SlideShare a Scribd company logo
Olivier Dony
T @odony
Performance
with high
volumes
OpenERP can handle large
volumes of transactions and
large volumes of data
out of the box!
For example, each OpenERP
Online Server hosts 1000+
databases without
breaking a sweat!
Many on-site customers have
single server deployments
with millions of rows:
partners, emails, attachments,
journal items, stock moves,
workflow items, …
What if performance is an issue?
Get the right facts.
Use the right tools.
t @odony
Agenda
● Architecture / Deployment / Sizing
● Measuring & Analyzing
● Common Problems
● Anti-patterns
t @odony
OpenERP Architecture
PostgreSQL is the real
workhorse behind OpenERP,
and it scales very well!
t @odony
OpenERP Cron Worker
Deployment Architecture: single server, multi-process
Rule of thumb:
--workers=$((1+${CORES}*2))
OpenERP HTTP Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
PostgreSQL
Requests
t @odony
OpenERP Cron Worker
Deployment Architecture: multi-server, multi-process
OpenERP HTTP Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
PostgreSQL
Requests
Server 3
Load
Balancer
OpenERP Cron Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
OpenERP HTTP Worker
Server 2
Server 1
t @odony
Hardware Sizing
● Typical modern server machine
● 4/8/12 2+GHz cores
● 8-64 GB RAM
● Fast SATA/SAS/SSD disks
● Up to 100-200 active users (multi-process)
● Up to dozens of HTTP requests per second
● Up to 1000 “light” users (average SaaS user)
● For official OpenERP 7.0 deployments with no
customizations, and typical usage!
For anything else, always
perform proper load testing
before going live in production!
Then size accordingly...
t @odony
PostgreSQL Deployment tips
● Avoid deploying PostgreSQL on a VM
● If you must do it, fine-tune the VM for I/O!
● And always check out the basic PostgreSQL
performance tuning, it's conservative by
default
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
t @odony
Agenda
● Architecture / Deployment / Sizing
● Measuring & Analyzing
● Common Problems
● Anti-patterns
t @odony
Monitor application response times
●
You can't manage/improve what you can't
measure
●
Setup an automated monitoring of performance
and response time... even if you have no
performance problem!
●
Suggested tool: munin
●
Run OpenERP with –log-level=debug_rpc in prod!
2013-07-03 00:12:29,846 9663 DEBUG test openerp.netsvc.rpc.request:
object.execute_kw time:0.031s mem: 763716k -> 763716k (diff: 0k)('test', 1,
'*', 'sale.order', 'read', (...), {...})
t @odony
#!/bin/sh
#%# family=manual
#%# capabilities=autoconf suggest
case $1 in
autoconf)
exit 0
;;
suggest)
exit 0
;;
config)
echo graph_category openerp
echo graph_title openerp rpc request count
echo graph_vlabel num requests/minute in last 5 minutes
echo requests.label num requests
exit 0
;;
esac
# watch out for the time zone of the logs => using date -u for UTC timestamps
result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{count=0} ($1 " " 
$2) >= "`date +'%F %H:%M:%S' -ud '5 min ago'`" { count+=1; } END{print count/5}")
echo "requests.value ${result}"
exit 0
Munin plugin: OpenERP requests/minute
t @odony
#!/bin/sh
#%# family=manual
#%# capabilities=autoconf suggest
case $1 in
config)
echo graph_category openerp
echo graph_title openerp rpc requests min/average response time
echo graph_vlabel seconds
echo graph_args --units-exponent -3
echo min.label min
echo min.warning 1
echo min.critical 5
echo avg.label average
echo avg.warning 1
echo avg.critical 5
exit 0
;;
esac
# watch out for the time zone of the logs => using date -u for UTC timestamps
result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{sum=0;count=0} (
$1 " " $2) >= "`date +'%F %H:%M:%S' -ud '5 min ago'`" {split($8,t,":");time=0+t[2];if (min=="") { min=time};
sum += time; count+=1; min=(time>min)?min:time } END{print min, sum/count}")
echo -n "min.value "
echo ${result} | cut -d" " -f1
echo -n "avg.value "
echo ${result} | cut -d" " -f2
exit 0
Munin plugin: OpenERP min/avg response time
t @odony
#!/bin/sh
#%# family=manual
#%# capabilities=autoconf suggest
case $1 in
config)
echo graph_category openerp
echo graph_title openerp rpc requests max response time
echo graph_vlabel seconds
echo graph_args --units-exponent -3
echo max.label max
echo max.warning 1
echo max.critical 5
exit 0
;;..
esac
# watch out for the time zone of the logs => using date -u for UTC timestamps....
result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{sum=0;count=0} (
$1 " " $2) >= "`date +'%F %H:%M:%S' -ud '85 min ago'`" {split($8,t,":");time=0+t[2]; sum += time; count+=1;
max=(time<max)?max:time } END{print max}")
echo "max.value ${result}"
exit 0
Munin plugin: OpenERP max response time
t @odony
Monitor PostgreSQL
● postgresql.conf
● log_min_duration_statement = 50
● Set to 50 or 100 in production
● Set to 0 to log all queries and execution times for a while
● Instagram gist to capture sample + analyze
● Analyze with pgBadger or pgFouine
●
lc_messages = 'C'
t @odony
PostgreSQL Analysis
● Important PG statistic tables
● pg_stat_activity: near real-time view of transactions
● pg_locks: real-time view of existing locks
● pg_stat_user_tables: generic usage stats for all tables
● pg_statio_user_tables: generic I/O stats for all tables
t @odony
PostgreSQL Analysis: longest tables
# SELECT schemaname || '.' || relname as table,n_live_tup as num_rows
FROM pg_stat_user_tables
ORDER BY n_live_tup DESC limit 10;
┌──────────────────────────────────────────┬──────────┐
│ table │ num_rows │
├──────────────────────────────────────────┼──────────┤
│ public.stock_move │ 179544 │
│ public.ir_translation │ 134039 │
│ public.wkf_workitem │ 97195 │
│ public.wkf_instance │ 96973 │
│ public.procurement_order │ 83077 │
│ public.ir_property │ 69011 │
│ public.ir_model_data │ 59532 │
│ public.stock_move_history_ids │ 58942 │
│ public.mrp_production_move_ids │ 49714 │
│ public.mrp_bom │ 46258 │
└──────────────────────────────────────────┴──────────┘
t @odony
PostgreSQL Analysis: biggest tables
# SELECT nspname || '.' || relname AS "table",
pg_size_pretty(pg_total_relation_size(C.oid)) AS "total_size"
FROM pg_class C
LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
WHERE nspname NOT IN ('pg_catalog', 'information_schema')
AND C.relkind <> 'i'
