D A T A S T R U C T U R E S
STACKS:
It is an ordered group of homogeneous items of elements. Elements are added
to and removed from the top of the stack (the most recently added items are at
the top of the stack). The last element to be added is the first to be removed
(LIFO: Last In, First Out).
A stack is a list of elements in which an element may be inserted or deleted only at
one end, called TOP of the stack. The elements are removed in reverse order of
that in which they were inserted into the stack.
Basic operations:
These are two basic operations associated with stack:
 Push() is the term used to insert/add an element into a stack. 
 Pop() is the term used to delete/remove an element from a stack.
Other names for stacks are piles and push-down lists. 
There are two ways to represent Stack in memory. One is using array and other is
using linked list.
Array representation of stacks:
Usually the stacks are represented in the computer by a linear array. In the following
algorithms/procedures of pushing and popping an item from the stacks, we have
considered, a linear array STACK, a variable TOP which contain the location of the
top element of the stack; and a variable STACKSIZE which gives the maximum
number of elements that can be hold by the stack.
STACK
Data 1 Data 2 Data 3
0 1 2 3 4 5 6 7 8
TOP STACKSIZE2 9
D A T A S T R U C T U R E S
Push Operation
Push an item onto the top of the stack (insert an item)
D A T A S T R U C T U R E S
Pop Operation
Pop an item off the top of the stack (delete an item)
Algorithm for PUSH:
Algorithm: PUSH(STACK, TOP, STACKSIZE, ITEM)
1. [STACK already filled?]
If TOP=STACKSIZE-1, then: Print: OVERFLOW / Stack Full, and Return.
2. Set TOP:=TOP+1. [Increase TOP by 1.]
3. Set STACK[TOP]=ITEM. [Insert ITEM in new TOP position.]
4. RETURN.
Algorithm for POP:
Algorithm: POP(STACK, TOP, ITEM)
This procedure deletes the top element of STACK and assigns it to the
variable ITEM.
1. [STACK has an item to be removed? Check for empty stack] If
TOP=-1, then: Print: UNDERFLOW/ Stack is empty, and Return.
2. Set ITEM=STACK[TOP]. [Assign TOP element to ITEM.]
3. Set TOP=TOP-1. [Decrease TOP by 1.]
4. Return.
D A T A S T R U C T U R E S
Here are the minimal operations we'd need for an abstract stack (and their
typical names):
o Push: Places an element/value on top of the stack.
o Pop: Removes value/element from top of the stack.
o IsEmpty: Reports whether the stack is Empty or not.
o IsFull: Reports whether the stack is Full or not.
1. Run this program and examine its behavior.
// A Program that exercise the operations on Stack Implementing Array
// i.e. (Push, Pop, Traverse)
#include <conio.h>
#include <iostream.h>
#include <process.h>
#define STACKSIZE 10 // int const STACKSIZE = 10;
// global variable and array declaration
int Top=-1;
int Stack[STACKSIZE];
void Push(int); // functions prototyping
int Pop(void);
bool IsEmpty(void);
bool IsFull(void);
void Traverse(void);
int main( )
{ int item, choice;
while( 1 )
{
cout<< "nnnnn";
cout<< " ******* STACK OPERATIONS ********* nn";
cout<< " 1- Push item n 2- Pop Item n";
cout<< " 3- Traverse / Display Stack Items n 4- Exit.";
cout<< " nnt Your choice ---> ";
cin>> choice;
switch(choice)
{ case 1: if(IsFull())cout<< "n Stack Full/Overflown";
else
{ cout<< "n Enter a number: ";
cin>>item;
Push(item); }
break;
case 2: if(IsEmpty())cout<< "n Stack is empty)
n"; else
{item=Pop();
cout<< "n deleted from Stack =
"<<item<<endl;} break;
case 3: if(IsEmpty())cout<< "n Stack is empty)
n"; else
{ cout<< "n List of Item pushed on
Stack:n"; Traverse();
}
break;
D A T A S T R U C T U R E S
case 4: exit(0);
default:
cout<< "nnt Invalid Choice: n";
} // end of switch block
} // end of while loop
} // end of of main() function
void Push(int item)
{
Stack[++Top] = item;
}
int Pop( )
{
return Stack[Top--];
}
bool IsEmpty( )
{ if(Top == -1 ) return true else return false; }
bool IsFull( )
{ if(Top == STACKSIZE-1 ) return true else return false; }
void Traverse( )
{ int TopTemp = Top;
do{ cout<< Stack[TopTemp--]<<endl;} while(TopTemp>= 0);
}
1- Run this program and examine its behavior.
// A Program that exercise the operations on Stack
// Implementing POINTER (Linked Structures) (Dynamic Binding)
// Programed by SHAHID LONE
// This program provides you the concepts that how STACK is
// implemented using Pointer/Linked Structures
#include <iostream.h.h>
#include <process.h>
struct node {
int info;
struct node *next;
};
struct node *TOP = NULL;
void push (int x)
{ struct node *NewNode;
NewNode = new (node); // (struct node *) malloc(sizeof(node));
if(NewNode==NULL) { cout<<"nn Memeory
Crashnn"; return; }
NewNode->info = x;
NewNode->next = NULL;
D A T A S T R U C T U R E S
if(TOP == NULL) TOP =
NewNode; else
{ NewNode->next =
TOP; TOP=NewNode;
}
}
