
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Databricks
 
Productionizing Spark and the Spark Job Server
Evan Chan
 
Get most out of Spark on YARN
DataWorks Summit
 
Hadoop and Spark Analytics over Better Storage
Sandeep Patil
 
Producing Spark on YARN for ETL
DataWorks Summit/Hadoop Summit
 
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
gethue
 
SocSciBot(01 Mar2010) - Korean Manual
WCU Webometrics Institute
 
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
DataWorks Summit
 
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
Apache Spark Model Deployment
Databricks
 
Proxy Servers
Sourav Roy
 
Ad

Similar to Spark 2.x Troubleshooting Guide (20)

PDF
Using apache spark for processing trillions of records each day at Datadog
Vadim Semenov
 
PPTX
Speed it up and Spark it up at Intel
DataWorks Summit
 
PPTX
Productionizing Spark and the REST Job Server- Evan Chan
Spark Summit
 
PDF
Spark Tuning for Enterprise System Administrators
Anya Bida
 
PPTX
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
PDF
Apache Cassandra and Apche Spark
Alex Thompson
 
PPTX
Breaking Spark: Top 5 mistakes to avoid when using Apache Spark in production
Neelesh Srinivas Salian
 
PDF
Apache Sparkにおけるメモリ - アプリケーションを落とさないメモリ設計手法 -
Yoshiyasu SAEKI
 
PPTX
Uncovering an Apache Spark 2 Benchmark - Configuration, Tuning and Test Results
DataWorks Summit
 
PPTX
Spark Intro by Adform Research
Vasil Remeniuk
 
PPTX
Spark intro by Adform Research
Vasil Remeniuk
 
PDF
Hadoop Spark Introduction-20150130
Xuan-Chao Huang
 
PPTX
Metrics-driven tuning of Apache Spark at scale
DataWorks Summit
 
PDF
Metrics-Driven Tuning of Apache Spark at Scale with Edwina Lu and Ye Zhou
Databricks
 
PDF
Introduction to Spark Training
Spark Summit
 
PPTX
Spark with HDInsight
Khalid Salama
 
PDF
Spark Tuning for Enterprise System Administrators By Anya Bida
Spark Summit
 
PDF
Spark Tuning For Enterprise System Administrators, Spark Summit East 2016
Anya Bida
 
PDF
Faster Data Integration Pipeline Execution using Spark-Jobserver
Databricks
 
PPTX
JVM and OS Tuning for accelerating Spark application
Tatsuhiro Chiba
 
Using apache spark for processing trillions of records each day at Datadog
Vadim Semenov
 
Speed it up and Spark it up at Intel
DataWorks Summit
 
Productionizing Spark and the REST Job Server- Evan Chan
Spark Summit
 
Spark Tuning for Enterprise System Administrators
Anya Bida
 
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Apache Cassandra and Apche Spark
Alex Thompson
 
Breaking Spark: Top 5 mistakes to avoid when using Apache Spark in production
Neelesh Srinivas Salian
 
Apache Sparkにおけるメモリ - アプリケーションを落とさないメモリ設計手法 -
Yoshiyasu SAEKI
 
Uncovering an Apache Spark 2 Benchmark - Configuration, Tuning and Test Results
DataWorks Summit
 
Spark Intro by Adform Research
Vasil Remeniuk
 
Spark intro by Adform Research
Vasil Remeniuk
 
Hadoop Spark Introduction-20150130
Xuan-Chao Huang
 
Metrics-driven tuning of Apache Spark at scale
DataWorks Summit
 
Metrics-Driven Tuning of Apache Spark at Scale with Edwina Lu and Ye Zhou
Databricks
 
Introduction to Spark Training
Spark Summit
 
Spark with HDInsight
Khalid Salama
 
Spark Tuning for Enterprise System Administrators By Anya Bida
Spark Summit
 
Spark Tuning For Enterprise System Administrators, Spark Summit East 2016
Anya Bida
 
Faster Data Integration Pipeline Execution using Spark-Jobserver
Databricks
 
JVM and OS Tuning for accelerating Spark application
Tatsuhiro Chiba
 
Ad

Recently uploaded (20)

PPTX
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PDF
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PPTX
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PDF
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
PPTX
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
UiPath DevConnect 2025: Agentic Automation Community User Group Meeting
DianaGray10
 