AND nspname !~ '^pg_toast'
ORDER BY pg_total_relation_size(C.oid) DESC
LIMIT 10;
┌──────────────────────────────────────────┬────────────┐
│ table │ total_size │
├──────────────────────────────────────────┼────────────┤
│ public.stock_move │ 525 MB │
│ public.wkf_workitem │ 111 MB │
│ public.procurement_order │ 80 MB │
│ public.stock_location │ 63 MB │
│ public.ir_translation │ 42 MB │
│ public.wkf_instance │ 37 MB │
│ public.ir_model_data │ 36 MB │
│ public.ir_property │ 26 MB │
│ public.ir_attachment │ 14 MB │
│ public.mrp_bom │ 13 MB │
└──────────────────────────────────────────┴────────────┘
t @odony
PostgreSQL Analysis: biggest tables
●
Consider using the file storage for the
ir.attachment table
●
Avoid storing files in the database
●
Greatly reduces the time needed for DB backups
and backup
●
Very easy to rsync backups of DB dumps +
filestore
●
For 7.0 this setting is explained in this FAQ
t @odony
PostgreSQL Analysis: most read tables
# SELECT schemaname || '.' || relname as table, heap_blks_read as disk_reads,
heap_blks_hit as cache_reads,
heap_blks_read + heap_blks_hit as total_reads
from pg_statio_user_tables
order by heap_blks_read + heap_blks_hit desc limit 15;
┌───────────────────────────────┬────────────┬─────────────┬─────────────┐
│ table │ disk_reads │ cache_reads │ total_reads │
├───────────────────────────────┼────────────┼─────────────┼─────────────┤
│ public.stock_location │ 53796 │ 60926676388 │ 60926730184 │
│ public.stock_move │ 208763 │ 9880525282 │ 9880734045 │
│ public.stock_picking │ 15772 │ 4659569791 │ 4659585563 │
│ public.procurement_order │ 156139 │ 1430660775 │ 1430816914 │
│ public.stock_tracking │ 2621 │ 525023173 │ 525025794 │
│ public.product_product │ 11178 │ 225774346 │ 225785524 │
│ public.mrp_bom │ 27198 │ 225329643 │ 225356841 │
│ public.ir_model_fields │ 1632 │ 203361139 │ 203362771 │
│ public.stock_production_lot │ 5918 │ 127915614 │ 127921532 │
│ public.res_users │ 416 │ 115506586 │ 115507002 │
│ public.ir_model_access │ 6382 │ 104686364 │ 104692746 │
│ public.mrp_production │ 20829 │ 101523983 │ 101544812 │
│ public.product_template │ 4566 │ 76074699 │ 76079265 │
│ public.product_uom │ 18 │ 70521126 │ 70521144 │
│ public.wkf_workitem │ 129166 │ 67782919 │ 67912085 │
└───────────────────────────────┴────────────┴─────────────┴─────────────┘
t @odony
PostgreSQL Analysis: most updated/inserted/...
# SELECT schemaname || '.' || relname as table,
seq_scan,idx_scan,idx_tup_fetch+seq_tup_read lines_read_total, n_tup_ins as
num_insert,n_tup_upd as num_update,n_tup_del as num_delete
from pg_stat_user_tables order by n_tup_upd desc limit 10;
┌────────────────────────────────────┬──────────┬────────────┬──────────────────┬────────────┬────────────┬────────────┐
│ table │ seq_scan │ idx_scan │ lines_read_total │ num_insert │ num_update │ num_delete │
├────────────────────────────────────┼──────────┼────────────┼──────────────────┼────────────┼────────────┼────────────┤
│ public.stock_move │ 1188095 │ 1104711719 │ 132030135782 │ 208507 │ 9556574 │ 67298 │
│ public.procurement_order │ 226774 │ 22134417 │ 11794090805 │ 92064 │ 6882666 │ 27543 │
│ public.wkf_workitem │ 373 │ 17340039 │ 29910699 │ 1958392 │ 3280141 │ 1883794 │
│ public.stock_location │ 41402098 │ 166316501 │ 516216409246 │ 97 │ 2215107 │ 205 │
│ public.stock_picking │ 297984 │ 71732467 │ 5671488265 │ 9008 │ 1000966 │ 1954 │
│ public.stock_production_lot │ 190934 │ 28038527 │ 1124560295 │ 4318 │ 722053 │ 0 │
│ public.mrp_production │ 270568 │ 13550371 │ 476534514 │ 3816 │ 495776 │ 1883 │
│ public.sale_order_line │ 30161 │ 4757426 │ 60019207 │ 2077 │ 479752 │ 320 │
│ public.stock_tracking │ 656404 │ 97874788 │ 5054452666 │ 5914 │ 404469 │ 0 │
│ public.ir_cron │ 246636 │ 818 │ 2467441 │ 0 │ 169904 │ 0 │
└────────────────────────────────────┴──────────┴────────────┴──────────────────┴────────────┴────────────┴────────────┘
t @odony
Useful VIEW to watch locked queries
-- For PostgreSQL 9.1
CREATE VIEW monitor_blocked_queries AS
SELECT
pg_class.relname,
waiter.pid as blocked_pid,
substr(wait_act.current_query,1,30) as blocked_statement,
age(now(),wait_act.query_start) as blocked_duration,
holder.pid as blocking_pid,
substr(hold_act.current_query,1,30) as blocking_statement,
age(now(),hold_act.query_start) as blocking_duration,
waiter.transactionid as xid,
waiter.mode as wmode,
waiter.virtualtransaction as wvxid,
holder.mode as hmode,
holder.virtualtransaction as hvxid
FROM pg_locks holder join pg_locks waiter on (
holder.locktype = waiter.locktype and (
holder.database, holder.relation,
holder.page, holder.tuple,
holder.virtualxid,
holder.transactionid, holder.classid,
holder.objid, holder.objsubid
) IS NOT DISTINCT from (
waiter.database, waiter.relation,
waiter.page, waiter.tuple,
waiter.virtualxid,
waiter.transactionid, waiter.classid,
waiter.objid, waiter.objsubid
))
JOIN pg_stat_activity hold_act ON (holder.pid=hold_act.procpid)
JOIN pg_stat_activity wait_act ON (waiter.pid=wait_act.procpid)
LEFT JOIN pg_class ON (holder.relation = pg_class.oid)
WHERE
wait_act.datname = 'eurogerm' AND
holder.granted AND NOT waiter.granted
ORDER BY blocked_duration DESC;
t @odony
Useful VIEW to watch locked queries
# SELECT * FROM blocked_queries;
relname | blocked_pid | blocked_statement | blocked_duration | blocking_pid | blocking_statement
---------+-------------+--------------------------------+------------------+--------------+-------------------------
| 16504 | update "stock_tracking" set "s | 00:00:57.588357 | 16338 | <IDLE> in transaction
| 16501 | update "stock_tracking" set "f | 00:00:55.144373 | 16504 | update "stock_tracking"
(2 lignes)
... | blocking_statement | blocking_duration | xid | wmode | hmode |
... +--------------------------------+-------------------+----------+-----------+---------------|
... | <IDLE> in transaction | -00:00:00.004754 | 12630740 | ShareLock | ExclusiveLock |
... | update "stock_tracking" set "s | 00:00:57.588357 | 12630722 | ShareLock | ExclusiveLock |
t @odony
Useful tool for watching activity: pg_activity
top-like command-line utility to watch queries: running,
blocking, waiting
→ pip install pg_activity
Thanks to @cmorisse for this pointer! :-)
t @odony
Useful VIEW to watch Locks per transaction