struct node* pop ()
{ struct node *T;
T=TOP;
TOP = TOP->next;
return T;
}
void Traverse()
{ struct node *T;
for( T=TOP ; T!=NULL ;T=T->next) cout<<T->info<<endl;
}
bool IsEmpty()
{ if(TOP == NULL) return true; else return false; }
int main ()
{ struct node *T;
int item, ch;
while(1)
{ cout<<"nnnnnn ***** Stack Operations *****n";
cout<<"nn 1- Push Item n 2- Pop Item n";
cout<<" 3- Traverse/Print stack-valuesn 4- Exitnn";
cout<<"n Your Choice --> ";
cin>>ch;
switch(ch)
{ case 1:
cout<<"nPut a value:
"; cin>>item;
Push(item);
break;
case 2:
if(IsEmpty()) {cout<<"nn Stack is
Emptyn"; break;
}
T= Pop();
cout<< T->info <<"nn has been deleted
n"; break;
case 3:
if(IsEmpty()) {cout<<"nn Stack is
Emptyn"; break;
}
Traverse();
break;
case 4:
exit(0);
} // end of switch
block } // end of loop
return 0;
} // end of main function
D A T A S T R U C T U R E S
Application of the Stack (Arithmetic Expressions)
I N F I X , P O S T F I X A N D P R E F I X N
O T A T I O N S
In f ix , P o s tf ix a n d P r e f ix n o ta tio n s a r e u s e d in m a n y c a
lc u la to r s . T h e e a s ie s t w a y to im p le m e n t th e
P o s tf ix a n d P r e f ix o p e ra tio n s is to u s e s ta c k . In f ix
a n d p r e f ix n o ta tio n s c a n b e c o n v e r te d to p o s tfix
n o ta tio n u s in g s ta c k .
T h e r e a s o n w h y p o s tf ix n o ta tio n is p r e f e r r e d is th a t
y o u d o n ’t n e e d a n y p a re n th e s is a n d th e r e is n o
p r e s c ie n c e p r o b le m .
Stacks are used by compilers to help in the process of converting infix to postfix
arithmetic expressions and also evaluating arithmetic expressions. Arithmetic
expressions consisting variables, constants, arithmetic operators and parentheses.
Humans generally write expressions in which the operator is written between the
operands (3 + 4, for example). This is called infix notation. Computers ―prefer‖
postfix notation in which the operator is written to the right of two operands. The
preceding infix expression would appear in postfix notation as 3 4 +.
To evaluate a complex infix expression, a compiler would first convert the expression
to postfix notation, and then evaluate the postfix version of the expression. We use
the following three levels of precedence for the five binary operations.
Precedence Binary Operations
Highest Exponentiations (^)
Next Highest Multiplication (*), Division (/) and Mod (%)
Lowest Addition (+) and Subtraction (-)
For example:
(66 + 2) * 5 – 567 /
42 to postfix
66 22 + 5 * 567 42 / –
Transforming Infix Expression into Postfix Expression:
The following algorithm transform the infix expression Q into its equivalent
postfix expression P. It uses a stack to temporary hold the operators and left
parenthesis.
The postfix expression will be constructed from left to right using operands from Q
and operators popped from STACK.
D A T A S T R U C T U R E S
Algorithm: Infix_to_PostFix(Q, P)
Suppose Q is an arithmetic expression written in infix notation. This
algorithm finds the equivalent postfix expression P.
1. Push ―(― onto STACK, and add ―)‖ to the end of Q.
2. Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until
the STACK is empty:
3. If an operand is encountered, add it to P.
4. If a left parenthesis is encountered, push it onto STACK.
5. If an operator © is encountered, then:
a) Repeatedly pop from STACK and add to P each operator
(on the top of STACK) which has the same or
higher precedence/priority than ©
b) Add © to STACK.
[End of If structure.]
6. If a right parenthesis is encountered, then:
a) Repeatedly pop from STACK and add to P each operator (on the
top of STACK) until a left parenthesis is encountered.
b) Remove the left parenthesis. [Do not add the left parenthesis to P.]
[End of If structure.]
[End of Step 2
loop.] 7. Exit.
Convert Q: A+( B * C – ( D / E ^ F ) * G ) * H into postfix form showing stack status .
Now add “)” at the end of expression A+( B * C – ( D / E ^ F ) * G ) * H )
and also Push a “(“ on Stack.
Symbol Scanned Stack Expression Y
(
A ( A
+ (+ A
( (+( A
B (+( AB
* (+(* AB
C (+(* ABC
- (+(- ABC*
( (+(-( ABC*
D (+(-( ABC*D
/ (+(-(/ ABC*D
E (+(-(/ ABC*DE
^ (+(-(/^ ABC*DE
F (+(-(/^ ABC*DEF
) (+(- ABC*DEF^/
* (+(-* ABC*DEF^/
G (+(-* ABC*DEF^/G
) (+ ABC*DEF^/G*-
* (+* ABC*DEF^/G*-
H (+* ABC*DEF^/G*-H
) empty ABC*DEF^/G*-H*+
D A T A S T R U C T U R E S
Evaluation of Postfix Expression:
If P is an arithmetic expression written in postfix notation. This algorithm
uses STACK to hold operands, and evaluate P.
Algorithm: This algorithm finds the VALUE of P written in postfix notation.
1. Add a Dollar Sign ‖$‖ at the end of P. [This acts as sentinel.]
2. Scan P from left to right and repeat Steps 3 and 4 for each element of P
until the sentinel ―$‖ is encountered.
3. If an operand is encountered, put it on STACK.