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 

Spark 2.x Troubleshooting Guide

  • 1. © 2017 IBM Corporation Spark 2.x Troubleshooting Guide IBM Big Data Performance Jesse Chen, [email protected] 3/2017
  • 2. © 2017 IBM Corporation2 Troubleshooting Spark 2.x §  Building Spark §  Running Spark -  ‘--verbose’ -  Missing external JARs -  OOM on Spark driver -  OOM on executors -  GC policies -  Spark Thrift Server for JDBC apps -  HDFS block distribution -  HDFS blocksize vs Parquet blocksize §  Profiling Spark -  Collecting thread & heap dumps in-flight -  Collecting core dumps after jobs fail
  • 3. © 2017 IBM Corporation3 Lots of errors when building a new Spark release on my own… §  Run ‘make-distribution.sh’ (generates ‘bin/spark-shell’, ‘bin/spark-submit’, etc.) §  Does not always work -  Wrong JRE version or no JRE found -  No Maven installed -  Support for certain components not default, e.g., ‘hive’ support §  TIP #1: Always explicitly set the following in ‘.bashrc’ for ‘root’ # for Spark distribution compiling export JAVA_HOME=/usr/jdk64/java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64 export JRE_HOME=$JAVA_HOME/jre export PATH=$JAVA_HOME/bin:$PATH export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH #set maven environment M2_HOME=/TestAutomation/downloads/tmp/spark-master/build/apache-maven-3.3.9 export MAVEN_OPTS="-Xms256m -Xmx2048m -XX:MaxPermSize=512m" export PATH=$M2_HOME/bin:$PATH §  TIP #2: Specify support you want explicitly -  To build Spark with YARN and Hive support, do: ./dev/make-distribution.sh --name spark-master-2.1 --tgz -Pyarn -Phadoop-2.7 - Dhadoop.version=2.7.2 -Phive -Phive-thriftserver
  • 4. © 2017 IBM Corporation4 Building a Spark release is extremely slow … §  Use more cores to speed up the build process (default uses only 1 core) §  Rebuild only modified source code (default is “clean”) Edit the file ‘./dev/make-distribution.sh’, change line BUILD_COMMAND=("$MVN" –T 1C clean package -DskipTests $@) To: BUILD_COMMAND=("$MVN" -T 48C package -DskipTests $@) ** Assuming your have 48 cores on your build machine ** Assuming you don’t need to always build clean, for iterative changes §  Can cut build time from 45 min to 15 min on a typical 128GB-RAM 48-core node
  • 5. © 2017 IBM Corporation5 Don’t know what settings used when running Spark … §  Always use ‘–-verbose’ option on ‘spark-submit’ command to run your workload §  Prints -  All default properties -  Command line options -  Settings from spark ‘conf’ file -  Settings from CLI §  Example output Spark properties used, including those specified through --conf and those from the properties file /TestAutomation/spark-2.0/conf/spark-defaults.conf: spark.yarn.queue -> default spark.local.dir -> /data1/tmp,/data2/tmp,/data3/tmp,/data4/tmp spark.history.kerberos.principal -> none spark.sql.broadcastTimeout -> 800 spark.hadoop.yarn.timeline-service.enabled -> false spark.yarn.max.executor.failures -> 3 spark.driver.memory -> 10g spark.network.timeout -> 800 spark.yarn.historyServer.address -> node458.xyz.com:18080 spark.eventLog.enabled -> true spark.history.ui.port -> 18080 spark.rpc.askTimeout -> 800 … §  Example command: spark-submit --driver-memory 10g --verbose --master yarn --executor-memory ….
  • 6. © 2017 IBM Corporation6 Missing external jars §  Compiled OK, but run-time NoClassDefFoundError: Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/kafka/clients/producer/KafkaProducer at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2701) at java.lang.Class.privateGetMethodRecursive(Class.java:3048) at java.lang.Class.getMethod0(Class.java:3018) §  Use ‘--packages’ to include comma-separated list of Maven coordinates of JARs §  Example spark-submit --driver-memory 12g --verbose --master yarn-client --executor-memory 4096m --num-executors 20 --class com.ibm.biginsights.pqa.spark.SparkStreamingTest --packages org.apache.spark:spark-streaming- kafka_2.10:1.5.1 … §  This includes JARs on both driver and executor classpaths §  Order of look-up -  The local Maven repo – local machine -  Maven central - Web -  Additional remote repositories specified in –repositories