# – For PostgreSQL 9.1
# CREATE VIEW monitor_locks AS
SELECT pg_stat_activity.procpid, pg_class.relname, pg_locks.locktype,
pg_locks.transactionid, pg_locks.virtualxid,
pg_locks.virtualtransaction, pg_locks.mode, pg_locks.granted,
pg_stat_activity.usename,
substr(pg_stat_activity.current_query,1,30) AS query,
pg_stat_activity.query_start, age(now(),pg_stat_activity.query_start)
AS duration
FROM pg_stat_activity, pg_locks
LEFT JOIN pg_class ON pg_locks.relation = pg_class.oid
WHERE pg_locks.pid = pg_stat_activity.procpid AND
pg_stat_activity.procpid != pg_backend_pid()
ORDER BY pg_stat_activity.procpid, pg_locks.granted, pg_class.relname;
t @odony
Useful VIEW to watch Locks per transaction
pid | relname | locktype | xid | virtualxid
------+-----------------------------------------------------------+------------------+----------+-----------
8597 | | transactionid | 12171567 | 11/164037
8597 | purchase_order_line_pkey | relation | | 11/164037
8597 | stock_location_location_id_index | relation | | 11/164037
8597 | stock_move_production_id_index | relation | | 11/164037
8597 | stock_move_production_id_index | relation | | 11/164037
8597 | stock_move_location_id_location_dest_id_product_id_state | relation | | 11/164037
8597 | multi_company_default | relation | | 11/164037
8597 | stock_picking_invoice_state_index | relation | | 11/164037
8597 | ir_model_access_group_id_index | relation | | 11/164037
8597 | purchase_order_line_date_planned_index | relation | | 11/164037
8597 | purchase_order_pkey | relation | | 11/164037
8597 | res_company | relation | | 11/164037
8597 | purchase_order_name_index | relation | | 11/164037
8597 | res_company | relation | | 11/164037
8597 | ir_sequence_pkey | relation | | 11/164037
8597 | ir_sequence_pkey | relation | | 11/164037
8597 | res_partner_company_id_index | relation | | 11/164037
8597 | product_product_have_pqcd_cde_index | relation | | 11/164037
8597 | stock_tracking | relation | | 11/164037
8597 | ir_translation_src_hash_idx | relation | | 11/164037
8597 | res_users | relation | | 11/164037
8597 | product_template_name_index | relation | | 11/164037
8597 | res_users | relation | | 11/164037
8597 | stock_move_tracking
t @odony
Useful VIEW to watch Locks per transaction
| mode | granted | query | query_start | duration |
+------------------+---------+--------------------------------+-------------------------------+------------------+
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| RowExclusiveLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| RowShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| RowExclusiveLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| RowShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
| AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
t @odony
Normal Values?
● Most RPC requests should be under 200ms
● Most SQL queries should be under 100ms
● One transaction = 100-300 heavyweight locks
Find your own normal values via monitoring!
t @odony
Agenda
● Architecture / Deployment / Sizing
● Measuring & Analyzing
● Common Problems
● Anti-patterns
t @odony
Common Problems
● Stored functions
● Slow Queries/Views, Suboptimal domains
● Lock contention
● Custom locking mechanisms (queues, locks,...)
t @odony
Common Problems: Stored Functions
● Stored functional fields are triggers
● Store triggers can be:
●
store = { 'trigger_model': (mapping_function,
['trigger_field1', 'trigger_field2'],
priority) }
● store=True meaning:
self._name (lambda s,c,u,ids,c: ids, None, 10)}→
● Can be very expensive with wrong parameters or
slow functions
t @odony
Common Problems: Slow Queries
●
All SQL queries 500ms+ should be analyzed
●
Use EXPLAIN ANALYZE to examine/measure you custom
SQL queries and VIEWs
●
Try to remove parts of the query until it's fast, then fix it
●
Check cardinality of big JOINs
●
Default domain evaluation strategy
●
search([('picking_id.move_ids.partner_id', '!=', False)])
●
Implemented by combining “id IN (….)” parts
●
Have a look at _auto_join in OpenERP 7.0
'move_ids': fields.one2many('stock.move', 'picking_id',
string='Moves', _auto_join=True)
t @odony
Common Problems: Slow Queries
● No premature optimization: don't write SQL,
use the ORM always during initial
development
● If you detect a hot spot with load-tests,
consider rewriting the inefficient parts in SQL
● But:
● Make sure you're not bypassing security mechanisms
● Don't create SQL injection vectors use query parameters,→
don't concatenate user input in your SQL strings.
t @odony
Common Problems: Lock Contention
●
PostgreSQL guarantees transactional data integrity by
taking heavy-weight locks → monitor_locks
●
Updating a record blocks all FK locks on it until the
transaction is completed!
●
This will change with PostgreSQL 9.3 :-)
●
This is independent from the transaction isolation level
(Repeatable Read/Serializable/...)
→ Don't have long-running transactions!
→ Avoid updating “master data” resources in them!
(user, company, stock location, product, …)
t @odony
Common Problems: Custom Locking
●
Any kind of manual locking/queuing mechanism
is dangerous, especially in Python
●
Python locks can cause deadlocks that cannot
be detected and broken by the system!
●
Avoid it, and if you must, use the database as
lock
●
That's what scheduled jobs (ir.cron) do:
●
SELECT FOR UPDATE on the cron job row
●
→ Automatic cleanup/release
●
→ Scales well and works in multi-process!
t @odony
Agenda
● Architecture / Deployment / Sizing
● Measuring & Analyzing
● Common Problems
● Anti-patterns
t @odony
Avoid Anti-Patterns: Master the framework!
●
Make sure you really understand the browse()
mechanisms!
●
Make sure you properly use the batch API
●
Don't write SQL unless you have to, e.g for:
●
Analysis views
●
Hot spot functions, name_search(), computed_fields(), ...
t @odony
Anti-Patterns: what's wrong?
browse() must be used on lists to benefit from its optimizations!
t @odony
Anti-Patterns: what's wrong now?
browse() use is OK now, but the related field is dangerous
and costly, going through a possibly very large o2m just to find
a single product ID
t @odony
Anti-Patterns: what's wrong here?
The trigger on stock.move is for all fields which means it will
trigger for each change, while we only care about tracking_id
here