4. If an operator © is encountered, then:
a) Remove the two top elements of STACK, where A is the top
element and B is the next-to—top-element.
b) Evaluate B © A.
c) Place the result of (b) back on STACK.
[End of If structure.]
[End of Step 2 loop.]
5. Set VALUE equal to the top element on STACK.
6. Exit.
For example:
Following is an infix arithmetic expression
(5 + 2) * 3 – 9 / 3
And its postfix is:
5 2 + 3 * 9 3 / –
Now add “$” at the end of expression as a sentinel.
5 2 + 3 * 8 4 / – $
Scanned Elements Stack Action to do _
5 5 Pushed on stack
2 5, 2 Pushed on Stack
+ 7 Remove the two top elements and calculate
5 + 2 and push the result on stack
3 7, 3 Pushed on Stack
* 21 Remove the two top elements and calculate
7 * 3 and push the result on stack
8 21, 8 Pushed on Stack
4 21, 8, 4 Pushed on Stack
/ 21, 2 Remove the two top elements and calculate
8 / 2 and push the result on stack
- 19 Remove the two top elements and calculate
21 - 2 and push the result on stack
$ 19 Sentinel $ encouter , Result is on top of the STACK
D A T A S T R U C T U R E S
Following code will transform an infix arithmetic expression into Postfix arithmetic
expression. You will also see the Program which evaluates a Postfix expression.
// This program provides you the concepts that how an infix
// arithmetic expression will be converted into post-fix expression
// using STACK
// Conversion Infix Expression into Post-fix
// NOTE: ^ is used for raise-to-the-power
#include<iostream.h>
#include<conio.h>
#include<string.h>
int main()
{ int const null=-1;
char Q[100],P[100],stack[100];// Q is infix and P is postfix array
int n=0; // used to count item inserted in P
int c=0; // used as an index for P
int top=null; // it assign -1 to top
int k,i;
cout<<“Put an arithematic INFIX _Expressionnntt";
cin.getline(Q,99); // reads an infix expression into Q as string
k=strlen(Q); // it calculates the length of Q and store it in k
// following two lines will do initial work with Q and stack
strcat(Q,”)”); // This function add ) at the and of Q
stack[++top]='('; // This statement will push first ( on Stack
while(top!= null)
{
for(i=0;i<=k;i++)
{
switch(Q[i])
{
case '+':
case '-':
for(;;)
{
if(stack[top]!='(' )
{ P[c++]=stack[top--];n++;
} else
break;
}
stack[++top]=Q[i];
break;
case '*':
case '/':
case '%':
for(;;)
{if(stack[top]=='(' || stack[top]=='+'
|| stack[top]=='-') break;
else
{ P[c++]=stack[top--]; n++; }
}
D A T A S T R U C T U R E S
stack[++top]=Q[i];
break;
case '^':
for(;;)
{
if(stack[top]=='(' || stack[top]=='+' ||
stack[top]=='-' || stack[top]=='/' ||
stack[top]=='*' || stack[top]=='%') break;
else
{ P[c++]=stack[top--]; n++; }
}
stack[++top]=Q[i];
break;
case '(':
stack[++top]=Q[i];
break;
case ')':
for(;;)
{
if(stack[top]=='(' ) {top--; break;}
else { P[c++]=stack[top--]; n++;}
}
break;
default : // it means that read item is an operand
P[c++]=Q[i];
n++;
} //END OF SWITCH
} //END OF FOR LOOP
} //END OF WHILE LOOP
P[n]='0'; // this statement will put string terminator at the
// end of P which is Postfix expression
cout<<"nnPOSTFIX EXPRESION IS nntt"<<P<<endl;
} //END OF MAIN FUNCTION
D A T A S T R U C T U R E S
// This program provides you the concepts that how a post-fixed
// expression is evaluated using STACK. In this program you will
// see that linked structures (pointers are used to maintain the stack.
// NOTE: ^ is used for raise-to-the-power
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include<math.h>
#include <stdlib.h>
#include <ctype.h>
struct node {
int info;
struct node
*next; };
struct node *TOP = NULL;
void push (int x)
{ struct node *Q;
// in c++ Q = new node;
Q = (struct node *) malloc(sizeof(node)); // creation of new
node Q->info = x;
Q->next = NULL;
if(TOP == NULL) TOP =
Q; else
{ Q->next =
TOP; TOP=Q;
}
}
struct node* pop ()
{ struct node *Q;
if(TOP==NULL) { cout<<"nStack is emptynn";
exit(0);
}
else
{Q=TOP;
TOP = TOP->next;
return Q;
}
}
int main(void)
{char t;
struct node *Q, *A, *B;
cout<<"nn Put a post-fix arithmatic expression end with $: n ";
while(1)
{ t=getche(); // this will read one character and store it in
t if(isdigit(t)) push(t-'0'); // this will convert char into
int else if(t==' ')continue;
else if(t=='$') break;
D A T A S T R U C T U R E S
else
{ A= pop();
B= pop();
switch (t)
{
case '+':
push(B->info + A->info);
break;
case '-':
push(B->info - A->info);
break;
case '*':
push(B->info * A->info);
break;
case '/': push(B->info / A->info);
break;
case '^': push(pow(B->info, A->info));
break;
default: cout<<"Error unknown operator";
} // end of switch
} // End of if structure
} // end of while loop
Q=pop(); // this will get top value from stack which is result
cout<<"nnnThe result of this expression is = "<<Q->info<<endl;
return 0;
} // end of main function