  • 7. © 2017 IBM Corporation7 OutOfMemory related to Spark driver §  Types of OOM related to Spark driver heap size 15/10/06 17:10:00 ERROR akka.ErrorMonitor: Uncaught fatal error from thread [sparkDriver- akka.actor.default-dispatcher-29] shutting down ActorSystem [sparkDriver] java.lang.OutOfMemoryError: Java heap space Exception in thread "task-result-getter-0" java.lang.OutOfMemoryError: Java heap space Subsequent error: Exception in thread "ResponseProcessor for block BP-1697216913-9.30.104.154-1438974319723:blk_1073847224_106652" java.lang.OutOfMemoryError: Java heap space WARN nio.AbstractNioSelector: Unexpected exception in the selector loop. java.lang.OutOfMemoryError: Java heap space at org.jboss.netty.buffer.HeapChannelBuffer.<init>(HeapChannelBuffer.java:42) §  Increase ‘--driver-memory’ usually resolves these §  Default 512M is usually too small for serious workloads §  Example: 8GB minimum needed for Spark SQL running TPCDS @ 1TB §  Typical workloads that need large driver heap size -  Spark SQL -  Spark Streaming
  • 8. © 2017 IBM Corporation8 OOM – GC overhead limit exceeded 15/12/09 19:57:02 WARN scheduler.TaskSetManager: Lost task 175.0 in stage 68.0 (TID 7588, rhel8.cisco.com): java.lang.OutOfMemoryError: GC overhead limit exceeded at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:478) at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:55) §  Too much time is being spent in garbage collection (98% of the total time) §  Less than 2% of the heap is recovered §  From ‘top’, often see “1 CPU core fully used at 100%” but no work is done §  Tuning #1: Increase executor heapsize spark-submit … --executor-memory 4096m --num-executors 20 … §  OR Tuning #2: Change GC policy (next slide)
  • 9. © 2017 IBM Corporation9 GC policies §  Choose between -XX:UseG1GC & -XX:UseParallelGC §  Show current GC settings % /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -XX:+PrintFlagsFinal uintx GCHeapFreeLimit = 2 {product} uintx GCLockerEdenExpansionPercent = 5 {product} uintx GCLogFileSize = 8192 {product} uintx GCTimeLimit = 98 {product} uintx GCTimeRatio = 99 {product} bool UseG1GC = false {product} bool UseParallelGC := true {product} §  Tuning options -  Spark default is -XX:UseParallelGC -  Try overwrite with –XX:G1GC §  Performance Impact: “Mythical at best”, “It depends” §  Default is pretty good! §  Databricks blog on Tuning GC for Spark -  https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark- applications.html
  • 10. © 2017 IBM Corporation10 Support JDBC Apps via Spark Thrift Server §  Spark SQL can act as a distributed query engine using its JDBC/ODBC interface §  Supported by running the Thrift JDBC/ODBC server §  Has a single SparkContext with multiple sessions supporting -  Concurrency -  re-usable connections (pool) -  Shared cache (e.g., catalog, tables, etc.) §  Can specify any amount of memory, CPUs through standard Spark-submit parameters: -  Driver-memory -  Executor-memory -  Num-executors, etc. §  Example, to start Thrift Server with 2.3TB of memory, 800 cores and YARN mode: % $SPARK_HOME/sbin/start-thriftserver.sh --driver-memory 12g --verbose --master yarn --executor-memory 16g --num-executors 100 --executor-cores 8 --conf spark.hadoop.yarn.timeline-service.enabled=false --conf spark.yarn.executor.memoryOverhead=8192 --conf spark.driver.maxResultSize=5g §  Default number of workers (sessions) = 500 §  Client tool bundled with Spark 2.0: Beeline % $SPARK_HOME/bin/beeline -u "jdbc:hive2://node460.xyz.com:10013/my1tbdb" -n spark --force=true -f /test/ query_00_01_96.sql
  • 11. © 2017 IBM Corporation11 Not all CPUs are busy … §  Designed for big data §  More cores and more memory always better (well, until it breaks!) §  Ways to max out your cluster, for example: -  40 vCores per node -  128GB memory per node -  5-node cluster = 200 vCores, ~500GB RAM §  Method #1 – Start with evenly divided memory and cores --executor-memory 2500m --num-executors 200 Total # of executors = 200 (default: 1-core each) # of executors/node = 40 (fully using all cores) Total memory used = 500 GB §  Method #2 – When heap size non-negotiable --executor-memory 6g --num-executors 80 Total # of executors = 80 (1-core each) # of executors/node = 16 (40% CPU utilization) Total memory used ~= 500 GB Can increase cores per executor as: --executor-memory 6g --num-executors 80 –executor-cores 2 Forcing 80% utilization, boosting 33% performance!