More Related Content

What's hot (20)

PDF
Tools for Solving Performance Issues
Odoo
 
PDF
Odoo Performance Limits
Odoo
 
PPTX
Common Performance Pitfalls in Odoo apps
Odoo
 
PDF
Load Testing - How to Stress Your Odoo with Locust
Odoo
 
PDF
Asynchronous JS in Odoo
Odoo
 
PDF
Impact of the New ORM on Your Modules
Odoo
 
PDF
OpenERP Performance Benchmark
Audaxis
 
PPTX
How to Design Resilient Odoo Crons
Odoo
 
PDF
New Framework - ORM
Odoo
 
PDF
Odoo Experience 2018 - Code Profiling in Odoo
ElínAnna Jónasdóttir
 
PPTX
Thrift vs Protocol Buffers vs Avro - Biased Comparison
Igor Anishchenko
 
PDF
Odoo icon smart buttons
Taieb Kristou
 
PDF
Discover GraphQL with Python, Graphene and Odoo
Odoo
 
PPTX
Odoo's Test Framework - Learn Best Practices
Odoo
 
PDF
Quick flask an intro to flask
juzten
 
PDF
Fluentd with MySQL
I Goo Lee
 
PDF
The Odoo JS Framework
Odoo
 
PDF
謎の言語Forthが謎なので実装した
t-sin
 
PPTX
Module Structure in Odoo 16
Celine George
 
POTX
Performance Tuning EC2 Instances
Brendan Gregg
 
Tools for Solving Performance Issues
Odoo
 
Odoo Performance Limits
Odoo
 
Common Performance Pitfalls in Odoo apps
Odoo
 
Load Testing - How to Stress Your Odoo with Locust
Odoo
 
Asynchronous JS in Odoo
Odoo
 
Impact of the New ORM on Your Modules
Odoo
 
OpenERP Performance Benchmark
Audaxis
 
How to Design Resilient Odoo Crons
Odoo
 
New Framework - ORM
Odoo
 
Odoo Experience 2018 - Code Profiling in Odoo
ElínAnna Jónasdóttir
 
Thrift vs Protocol Buffers vs Avro - Biased Comparison
Igor Anishchenko
 
Odoo icon smart buttons
Taieb Kristou
 
Discover GraphQL with Python, Graphene and Odoo
Odoo
 
Odoo's Test Framework - Learn Best Practices
Odoo
 
Quick flask an intro to flask
juzten
 
Fluentd with MySQL
I Goo Lee
 
The Odoo JS Framework
Odoo
 
謎の言語Forthが謎なので実装した
t-sin
 
Module Structure in Odoo 16
Celine George
 
Performance Tuning EC2 Instances
Brendan Gregg
 

Similar to Tips on how to improve the performance of your custom modules for high volumes deployment. Olivier Dony, OpenERP (20)

PDF
Creating PostgreSQL-as-a-Service at Scale
Sean Chittenden
 
PDF
Five steps perform_2013
PostgreSQL Experts, Inc.
 
PDF
hbaseconasia2019 Phoenix Improvements and Practices on Cloud HBase at Alibaba
Michael Stack
 
PDF
PGConf APAC 2018 - Monitoring PostgreSQL at Scale
PGConf APAC
 
TXT
Awrrpt 1 3004_3005
Kam Chan
 
PDF
PostgreSQL High_Performance_Cheatsheet
Lucian Oprea
 
PDF
Webinar slides: An Introduction to Performance Monitoring for PostgreSQL
Severalnines
 
DOC
Quick guide to PostgreSQL Performance Tuning
Ron Morgan
 
PDF
Postgres performance for humans
Craig Kerstiens
 
PDF
Optimizing your app by understanding your Postgres | RailsConf 2019 | Samay S...
Citus Data
 
PDF
Postgres Performance for Humans
Citus Data
 
PDF
5 Steps to PostgreSQL Performance
Command Prompt., Inc
 
PDF
Five steps perform_2009 (1)
PostgreSQL Experts, Inc.
 
PDF
query-optimization-techniques_talk.pdf
garos1
 
PDF
Aplicações 10x a 100x mais rápida com o postgre sql
Fabio Telles Rodriguez
 
PDF
Deep dive into PostgreSQL statistics.
Alexey Lesovsky
 
PDF
Best Practices & Lessons Learned from Deployment of PostgreSQL
EDB
 
PDF
The Essential postgresql.conf
Robert Treat
 
PDF
PostgreSQL Portland Performance Practice Project - Database Test 2 Tuning
Mark Wong
 
PPTX
PostgreSQL Performance Problems: Monitoring and Alerting
Grant Fritchey
 
Creating PostgreSQL-as-a-Service at Scale
Sean Chittenden
 
Five steps perform_2013
PostgreSQL Experts, Inc.
 
hbaseconasia2019 Phoenix Improvements and Practices on Cloud HBase at Alibaba
Michael Stack
 
PGConf APAC 2018 - Monitoring PostgreSQL at Scale
PGConf APAC
 
Awrrpt 1 3004_3005
Kam Chan
 
PostgreSQL High_Performance_Cheatsheet
Lucian Oprea
 
Webinar slides: An Introduction to Performance Monitoring for PostgreSQL
Severalnines
 
Quick guide to PostgreSQL Performance Tuning
Ron Morgan
 
Postgres performance for humans
Craig Kerstiens
 
Optimizing your app by understanding your Postgres | RailsConf 2019 | Samay S...
Citus Data
 
Postgres Performance for Humans
Citus Data
 
5 Steps to PostgreSQL Performance
Command Prompt., Inc
 
Five steps perform_2009 (1)
PostgreSQL Experts, Inc.
 
query-optimization-techniques_talk.pdf
garos1
 
Aplicações 10x a 100x mais rápida com o postgre sql
Fabio Telles Rodriguez
 
Deep dive into PostgreSQL statistics.
Alexey Lesovsky
 
Best Practices & Lessons Learned from Deployment of PostgreSQL
EDB
 
The Essential postgresql.conf
Robert Treat
 
PostgreSQL Portland Performance Practice Project - Database Test 2 Tuning
Mark Wong
 
PostgreSQL Performance Problems: Monitoring and Alerting
Grant Fritchey
 
Ad

More from Odoo (20)

PPTX
Timesheet Workshop: The Timesheet App People Love!
Odoo
 
PPTX
Odoo 3D Product View with Google Model-Viewer
Odoo
 
PPTX
Keynote - Vision & Strategy
Odoo
 
PPTX
Opening Keynote - Unveilling Odoo 14
Odoo
 
PDF
Extending Odoo with a Comprehensive Budgeting and Forecasting Capability
Odoo
 