More Related Content

PPT
03 stacks and_queues_using_arrays
PPT
Stacks and queues
PDF
Applications of stack
PPT
Stack queue
PPT
Stack Data Structure V1.0
PPT
Stacks queues
PDF
Swift the implicit parts
03 stacks and_queues_using_arrays
Stacks and queues
Applications of stack
Stack queue
Stack Data Structure V1.0
Stacks queues
Swift the implicit parts

What's hot (20)

PPT
Stack Operation In Data Structure
PPTX
Application of Stack - Yadraj Meena
PDF
High Order Function Computations in c++14 (C++ Dev Meetup Iasi)
PPTX
Stack - Data Structure
PPTX
Monadic Computations in C++14
PPTX
stacks and queues
PPTX
Stack_Application_Infix_Prefix.pptx
PPTX
Stack using Linked List
PPSX
PPT
Application of Stacks
DOCX
PPTX
Stack of Data structure
PPTX
Operation on stack
PPTX
Data structure by Digvijay
PPTX
Stack using Array
PDF
STACK ( LIFO STRUCTURE) - Data Structure
PPT
Unit 5 Foc
PPTX
Lambda expressions
PPT
Stack, queue and hashing
PPSX
Stacks Implementation and Examples
Stack Operation In Data Structure
Application of Stack - Yadraj Meena
High Order Function Computations in c++14 (C++ Dev Meetup Iasi)
Stack - Data Structure
Monadic Computations in C++14
stacks and queues
Stack_Application_Infix_Prefix.pptx
Stack using Linked List
Application of Stacks
Stack of Data structure
Operation on stack
Data structure by Digvijay
Stack using Array
STACK ( LIFO STRUCTURE) - Data Structure
Unit 5 Foc
Lambda expressions
Stack, queue and hashing
Stacks Implementation and Examples
Ad

Viewers also liked (20)

PDF
Periódico Triduo Pascual
DOC
Tecnologiafuturo
PPTX
Población inicial del ecuador aborigem
PPS
Presupuestos educación 2010 vs 2011
 
PPTX
PPTX
Integradora 1
PDF
Lista de ganadores tótem 2014
DOCX
DOC
Escuela tradicional escuela nueva bueno
PPSX
Lugares de la Pasión
PDF
Anexo primera infancia
PDF
Empleo autoempleo
PPS
Dium4adv a10cas
PPTX
Trabajo de sistemas con camilo .. 8ºa
PDF
ISBA iFinancia
PPTX
Proyecto UTN
PPT
A forma xurídica
PPSX
Iniciación a la papiroplexia el barco
DOCX
Adicion
Periódico Triduo Pascual
Tecnologiafuturo
Población inicial del ecuador aborigem
Presupuestos educación 2010 vs 2011
 
Integradora 1
Lista de ganadores tótem 2014
Escuela tradicional escuela nueva bueno
Lugares de la Pasión
Anexo primera infancia
Empleo autoempleo
Dium4adv a10cas
Trabajo de sistemas con camilo .. 8ºa
ISBA iFinancia
Proyecto UTN
A forma xurídica
Iniciación a la papiroplexia el barco
Adicion
Ad

Similar to Data structures stacks (20)