  • 12. © 2017 IBM Corporation12 Spread out Spark “scratch” space §  Typical error stage 89.3 failed 4 times, most recent failure: Lost task 38.4 in stage 89.3 (TID 30100, rhel4.cisco.com): java.io.IOException: No space left on device at java.io.FileOutputStream.writeBytes(Native Method) at java.io.FileOutputStream.write(FileOutputStream.java:326) at org.apache.spark.storage.TimeTrackingOutputStream.write(TimeTrackingOutputStream.java:58) at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82) at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126) §  Complains about ‘/tmp’ is full §  Controlled by ‘spark.local.dir’ parameter -  Default is ‘/tmp’ -  Stores map output files and RDDs §  Two reasons ‘/tmp’ is not an ideal place for Spark “scratch” space -  ‘/tmp’ usually is small and for OS -  ‘/tmp’ usually is a single disk, a potential IO bottleneck §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.local.dir /data/disk1/tmp,/data/disk2/tmp,/data/disk3/tmp,/data/disk4/tmp,…
  • 13. © 2017 IBM Corporation13 Max result size exceeded §  Typical error stream5/query_05_22_77.sql.out:Error: org.apache.spark.SparkException: Job aborted due to stage failure: Total size of serialized results of 381610 tasks (5.0 GB) is bigger than spark.driver.maxResultSize (5.0 GB) (state=,code=0)) §  Likely to occur with complex SQL on large data volumes §  Limit of total size of serialized results of all partitions for each Spark action (e.g., collect) §  Controlled by ‘spark.driver.maxResultSize’ parameter -  Default is 1G -  Can be ‘0’ or ‘unlimited’ -  ‘unlimited’ will throw OOM on driver §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.driver.maxResultSize 5g ** 5G is a learned value for Spark SQL running TPCDS queries at 1TB scale factors
  • 14. © 2017 IBM Corporation14 Catalyst errors §  Typical error stream7/query_07_24_48.sql.out:Error: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree: at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute $1.apply(ShuffleExchange.scala:122) at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute $1.apply(ShuffleExchange.scala:113) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49) ... 96 more Caused by: java.util.concurrent.TimeoutException: Futures timed out after [800 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:190) at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190) ... 208 more §  On surface appears to be Catalyst error (optimizer) §  Actually an internal Spark timeout error most likely to occur under concurrency java.util.concurrent.TimeoutException: Futures timed out after [800 seconds] §  Controlled by an unpublished Spark setting ‘spark.sql.broadcastTimeout’ parameter -  Default in source code shows 300 seconds §  To fix, add the following line to ‘spark-defaults.conf’ file or as CLI --conf spark.sql.broadcastTimeout 1200 **1200 is the longest running query in a SQL workload in our case.
  • 15. © 2017 IBM Corporation15 Other timeouts §  Typical errors 16/07/09 01:14:18 ERROR spark.ContextCleaner: Error cleaning broadcast 28267 org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [800 seconds]. This timeout is controlled by spark.rpc.askTimeout at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$ $createRpcTimeoutException(RpcTimeout.scala:48) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83) at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:143) And timeout exceptions related to the following: spark.core.connection.ack.wait.timeout spark.akka.timeout spark.storage.blockManagerSlaveTimeoutMs spark.shuffle.io.connectionTimeout spark.rpc.askTimeout spark.rpc.lookupTimeout §  Depending on system resource usage, any of the above can occur (e.g., no heartbeats) §  You can tune each individual setting OR use an “umbrella” timeout setting §  Controlled by ‘spark.network.timeout’ parameter -  Default is 120 seconds -  Overrides all above timeout values §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.network.timeout 700
  • 16. © 2017 IBM Corporation16 Out of space on a few data nodes … §  Unbalanced HDFS forces more IO over network §  Run command ‘hdfs balancer’ to start rebalancing §  dfs.datanode.balance.bandwidthPerSec -  Default 6250000 or 6.25 MB/s network bandwidth -  Increased to 6 GB/s on F1 to take advantage of fat pipe §  dfs.datanode.balance.max.concurrent.moves -  Default is undefined -  Add this setting in hdfs-site -  Set to 500 concurrent threads -  Example shows 5.4 TB/hour balancing rate 16/10/05 10:17:24 INFO balancer.Balancer: 0 over-utilized: [] 16/10/05 10:17:24 INFO balancer.Balancer: 0 underutilized: [] The cluster is balanced. Exiting... Oct 5, 2016 10:17:24 AM         337   19.71 TB  0 B -1 B Oct 5, 2016 10:17:24 AM  Balancing took 3.6939516666666665 hours