PDF
Managing Multi-channel Selling with Odoo
Odoo
 
PPTX
Product Configurator: Advanced Use Case
Odoo
 
PDF
Accounting Automation: How Much Money We Saved and How?
Odoo
 
PPTX
Rock Your Logistics with Advanced Operations
Odoo
 
PPTX
Transition from a cost to a flow-centric organization
Odoo
 
PDF
Synchronization: The Supply Chain Response to Overcome the Crisis
Odoo
 
PPTX
Running a University with Odoo
Odoo
 
PPTX
Down Payments on Purchase Orders in Odoo
Odoo
 
PPTX
Odoo Implementation in Phases - Success Story of a Retail Chain 3Sach food
Odoo
 
PPTX
Migration from Salesforce to Odoo
Odoo
 
PPTX
Preventing User Mistakes by Using Machine Learning
Odoo
 
PPTX
Becoming an Odoo Expert: How to Prepare for the Certification
Odoo
 
PPTX
Instant Printing of any Odoo Report or Shipping Label
Odoo
 
PPTX
How Odoo helped an Organization Grow 3 Fold
Odoo
 
PPTX
From Shopify to Odoo
Odoo
 
Timesheet Workshop: The Timesheet App People Love!
Odoo
 
Odoo 3D Product View with Google Model-Viewer
Odoo
 
Keynote - Vision & Strategy
Odoo
 
Opening Keynote - Unveilling Odoo 14
Odoo
 
Extending Odoo with a Comprehensive Budgeting and Forecasting Capability
Odoo
 
Managing Multi-channel Selling with Odoo
Odoo
 
Product Configurator: Advanced Use Case
Odoo
 
Accounting Automation: How Much Money We Saved and How?
Odoo
 
Rock Your Logistics with Advanced Operations
Odoo
 
Transition from a cost to a flow-centric organization
Odoo
 
Synchronization: The Supply Chain Response to Overcome the Crisis
Odoo
 
Running a University with Odoo
Odoo
 
Down Payments on Purchase Orders in Odoo
Odoo
 
Odoo Implementation in Phases - Success Story of a Retail Chain 3Sach food
Odoo
 
Migration from Salesforce to Odoo
Odoo
 
Preventing User Mistakes by Using Machine Learning
Odoo
 
Becoming an Odoo Expert: How to Prepare for the Certification
Odoo
 
Instant Printing of any Odoo Report or Shipping Label
Odoo
 
How Odoo helped an Organization Grow 3 Fold
Odoo
 
From Shopify to Odoo
Odoo
 
Ad

Recently uploaded (20)

PDF
LDM Recording for Yogi Goddess Projects Summer 2025
LDMMia GrandMaster
 
PDF
SUMMER SAFETY FLYER SPECIAL Q3 - 16 Pages
One Source Industrial Supplies
 
PDF
Why Unipac Equipment Leads the Way Among Gantry Crane Manufacturers in Singap...
UnipacEquipment
 
PPTX
Technical Analysis of 1st Generation Biofuel Feedstocks - 25th June 2025
TOFPIK
 
DOCX
RECLAIM STOLEN CRYPTO REVIEW WITH RECUVA HACKER SOLUTIONS
camilamichaelj7
 
PDF
Kirill Klip GEM Royalty TNR Gold Presentation
Kirill Klip
 
PDF
Rostyslav Chayka: Управління командою за допомогою AI (UA)
Lviv Startup Club
 
PPTX
Top RPA Tools to Watch in 2024: Transforming Automation
RUPAL AGARWAL
 
PDF
Securiport - A Global Leader
Securiport
 
PDF
NewBase 07 July 2025 Energy News issue - 1800 by Khaled Al Awadi_compressed.pdf
Khaled Al Awadi
 
PPTX
Why-Your-BPO-Startup-Must-Track-Attrition-from-Day-One.pptx.pptx
Orage technologies
 
PDF
Flexible Metal Hose & Custom Hose Assemblies
McGill Hose & Coupling Inc
 
PDF
Connecting Startups to Strategic Global VC Opportunities.pdf
Google
 
PDF
Maksym Vyshnivetskyi: Управління закупівлями (UA)
Lviv Startup Club
 
PDF
Keppel Investor Day 2025 Presentation Slides GCAT.pdf
KeppelCorporation
 
PDF
NJ GST Collection Summary - June2025.pdf
writer28
 
PDF
Smart Lead Magnet Review: Effortless Email List Growth with Automated Funnels...
Larry888358
 
PPTX
epi editorial commitee meeting presentation
MIPLM
 
DOCX
TCP Communication Flag Txzczczxcxzzxypes.docx
esso24
 
DOCX
How to Choose the Best Dildo for Men A Complete Buying Guide.docx
Glas Toy
 
LDM Recording for Yogi Goddess Projects Summer 2025
LDMMia GrandMaster
 
SUMMER SAFETY FLYER SPECIAL Q3 - 16 Pages
One Source Industrial Supplies
 
Why Unipac Equipment Leads the Way Among Gantry Crane Manufacturers in Singap...
UnipacEquipment
 
Technical Analysis of 1st Generation Biofuel Feedstocks - 25th June 2025
TOFPIK
 
RECLAIM STOLEN CRYPTO REVIEW WITH RECUVA HACKER SOLUTIONS
camilamichaelj7
 
Kirill Klip GEM Royalty TNR Gold Presentation
Kirill Klip
 
Rostyslav Chayka: Управління командою за допомогою AI (UA)
Lviv Startup Club
 
Top RPA Tools to Watch in 2024: Transforming Automation
RUPAL AGARWAL
 
Securiport - A Global Leader
Securiport
 
NewBase 07 July 2025 Energy News issue - 1800 by Khaled Al Awadi_compressed.pdf
Khaled Al Awadi
 
Why-Your-BPO-Startup-Must-Track-Attrition-from-Day-One.pptx.pptx
Orage technologies
 
Flexible Metal Hose & Custom Hose Assemblies
McGill Hose & Coupling Inc
 
Connecting Startups to Strategic Global VC Opportunities.pdf
Google
 
Maksym Vyshnivetskyi: Управління закупівлями (UA)
Lviv Startup Club
 
Keppel Investor Day 2025 Presentation Slides GCAT.pdf
KeppelCorporation
 
NJ GST Collection Summary - June2025.pdf
writer28
 
Smart Lead Magnet Review: Effortless Email List Growth with Automated Funnels...
Larry888358
 
epi editorial commitee meeting presentation
MIPLM
 
TCP Communication Flag Txzczczxcxzzxypes.docx
esso24
 
How to Choose the Best Dildo for Men A Complete Buying Guide.docx
Glas Toy
 

Tips on how to improve the performance of your custom modules for high volumes deployment. Olivier Dony, OpenERP