PDF
Stacks,queues,linked-list
PPT
DS chapter 2.ppt................................
PPT
Lec-7 Stacks FOR BSCS STUDENTS STACK EXPLANATION
PPTX
Stacks in c++
PPTX
Stacks in DATA STRUCTURE
PPT
Data structure lecture7
PDF
stacks and queues
PPTX
Lec5-Stack-bukc-28022024-112316am (1) .pptx
PDF
Data structure lab manual
PDF
Data Structures And Algorithms(stacks queues)
PPT
Stack ppt file of Stack DSA For lab in the lab of DSA lecture and Lab.ppt
PPTX
Data strutcure and annalysis topic stack
PPTX
Stack and Queue.pptx university exam preparation
PPTX
Stack.pptx
PPTX
Implementation of stacks and queues in C
PPT
PPTX
Introduction to information about Data Structure.pptx
PDF
Stacks
PPTX
Stack data structure
PPTX
Stacks and queues using aaray line .pptx
Stacks,queues,linked-list
DS chapter 2.ppt................................
Lec-7 Stacks FOR BSCS STUDENTS STACK EXPLANATION
Stacks in c++
Stacks in DATA STRUCTURE
Data structure lecture7
stacks and queues
Lec5-Stack-bukc-28022024-112316am (1) .pptx
Data structure lab manual
Data Structures And Algorithms(stacks queues)
Stack ppt file of Stack DSA For lab in the lab of DSA lecture and Lab.ppt
Data strutcure and annalysis topic stack
Stack and Queue.pptx university exam preparation
Stack.pptx
Implementation of stacks and queues in C
Introduction to information about Data Structure.pptx
Stacks
Stack data structure
Stacks and queues using aaray line .pptx

More from maamir farooq (20)

DOCX
Ooad lab1
PPT
Lesson 03
PPT
Lesson 02
PDF
Php client libray
PDF
Swiftmailer
PDF
PDF
PPTX
PDF
PDF
J query 1.7 cheat sheet
PDF
Assignment
PDF
Java script summary
PDF
PDF
PPTX
PPTX
Css summary
DOCX
Manual of image processing lab
PDF
Session management
PDF
Data management
PPTX
Content provider
Ooad lab1
Lesson 03
Lesson 02
Php client libray
Swiftmailer
J query 1.7 cheat sheet
Assignment
Java script summary
Css summary
Manual of image processing lab
Session management
Data management
Content provider

Recently uploaded (20)

PDF
Chevening Scholarship Application and Interview Preparation Guide
PPTX
Theoretical for class.pptxgshdhddhdhdhgd
PDF
GIÁO ÁN TIẾNG ANH 7 GLOBAL SUCCESS (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) NĂM HỌ...
DOCX
EDUCATIONAL ASSESSMENT ASSIGNMENT SEMESTER MAY 2025.docx
PDF
anganwadi services for the b.sc nursing and GNM
PDF
Diabetes Mellitus , types , clinical picture, investigation and managment
PPTX
GW4 BioMed Candidate Support Webinar 2025
PPTX
Unit1_Kumod_deeplearning.pptx DEEP LEARNING
PPTX
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
PPTX
Neurological complocations of systemic disease
PDF
HSE 2022-2023.pdf الصحه والسلامه هندسه نفط
PPTX
Math 2 Quarter 2 Week 1 Matatag Curriculum
PDF
FAMILY PLANNING (preventative and social medicine pdf)
PPTX
ENGlishGrade8_Quarter2_WEEK1_LESSON1.pptx
PPTX
Approach to a child with acute kidney injury
PPTX
pharmaceutics-1unit-1-221214121936-550b56aa.pptx
PPTX
CHROMIUM & Glucose Tolerance Factor.pptx
PPSX
namma_kalvi_12th_botany_chapter_9_ppt.ppsx
PPTX
MMW-CHAPTER-1-final.pptx major Elementary Education
PDF
Unleashing the Potential of the Cultural and creative industries
Chevening Scholarship Application and Interview Preparation Guide
Theoretical for class.pptxgshdhddhdhdhgd
GIÁO ÁN TIẾNG ANH 7 GLOBAL SUCCESS (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) NĂM HỌ...
EDUCATIONAL ASSESSMENT ASSIGNMENT SEMESTER MAY 2025.docx
anganwadi services for the b.sc nursing and GNM
Diabetes Mellitus , types , clinical picture, investigation and managment
GW4 BioMed Candidate Support Webinar 2025
Unit1_Kumod_deeplearning.pptx DEEP LEARNING
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
Neurological complocations of systemic disease
HSE 2022-2023.pdf الصحه والسلامه هندسه نفط
Math 2 Quarter 2 Week 1 Matatag Curriculum
FAMILY PLANNING (preventative and social medicine pdf)
ENGlishGrade8_Quarter2_WEEK1_LESSON1.pptx
Approach to a child with acute kidney injury
pharmaceutics-1unit-1-221214121936-550b56aa.pptx
CHROMIUM & Glucose Tolerance Factor.pptx
namma_kalvi_12th_botany_chapter_9_ppt.ppsx
MMW-CHAPTER-1-final.pptx major Elementary Education
Unleashing the Potential of the Cultural and creative industries