  • 17. © 2017 IBM Corporation17 What block size to use in HDFS and in Parquet? Take-away: Keep block size for both at default (128MB) Parquet Block HDFS Block HDFS Block HDFS Block HDFS Block Parquet Block Parquet Block HDFS Block HDFS Block HDFS Block HDFS Block Parquet Block Parquet Block Parquet Block Parquet Block Remote reads occur when block boundaries cross Slows down scan time Prefer row group boundaries be at block boundaries
  • 18. © 2017 IBM Corporation18 In-flight capturing of executor thread & heap dumps §  Typically run as YARN containers across multiple nodes, e.g., yarn 355583 355580 91 09:15 ? 00:05:35 /usr/jdk64/java-1.8.0- openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -server -XX:OnOutOfMemoryError=kill %p -Xms6144m -Xmx6144m - Djava.io.tmpdir=/data6/hadoop/yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/ container_1452558922304_0075_01_000020/tmp -Dspark.driver.port=3110 -Dspark.history.ui.port=18080 - Dspark.yarn.app.container.log.dir=/data1/hadoop/yarn/log/application_1452558922304_0075/ container_1452558922304_0075_01_000020 org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url akka.tcp://[email protected]:3110/user/CoarseGrainedScheduler --executor-id 19 –hostname node133.yxz.com --cores 1 --app-id application_1452558922304_0075 --user-class-path file:/data6/hadoop/ yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/ container_1452558922304_0075_01_000020/__app__.jar §  OpenJDK has a set of tools for Java thread and heap dumps jmap, jstack, jstat, jhat, etc. §  Typical location of OpenJDK tools for IBM Hadoop platform /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/ §  To get a full thread dump % jstack –l 355583 > /TestAutomation/results/twitter/javacore.355583.1 % jstack –l –F 355583 > /TestAutomation/results/twitter/javacore-hung.355583.1 Use –F to attach to a non-responsive JVM §  To get a full heap dump % jmap -dump:live,format=b,file=/TestAutomation/results/dump.355583.2 355583 Dumping heap to /TestAutomation/results/sparkstreamtests/dump.355583.2 ... Heap dump file created
  • 19. © 2017 IBM Corporation19 Can’t find core dumps even when Spark says there are …. §  Core dumps created by Spark jobs 16/11/14 16:45:05 WARN scheduler.TaskSetManager: Lost task 692.0 in stage 4.0 (TID 129021, node12.xyz.com, executor 824): ExecutorLostFailure (executor 824 exited caused by one of the running tasks) Reason: Container marked as failed: container_e69_1479156026828_0006_01_000825 on host: node12.xyz.com. Exit status: 134. Diagnostics: Exception from container-launch. Exit code: 134 Container id: container_e69_1479156026828_0006_01_000825 Exception message: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/java-1.8.0- openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/yarn/local/ ….ontainer.log.dir=/data5/hadoop/…container_e69_1479156026828_0006_01_000825/com.univocity_univocity- parsers-1.5.1.jar > /data5/hadoop/yarn/log/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/log/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/stderr Stack trace: ExitCodeException exitCode=134: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/ java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/-… container_e69_1479156026828_0006_01_000825/com.univocity_univocity-parsers-1.5.1.jar > /data5/hadoop/yarn/ log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/ log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stderr §  YARN settings for core dump file retention yarn.nodemanager.delete.debug-delay-sec default is 0, files deleted right after application finishes Set it to enough time to get to files and copy them for debugging §  Steps: 1. Find the hostname in the error log; 2. Find the local directory where ‘stderr’ resides; 3. Open the ‘stderr’, you will find lines similar to: /data2/hadoop/yarn/local/usercache/spark/appcache/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/hs_err_pid3694385.log §  and core dump files too! §  More on this setting https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-common/yarn- default.xml 1 2