  • 2. OpenERP can handle large volumes of transactions and large volumes of data out of the box!
  • 3. For example, each OpenERP Online Server hosts 1000+ databases without breaking a sweat!
  • 4. Many on-site customers have single server deployments with millions of rows: partners, emails, attachments, journal items, stock moves, workflow items, …
  • 5. What if performance is an issue? Get the right facts. Use the right tools.
  • 6. t @odony Agenda ● Architecture / Deployment / Sizing ● Measuring & Analyzing ● Common Problems ● Anti-patterns
  • 8. PostgreSQL is the real workhorse behind OpenERP, and it scales very well!
  • 9. t @odony OpenERP Cron Worker Deployment Architecture: single server, multi-process Rule of thumb: --workers=$((1+${CORES}*2)) OpenERP HTTP Worker OpenERP HTTP Worker OpenERP HTTP Worker OpenERP HTTP Worker PostgreSQL Requests
  • 10. t @odony OpenERP Cron Worker Deployment Architecture: multi-server, multi-process OpenERP HTTP Worker OpenERP HTTP Worker OpenERP HTTP Worker OpenERP HTTP Worker PostgreSQL Requests Server 3 Load Balancer OpenERP Cron Worker OpenERP HTTP Worker OpenERP HTTP Worker OpenERP HTTP Worker OpenERP HTTP Worker Server 2 Server 1
  • 11. t @odony Hardware Sizing ● Typical modern server machine ● 4/8/12 2+GHz cores ● 8-64 GB RAM ● Fast SATA/SAS/SSD disks ● Up to 100-200 active users (multi-process) ● Up to dozens of HTTP requests per second ● Up to 1000 “light” users (average SaaS user) ● For official OpenERP 7.0 deployments with no customizations, and typical usage!
  • 12. For anything else, always perform proper load testing before going live in production! Then size accordingly...
  • 13. t @odony PostgreSQL Deployment tips ● Avoid deploying PostgreSQL on a VM ● If you must do it, fine-tune the VM for I/O! ● And always check out the basic PostgreSQL performance tuning, it's conservative by default http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
  • 14. t @odony Agenda ● Architecture / Deployment / Sizing ● Measuring & Analyzing ● Common Problems ● Anti-patterns
  • 15. t @odony Monitor application response times ● You can't manage/improve what you can't measure ● Setup an automated monitoring of performance and response time... even if you have no performance problem! ● Suggested tool: munin ● Run OpenERP with –log-level=debug_rpc in prod! 2013-07-03 00:12:29,846 9663 DEBUG test openerp.netsvc.rpc.request: object.execute_kw time:0.031s mem: 763716k -> 763716k (diff: 0k)('test', 1, '*', 'sale.order', 'read', (...), {...})
  • 16. t @odony #!/bin/sh #%# family=manual #%# capabilities=autoconf suggest case $1 in autoconf) exit 0 ;; suggest) exit 0 ;; config) echo graph_category openerp echo graph_title openerp rpc request count echo graph_vlabel num requests/minute in last 5 minutes echo requests.label num requests exit 0 ;; esac # watch out for the time zone of the logs => using date -u for UTC timestamps result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{count=0} ($1 " " $2) >= "`date +'%F %H:%M:%S' -ud '5 min ago'`" { count+=1; } END{print count/5}") echo "requests.value ${result}" exit 0 Munin plugin: OpenERP requests/minute
  • 17. t @odony #!/bin/sh #%# family=manual #%# capabilities=autoconf suggest case $1 in config) echo graph_category openerp echo graph_title openerp rpc requests min/average response time echo graph_vlabel seconds echo graph_args --units-exponent -3 echo min.label min echo min.warning 1 echo min.critical 5 echo avg.label average echo avg.warning 1 echo avg.critical 5 exit 0 ;; esac # watch out for the time zone of the logs => using date -u for UTC timestamps result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{sum=0;count=0} ( $1 " " $2) >= "`date +'%F %H:%M:%S' -ud '5 min ago'`" {split($8,t,":");time=0+t[2];if (min=="") { min=time}; sum += time; count+=1; min=(time>min)?min:time } END{print min, sum/count}") echo -n "min.value " echo ${result} | cut -d" " -f1 echo -n "avg.value " echo ${result} | cut -d" " -f2 exit 0 Munin plugin: OpenERP min/avg response time
  • 18. t @odony #!/bin/sh #%# family=manual #%# capabilities=autoconf suggest case $1 in config) echo graph_category openerp echo graph_title openerp rpc requests max response time echo graph_vlabel seconds echo graph_args --units-exponent -3 echo max.label max echo max.warning 1 echo max.critical 5 exit 0 ;;.. esac # watch out for the time zone of the logs => using date -u for UTC timestamps.... result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{sum=0;count=0} ( $1 " " $2) >= "`date +'%F %H:%M:%S' -ud '85 min ago'`" {split($8,t,":");time=0+t[2]; sum += time; count+=1; max=(time<max)?max:time } END{print max}") echo "max.value ${result}" exit 0 Munin plugin: OpenERP max response time
  • 19. t @odony Monitor PostgreSQL ● postgresql.conf ● log_min_duration_statement = 50 ● Set to 50 or 100 in production ● Set to 0 to log all queries and execution times for a while ● Instagram gist to capture sample + analyze ● Analyze with pgBadger or pgFouine ● lc_messages = 'C'
  • 20. t @odony PostgreSQL Analysis ● Important PG statistic tables ● pg_stat_activity: near real-time view of transactions ● pg_locks: real-time view of existing locks ● pg_stat_user_tables: generic usage stats for all tables ● pg_statio_user_tables: generic I/O stats for all tables
  • 21. t @odony PostgreSQL Analysis: longest tables # SELECT schemaname || '.' || relname as table,n_live_tup as num_rows FROM pg_stat_user_tables ORDER BY n_live_tup DESC limit 10; ┌──────────────────────────────────────────┬──────────┐ │ table │ num_rows │ ├──────────────────────────────────────────┼──────────┤ │ public.stock_move │ 179544 │ │ public.ir_translation │ 134039 │ │ public.wkf_workitem │ 97195 │ │ public.wkf_instance │ 96973 │ │ public.procurement_order │ 83077 │ │ public.ir_property │ 69011 │ │ public.ir_model_data │ 59532 │ │ public.stock_move_history_ids │ 58942 │ │ public.mrp_production_move_ids │ 49714 │ │ public.mrp_bom │ 46258 │ └──────────────────────────────────────────┴──────────┘