Data structures stacks

  • 1. D A T A S T R U C T U R E S STACKS: It is an ordered group of homogeneous items of elements. Elements are added to and removed from the top of the stack (the most recently added items are at the top of the stack). The last element to be added is the first to be removed (LIFO: Last In, First Out). A stack is a list of elements in which an element may be inserted or deleted only at one end, called TOP of the stack. The elements are removed in reverse order of that in which they were inserted into the stack. Basic operations: These are two basic operations associated with stack:  Push() is the term used to insert/add an element into a stack.   Pop() is the term used to delete/remove an element from a stack. Other names for stacks are piles and push-down lists.  There are two ways to represent Stack in memory. One is using array and other is using linked list. Array representation of stacks: Usually the stacks are represented in the computer by a linear array. In the following algorithms/procedures of pushing and popping an item from the stacks, we have considered, a linear array STACK, a variable TOP which contain the location of the top element of the stack; and a variable STACKSIZE which gives the maximum number of elements that can be hold by the stack. STACK Data 1 Data 2 Data 3 0 1 2 3 4 5 6 7 8 TOP STACKSIZE2 9
  • 2. D A T A S T R U C T U R E S Push Operation Push an item onto the top of the stack (insert an item)
  • 3. D A T A S T R U C T U R E S Pop Operation Pop an item off the top of the stack (delete an item) Algorithm for PUSH: Algorithm: PUSH(STACK, TOP, STACKSIZE, ITEM) 1. [STACK already filled?] If TOP=STACKSIZE-1, then: Print: OVERFLOW / Stack Full, and Return. 2. Set TOP:=TOP+1. [Increase TOP by 1.] 3. Set STACK[TOP]=ITEM. [Insert ITEM in new TOP position.] 4. RETURN. Algorithm for POP: Algorithm: POP(STACK, TOP, ITEM) This procedure deletes the top element of STACK and assigns it to the variable ITEM. 1. [STACK has an item to be removed? Check for empty stack] If TOP=-1, then: Print: UNDERFLOW/ Stack is empty, and Return. 2. Set ITEM=STACK[TOP]. [Assign TOP element to ITEM.] 3. Set TOP=TOP-1. [Decrease TOP by 1.] 4. Return.
  • 4. D A T A S T R U C T U R E S Here are the minimal operations we'd need for an abstract stack (and their typical names): o Push: Places an element/value on top of the stack. o Pop: Removes value/element from top of the stack. o IsEmpty: Reports whether the stack is Empty or not. o IsFull: Reports whether the stack is Full or not. 1. Run this program and examine its behavior. // A Program that exercise the operations on Stack Implementing Array // i.e. (Push, Pop, Traverse) #include <conio.h> #include <iostream.h> #include <process.h> #define STACKSIZE 10 // int const STACKSIZE = 10; // global variable and array declaration int Top=-1; int Stack[STACKSIZE]; void Push(int); // functions prototyping int Pop(void); bool IsEmpty(void); bool IsFull(void); void Traverse(void); int main( ) { int item, choice; while( 1 ) { cout<< "nnnnn"; cout<< " ******* STACK OPERATIONS ********* nn"; cout<< " 1- Push item n 2- Pop Item n"; cout<< " 3- Traverse / Display Stack Items n 4- Exit."; cout<< " nnt Your choice ---> "; cin>> choice; switch(choice) { case 1: if(IsFull())cout<< "n Stack Full/Overflown"; else { cout<< "n Enter a number: "; cin>>item; Push(item); } break; case 2: if(IsEmpty())cout<< "n Stack is empty) n"; else {item=Pop(); cout<< "n deleted from Stack = "<<item<<endl;} break; case 3: if(IsEmpty())cout<< "n Stack is empty) n"; else { cout<< "n List of Item pushed on Stack:n"; Traverse(); } break;
  • 5. D A T A S T R U C T U R E S case 4: exit(0); default: cout<< "nnt Invalid Choice: n"; } // end of switch block } // end of while loop } // end of of main() function void Push(int item) { Stack[++Top] = item; } int Pop( ) { return Stack[Top--]; } bool IsEmpty( ) { if(Top == -1 ) return true else return false; } bool IsFull( ) { if(Top == STACKSIZE-1 ) return true else return false; } void Traverse( ) { int TopTemp = Top; do{ cout<< Stack[TopTemp--]<<endl;} while(TopTemp>= 0); } 1- Run this program and examine its behavior. // A Program that exercise the operations on Stack // Implementing POINTER (Linked Structures) (Dynamic Binding) // Programed by SHAHID LONE // This program provides you the concepts that how STACK is // implemented using Pointer/Linked Structures #include <iostream.h.h> #include <process.h> struct node { int info; struct node *next; }; struct node *TOP = NULL; void push (int x) { struct node *NewNode; NewNode = new (node); // (struct node *) malloc(sizeof(node)); if(NewNode==NULL) { cout<<"nn Memeory Crashnn"; return; } NewNode->info = x; NewNode->next = NULL;