  • 22. t @odony PostgreSQL Analysis: biggest tables # SELECT nspname || '.' || relname AS "table", pg_size_pretty(pg_total_relation_size(C.oid)) AS "total_size" FROM pg_class C LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace) WHERE nspname NOT IN ('pg_catalog', 'information_schema') AND C.relkind <> 'i' AND nspname !~ '^pg_toast' ORDER BY pg_total_relation_size(C.oid) DESC LIMIT 10; ┌──────────────────────────────────────────┬────────────┐ │ table │ total_size │ ├──────────────────────────────────────────┼────────────┤ │ public.stock_move │ 525 MB │ │ public.wkf_workitem │ 111 MB │ │ public.procurement_order │ 80 MB │ │ public.stock_location │ 63 MB │ │ public.ir_translation │ 42 MB │ │ public.wkf_instance │ 37 MB │ │ public.ir_model_data │ 36 MB │ │ public.ir_property │ 26 MB │ │ public.ir_attachment │ 14 MB │ │ public.mrp_bom │ 13 MB │ └──────────────────────────────────────────┴────────────┘
  • 23. t @odony PostgreSQL Analysis: biggest tables ● Consider using the file storage for the ir.attachment table ● Avoid storing files in the database ● Greatly reduces the time needed for DB backups and backup ● Very easy to rsync backups of DB dumps + filestore ● For 7.0 this setting is explained in this FAQ
  • 24. t @odony PostgreSQL Analysis: most read tables # SELECT schemaname || '.' || relname as table, heap_blks_read as disk_reads, heap_blks_hit as cache_reads, heap_blks_read + heap_blks_hit as total_reads from pg_statio_user_tables order by heap_blks_read + heap_blks_hit desc limit 15; ┌───────────────────────────────┬────────────┬─────────────┬─────────────┐ │ table │ disk_reads │ cache_reads │ total_reads │ ├───────────────────────────────┼────────────┼─────────────┼─────────────┤ │ public.stock_location │ 53796 │ 60926676388 │ 60926730184 │ │ public.stock_move │ 208763 │ 9880525282 │ 9880734045 │ │ public.stock_picking │ 15772 │ 4659569791 │ 4659585563 │ │ public.procurement_order │ 156139 │ 1430660775 │ 1430816914 │ │ public.stock_tracking │ 2621 │ 525023173 │ 525025794 │ │ public.product_product │ 11178 │ 225774346 │ 225785524 │ │ public.mrp_bom │ 27198 │ 225329643 │ 225356841 │ │ public.ir_model_fields │ 1632 │ 203361139 │ 203362771 │ │ public.stock_production_lot │ 5918 │ 127915614 │ 127921532 │ │ public.res_users │ 416 │ 115506586 │ 115507002 │ │ public.ir_model_access │ 6382 │ 104686364 │ 104692746 │ │ public.mrp_production │ 20829 │ 101523983 │ 101544812 │ │ public.product_template │ 4566 │ 76074699 │ 76079265 │ │ public.product_uom │ 18 │ 70521126 │ 70521144 │ │ public.wkf_workitem │ 129166 │ 67782919 │ 67912085 │ └───────────────────────────────┴────────────┴─────────────┴─────────────┘
  • 25. t @odony PostgreSQL Analysis: most updated/inserted/... # SELECT schemaname || '.' || relname as table, seq_scan,idx_scan,idx_tup_fetch+seq_tup_read lines_read_total, n_tup_ins as num_insert,n_tup_upd as num_update,n_tup_del as num_delete from pg_stat_user_tables order by n_tup_upd desc limit 10; ┌────────────────────────────────────┬──────────┬────────────┬──────────────────┬────────────┬────────────┬────────────┐ │ table │ seq_scan │ idx_scan │ lines_read_total │ num_insert │ num_update │ num_delete │ ├────────────────────────────────────┼──────────┼────────────┼──────────────────┼────────────┼────────────┼────────────┤ │ public.stock_move │ 1188095 │ 1104711719 │ 132030135782 │ 208507 │ 9556574 │ 67298 │ │ public.procurement_order │ 226774 │ 22134417 │ 11794090805 │ 92064 │ 6882666 │ 27543 │ │ public.wkf_workitem │ 373 │ 17340039 │ 29910699 │ 1958392 │ 3280141 │ 1883794 │ │ public.stock_location │ 41402098 │ 166316501 │ 516216409246 │ 97 │ 2215107 │ 205 │ │ public.stock_picking │ 297984 │ 71732467 │ 5671488265 │ 9008 │ 1000966 │ 1954 │ │ public.stock_production_lot │ 190934 │ 28038527 │ 1124560295 │ 4318 │ 722053 │ 0 │ │ public.mrp_production │ 270568 │ 13550371 │ 476534514 │ 3816 │ 495776 │ 1883 │ │ public.sale_order_line │ 30161 │ 4757426 │ 60019207 │ 2077 │ 479752 │ 320 │ │ public.stock_tracking │ 656404 │ 97874788 │ 5054452666 │ 5914 │ 404469 │ 0 │ │ public.ir_cron │ 246636 │ 818 │ 2467441 │ 0 │ 169904 │ 0 │ └────────────────────────────────────┴──────────┴────────────┴──────────────────┴────────────┴────────────┴────────────┘
  • 26. t @odony Useful VIEW to watch locked queries -- For PostgreSQL 9.1 CREATE VIEW monitor_blocked_queries AS SELECT pg_class.relname, waiter.pid as blocked_pid, substr(wait_act.current_query,1,30) as blocked_statement, age(now(),wait_act.query_start) as blocked_duration, holder.pid as blocking_pid, substr(hold_act.current_query,1,30) as blocking_statement, age(now(),hold_act.query_start) as blocking_duration, waiter.transactionid as xid, waiter.mode as wmode, waiter.virtualtransaction as wvxid, holder.mode as hmode, holder.virtualtransaction as hvxid FROM pg_locks holder join pg_locks waiter on ( holder.locktype = waiter.locktype and ( holder.database, holder.relation, holder.page, holder.tuple, holder.virtualxid, holder.transactionid, holder.classid, holder.objid, holder.objsubid ) IS NOT DISTINCT from ( waiter.database, waiter.relation, waiter.page, waiter.tuple, waiter.virtualxid, waiter.transactionid, waiter.classid, waiter.objid, waiter.objsubid )) JOIN pg_stat_activity hold_act ON (holder.pid=hold_act.procpid) JOIN pg_stat_activity wait_act ON (waiter.pid=wait_act.procpid) LEFT JOIN pg_class ON (holder.relation = pg_class.oid) WHERE wait_act.datname = 'eurogerm' AND holder.granted AND NOT waiter.granted ORDER BY blocked_duration DESC;
  • 27. t @odony Useful VIEW to watch locked queries # SELECT * FROM blocked_queries; relname | blocked_pid | blocked_statement | blocked_duration | blocking_pid | blocking_statement ---------+-------------+--------------------------------+------------------+--------------+------------------------- | 16504 | update "stock_tracking" set "s | 00:00:57.588357 | 16338 | <IDLE> in transaction | 16501 | update "stock_tracking" set "f | 00:00:55.144373 | 16504 | update "stock_tracking" (2 lignes) ... | blocking_statement | blocking_duration | xid | wmode | hmode | ... +--------------------------------+-------------------+----------+-----------+---------------| ... | <IDLE> in transaction | -00:00:00.004754 | 12630740 | ShareLock | ExclusiveLock | ... | update "stock_tracking" set "s | 00:00:57.588357 | 12630722 | ShareLock | ExclusiveLock |
  • 28. t @odony Useful tool for watching activity: pg_activity top-like command-line utility to watch queries: running, blocking, waiting → pip install pg_activity Thanks to @cmorisse for this pointer! :-)
  • 29. t @odony Useful VIEW to watch Locks per transaction # – For PostgreSQL 9.1 # CREATE VIEW monitor_locks AS SELECT pg_stat_activity.procpid, pg_class.relname, pg_locks.locktype, pg_locks.transactionid, pg_locks.virtualxid, pg_locks.virtualtransaction, pg_locks.mode, pg_locks.granted, pg_stat_activity.usename, substr(pg_stat_activity.current_query,1,30) AS query, pg_stat_activity.query_start, age(now(),pg_stat_activity.query_start) AS duration FROM pg_stat_activity, pg_locks LEFT JOIN pg_class ON pg_locks.relation = pg_class.oid WHERE pg_locks.pid = pg_stat_activity.procpid AND pg_stat_activity.procpid != pg_backend_pid() ORDER BY pg_stat_activity.procpid, pg_locks.granted, pg_class.relname;
  • 30. t @odony Useful VIEW to watch Locks per transaction pid | relname | locktype | xid | virtualxid ------+-----------------------------------------------------------+------------------+----------+----------- 8597 | | transactionid | 12171567 | 11/164037 8597 | purchase_order_line_pkey | relation | | 11/164037 8597 | stock_location_location_id_index | relation | | 11/164037 8597 | stock_move_production_id_index | relation | | 11/164037 8597 | stock_move_production_id_index | relation | | 11/164037 8597 | stock_move_location_id_location_dest_id_product_id_state | relation | | 11/164037 8597 | multi_company_default | relation | | 11/164037 8597 | stock_picking_invoice_state_index | relation | | 11/164037 8597 | ir_model_access_group_id_index | relation | | 11/164037 8597 | purchase_order_line_date_planned_index | relation | | 11/164037 8597 | purchase_order_pkey | relation | | 11/164037 8597 | res_company | relation | | 11/164037 8597 | purchase_order_name_index | relation | | 11/164037 8597 | res_company | relation | | 11/164037 8597 | ir_sequence_pkey | relation | | 11/164037 8597 | ir_sequence_pkey | relation | | 11/164037 8597 | res_partner_company_id_index | relation | | 11/164037 8597 | product_product_have_pqcd_cde_index | relation | | 11/164037 8597 | stock_tracking | relation | | 11/164037 8597 | ir_translation_src_hash_idx | relation | | 11/164037 8597 | res_users | relation | | 11/164037 8597 | product_template_name_index | relation | | 11/164037 8597 | res_users | relation | | 11/164037 8597 | stock_move_tracking
  • 31. t @odony Useful VIEW to watch Locks per transaction | mode | granted | query | query_start | duration | +------------------+---------+--------------------------------+-------------------------------+------------------+ | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | RowExclusiveLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | RowShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | RowExclusiveLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | RowShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 | | AccessShareLock | t | <IDLE> in transaction | 2013-06-18 12:53:01.601039+02 | 00:00:00.278826 |
  • 32. t @odony Normal Values? ● Most RPC requests should be under 200ms ● Most SQL queries should be under 100ms ● One transaction = 100-300 heavyweight locks Find your own normal values via monitoring!
  • 33. t @odony Agenda ● Architecture / Deployment / Sizing ● Measuring & Analyzing ● Common Problems ● Anti-patterns
  • 34. t @odony Common Problems ● Stored functions ● Slow Queries/Views, Suboptimal domains ● Lock contention ● Custom locking mechanisms (queues, locks,...)
  • 35. t @odony Common Problems: Stored Functions ● Stored functional fields are triggers ● Store triggers can be: ● store = { 'trigger_model': (mapping_function, ['trigger_field1', 'trigger_field2'], priority) } ● store=True meaning: self._name (lambda s,c,u,ids,c: ids, None, 10)}→ ● Can be very expensive with wrong parameters or slow functions
  • 36. t @odony Common Problems: Slow Queries ● All SQL queries 500ms+ should be analyzed ● Use EXPLAIN ANALYZE to examine/measure you custom SQL queries and VIEWs ● Try to remove parts of the query until it's fast, then fix it ● Check cardinality of big JOINs ● Default domain evaluation strategy ● search([('picking_id.move_ids.partner_id', '!=', False)]) ● Implemented by combining “id IN (….)” parts ● Have a look at _auto_join in OpenERP 7.0 'move_ids': fields.one2many('stock.move', 'picking_id', string='Moves', _auto_join=True)
  • 37. t @odony Common Problems: Slow Queries ● No premature optimization: don't write SQL, use the ORM always during initial development ● If you detect a hot spot with load-tests, consider rewriting the inefficient parts in SQL ● But: ● Make sure you're not bypassing security mechanisms ● Don't create SQL injection vectors use query parameters,→ don't concatenate user input in your SQL strings.
  • 38. t @odony Common Problems: Lock Contention ● PostgreSQL guarantees transactional data integrity by taking heavy-weight locks → monitor_locks ● Updating a record blocks all FK locks on it until the transaction is completed! ● This will change with PostgreSQL 9.3 :-) ● This is independent from the transaction isolation level (Repeatable Read/Serializable/...) → Don't have long-running transactions! → Avoid updating “master data” resources in them! (user, company, stock location, product, …)
  • 39. t @odony Common Problems: Custom Locking ● Any kind of manual locking/queuing mechanism is dangerous, especially in Python ● Python locks can cause deadlocks that cannot be detected and broken by the system! ● Avoid it, and if you must, use the database as lock ● That's what scheduled jobs (ir.cron) do: ● SELECT FOR UPDATE on the cron job row ● → Automatic cleanup/release ● → Scales well and works in multi-process!
  • 40. t @odony Agenda ● Architecture / Deployment / Sizing ● Measuring & Analyzing ● Common Problems ● Anti-patterns
  • 41. t @odony Avoid Anti-Patterns: Master the framework! ● Make sure you really understand the browse() mechanisms! ● Make sure you properly use the batch API ● Don't write SQL unless you have to, e.g for: ● Analysis views ● Hot spot functions, name_search(), computed_fields(), ...
  • 42. t @odony Anti-Patterns: what's wrong? browse() must be used on lists to benefit from its optimizations!
  • 43. t @odony Anti-Patterns: what's wrong now? browse() use is OK now, but the related field is dangerous and costly, going through a possibly very large o2m just to find a single product ID
  • 44. t @odony Anti-Patterns: what's wrong here? The trigger on stock.move is for all fields which means it will trigger for each change, while we only care about tracking_id here