  • 6. D A T A S T R U C T U R E S if(TOP == NULL) TOP = NewNode; else { NewNode->next = TOP; TOP=NewNode; } } struct node* pop () { struct node *T; T=TOP; TOP = TOP->next; return T; } void Traverse() { struct node *T; for( T=TOP ; T!=NULL ;T=T->next) cout<<T->info<<endl; } bool IsEmpty() { if(TOP == NULL) return true; else return false; } int main () { struct node *T; int item, ch; while(1) { cout<<"nnnnnn ***** Stack Operations *****n"; cout<<"nn 1- Push Item n 2- Pop Item n"; cout<<" 3- Traverse/Print stack-valuesn 4- Exitnn"; cout<<"n Your Choice --> "; cin>>ch; switch(ch) { case 1: cout<<"nPut a value: "; cin>>item; Push(item); break; case 2: if(IsEmpty()) {cout<<"nn Stack is Emptyn"; break; } T= Pop(); cout<< T->info <<"nn has been deleted n"; break; case 3: if(IsEmpty()) {cout<<"nn Stack is Emptyn"; break; } Traverse(); break; case 4: exit(0); } // end of switch block } // end of loop return 0; } // end of main function
  • 7. D A T A S T R U C T U R E S Application of the Stack (Arithmetic Expressions) I N F I X , P O S T F I X A N D P R E F I X N O T A T I O N S In f ix , P o s tf ix a n d P r e f ix n o ta tio n s a r e u s e d in m a n y c a lc u la to r s . T h e e a s ie s t w a y to im p le m e n t th e P o s tf ix a n d P r e f ix o p e ra tio n s is to u s e s ta c k . In f ix a n d p r e f ix n o ta tio n s c a n b e c o n v e r te d to p o s tfix n o ta tio n u s in g s ta c k . T h e r e a s o n w h y p o s tf ix n o ta tio n is p r e f e r r e d is th a t y o u d o n ’t n e e d a n y p a re n th e s is a n d th e r e is n o p r e s c ie n c e p r o b le m . Stacks are used by compilers to help in the process of converting infix to postfix arithmetic expressions and also evaluating arithmetic expressions. Arithmetic expressions consisting variables, constants, arithmetic operators and parentheses. Humans generally write expressions in which the operator is written between the operands (3 + 4, for example). This is called infix notation. Computers ―prefer‖ postfix notation in which the operator is written to the right of two operands. The preceding infix expression would appear in postfix notation as 3 4 +. To evaluate a complex infix expression, a compiler would first convert the expression to postfix notation, and then evaluate the postfix version of the expression. We use the following three levels of precedence for the five binary operations. Precedence Binary Operations Highest Exponentiations (^) Next Highest Multiplication (*), Division (/) and Mod (%) Lowest Addition (+) and Subtraction (-) For example: (66 + 2) * 5 – 567 / 42 to postfix 66 22 + 5 * 567 42 / – Transforming Infix Expression into Postfix Expression: The following algorithm transform the infix expression Q into its equivalent postfix expression P. It uses a stack to temporary hold the operators and left parenthesis. The postfix expression will be constructed from left to right using operands from Q and operators popped from STACK.
  • 8. D A T A S T R U C T U R E S Algorithm: Infix_to_PostFix(Q, P) Suppose Q is an arithmetic expression written in infix notation. This algorithm finds the equivalent postfix expression P. 1. Push ―(― onto STACK, and add ―)‖ to the end of Q. 2. Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until the STACK is empty: 3. If an operand is encountered, add it to P. 4. If a left parenthesis is encountered, push it onto STACK. 5. If an operator © is encountered, then: a) Repeatedly pop from STACK and add to P each operator (on the top of STACK) which has the same or higher precedence/priority than © b) Add © to STACK. [End of If structure.] 6. If a right parenthesis is encountered, then: a) Repeatedly pop from STACK and add to P each operator (on the top of STACK) until a left parenthesis is encountered. b) Remove the left parenthesis. [Do not add the left parenthesis to P.] [End of If structure.] [End of Step 2 loop.] 7. Exit. Convert Q: A+( B * C – ( D / E ^ F ) * G ) * H into postfix form showing stack status . Now add “)” at the end of expression A+( B * C – ( D / E ^ F ) * G ) * H ) and also Push a “(“ on Stack. Symbol Scanned Stack Expression Y ( A ( A + (+ A ( (+( A B (+( AB * (+(* AB C (+(* ABC - (+(- ABC* ( (+(-( ABC* D (+(-( ABC*D / (+(-(/ ABC*D E (+(-(/ ABC*DE ^ (+(-(/^ ABC*DE F (+(-(/^ ABC*DEF ) (+(- ABC*DEF^/ * (+(-* ABC*DEF^/ G (+(-* ABC*DEF^/G ) (+ ABC*DEF^/G*- * (+* ABC*DEF^/G*- H (+* ABC*DEF^/G*-H ) empty ABC*DEF^/G*-H*+
  • 9. D A T A S T R U C T U R E S Evaluation of Postfix Expression: If P is an arithmetic expression written in postfix notation. This algorithm uses STACK to hold operands, and evaluate P. Algorithm: This algorithm finds the VALUE of P written in postfix notation. 1. Add a Dollar Sign ‖$‖ at the end of P. [This acts as sentinel.] 2. Scan P from left to right and repeat Steps 3 and 4 for each element of P until the sentinel ―$‖ is encountered. 3. If an operand is encountered, put it on STACK. 4. If an operator © is encountered, then: a) Remove the two top elements of STACK, where A is the top element and B is the next-to—top-element. b) Evaluate B © A. c) Place the result of (b) back on STACK. [End of If structure.] [End of Step 2 loop.] 5. Set VALUE equal to the top element on STACK. 6. Exit. For example: Following is an infix arithmetic expression (5 + 2) * 3 – 9 / 3 And its postfix is: 5 2 + 3 * 9 3 / – Now add “$” at the end of expression as a sentinel. 5 2 + 3 * 8 4 / – $ Scanned Elements Stack Action to do _ 5 5 Pushed on stack 2 5, 2 Pushed on Stack + 7 Remove the two top elements and calculate 5 + 2 and push the result on stack 3 7, 3 Pushed on Stack * 21 Remove the two top elements and calculate 7 * 3 and push the result on stack 8 21, 8 Pushed on Stack 4 21, 8, 4 Pushed on Stack / 21, 2 Remove the two top elements and calculate 8 / 2 and push the result on stack - 19 Remove the two top elements and calculate 21 - 2 and push the result on stack $ 19 Sentinel $ encouter , Result is on top of the STACK
  • 10. D A T A S T R U C T U R E S Following code will transform an infix arithmetic expression into Postfix arithmetic expression. You will also see the Program which evaluates a Postfix expression. // This program provides you the concepts that how an infix // arithmetic expression will be converted into post-fix expression // using STACK // Conversion Infix Expression into Post-fix // NOTE: ^ is used for raise-to-the-power #include<iostream.h> #include<conio.h> #include<string.h> int main() { int const null=-1; char Q[100],P[100],stack[100];// Q is infix and P is postfix array int n=0; // used to count item inserted in P int c=0; // used as an index for P int top=null; // it assign -1 to top int k,i; cout<<“Put an arithematic INFIX _Expressionnntt"; cin.getline(Q,99); // reads an infix expression into Q as string k=strlen(Q); // it calculates the length of Q and store it in k // following two lines will do initial work with Q and stack strcat(Q,”)”); // This function add ) at the and of Q stack[++top]='('; // This statement will push first ( on Stack while(top!= null) { for(i=0;i<=k;i++) { switch(Q[i]) { case '+': case '-': for(;;) { if(stack[top]!='(' ) { P[c++]=stack[top--];n++; } else break; } stack[++top]=Q[i]; break; case '*': case '/': case '%': for(;;) {if(stack[top]=='(' || stack[top]=='+' || stack[top]=='-') break; else { P[c++]=stack[top--]; n++; } }
  • 11. D A T A S T R U C T U R E S stack[++top]=Q[i]; break; case '^': for(;;) { if(stack[top]=='(' || stack[top]=='+' || stack[top]=='-' || stack[top]=='/' || stack[top]=='*' || stack[top]=='%') break; else { P[c++]=stack[top--]; n++; } } stack[++top]=Q[i]; break; case '(': stack[++top]=Q[i]; break; case ')': for(;;) { if(stack[top]=='(' ) {top--; break;} else { P[c++]=stack[top--]; n++;} } break; default : // it means that read item is an operand P[c++]=Q[i]; n++; } //END OF SWITCH } //END OF FOR LOOP } //END OF WHILE LOOP P[n]='0'; // this statement will put string terminator at the // end of P which is Postfix expression cout<<"nnPOSTFIX EXPRESION IS nntt"<<P<<endl; } //END OF MAIN FUNCTION
  • 12. D A T A S T R U C T U R E S // This program provides you the concepts that how a post-fixed // expression is evaluated using STACK. In this program you will // see that linked structures (pointers are used to maintain the stack. // NOTE: ^ is used for raise-to-the-power #include <stdlib.h> #include <stdio.h> #include <conio.h> #include<math.h> #include <stdlib.h> #include <ctype.h> struct node { int info; struct node *next; }; struct node *TOP = NULL; void push (int x) { struct node *Q; // in c++ Q = new node; Q = (struct node *) malloc(sizeof(node)); // creation of new node Q->info = x; Q->next = NULL; if(TOP == NULL) TOP = Q; else { Q->next = TOP; TOP=Q; } } struct node* pop () { struct node *Q; if(TOP==NULL) { cout<<"nStack is emptynn"; exit(0); } else {Q=TOP; TOP = TOP->next; return Q; } } int main(void) {char t; struct node *Q, *A, *B; cout<<"nn Put a post-fix arithmatic expression end with $: n "; while(1) { t=getche(); // this will read one character and store it in t if(isdigit(t)) push(t-'0'); // this will convert char into int else if(t==' ')continue; else if(t=='$') break;
  • 13. D A T A S T R U C T U R E S else { A= pop(); B= pop(); switch (t) { case '+': push(B->info + A->info); break; case '-': push(B->info - A->info); break; case '*': push(B->info * A->info); break; case '/': push(B->info / A->info); break; case '^': push(pow(B->info, A->info)); break; default: cout<<"Error unknown operator"; } // end of switch } // End of if structure } // end of while loop Q=pop(); // this will get top value from stack which is result cout<<"nnnThe result of this expression is = "<<Q->info<<endl; return 0; } // end of main function