Building Ontologies from Multiple Information Sources Raji Ghawi   and  Nadine Cullot  Laboratoire Électronique, Informatique et Image University of Burgundy,  Dijon, France Information Technologies (IT2009), Kaunas, Lithuania 23 – 24 April 2009
Introduction Information  Integration Semantic Heterogeneity Ontologies Content Explanation Query Formulation Building Ontologies ?
Building Ontologies Building Ontologies from Scratch from Existing Sources Costly and difficult
Building Ontologies Building Ontologies from Scratch from Existing Sources Costly and difficult from Single  Information Source from Multiple  Information Sources ? P
Building Ontologies   from Multiple Information Sources Possible Solutions creating local ontologies  merging local ontologies  merging source schemas  building ontology from unified schema Ontology-Merging-based Approach Schema-Merging-based Approach
Our Proposition Ontology-Evolution-based Approach creating initial ontology involving local sources  Ontology Evolution
Evolution Step New  Information Source Ontology Initial  correspondences Mapping Bridges Automatic  Treatement Rules Ontology Change Operations Mapping Document Ontology  Modification Mapping Doc 2 Mapping Doc 1 Mapping Doc n Updating  Previous Mappings Expert
Ontology Change Operations (Atomic) dp1 dp2 dp1 A B C A B Add_Concept A A Add_DatatypeProperty B C B Add_ObjectProperty C op B Set_SubConceptOf C B C is_a Set_SubPropertyOf op1 Set_InverseOf op2 op1 op2 op1 op2 B C op1 op2 B C dp1 dp2 dp1 A A Remove_Property
Ontology Change Operations (Complex) dp dp1 dp2 dp A B Convert_Property A A Split_Property A B op dp1 dp2 dp A dp1 dp2 A Add_DatatypeProperty Remove_Property dp A B op A B op Remove_Property Add_ObjectProperty
Ontology Evolution by Involving a Database Evolving Ontology Concepts Using Database Tables Evolving Ontology Properties Using Columns
Evolving Ontology Concepts Using Database Tables C nothing happens case 1 A concept C has no corresponding table
Evolving Ontology Concepts Using Database Tables C conceptBridge(C, T) C case 2 one concept C corresponds to exactly one table T T T
Evolving Ontology Concepts Using Database Tables case 3 A  table T has no corresponding concept T Case 3.1. Case 3.2. Case 3.3. … PK1 T1 PFK2 PFK1 T … PK2 T2 … PK1 T1 … PFK1 T … … T
Evolving Ontology Concepts Using Database Tables C conceptBridge(C, T) Add_Concept(C) case 3 A  table T has no corresponding concept case 3.3 default  case T T
Evolving Ontology Concepts Using Database Tables case 3 A  table T has no corresponding concept case 3.2 T is related to T1 using a FK which is a PK D conceptBridge(D, T1) Add_Concept(C) Set_SubConceptOf (C, D) D C conceptBridge(C, T) pfk1 T pk1 T1 pfk1 T pk1 T1
Evolving Ontology Concepts Using Database Tables case 3 A  table T has no corresponding concept case 3.1 T is used to relate T1 and T2 in many-to-many relationship D1 D2 D1 D2 op1 op2 cb1 = conceptBridge(D1, T1) cb2 = conceptBridge(D2, T2) Add_ObjectProperty(op1, D1, D2) Add_ObjectProperty(op2, D2, D1) Set_InverseOf(op1, op2) OPB(op1, cb1, cb2, join:T.pfk1=T1.pk1 AND T.pfk2=T2.pk2) OPB(op2, cb2, cb1, join:T.pfk1=T1.pk1 AND T.pfk2=T2.pk2) pfk2 pfk1 T pk2 T2 pk1 T1 pfk2 pfk1 T pk2 T2 pk1 T1
Evolving Ontology Concepts Using Database Tables case 4 one concept C corresponds to several tables T1, T2, …, Tm C … C1 C2 Cm cb1 = conceptBridge(C1, T1) cb2 = conceptBridge(C2, T2) ... cbm = conceptBridge(Cm, Tm) … T1 T2 Tm
Evolving Ontology Concepts Using Database Tables case 4 one concept C corresponds to several tables T1, T2, …, Tm case 4.1 one concept C corresponds to the union of T1, T2, …, Tm C … C1 C2 Cm C … C1 C2 Cm cb1 = conceptBridge(C1, T1) cb2 = conceptBridge(C2, T2) ... cbm = conceptBridge(Cm, Tm) Set_SubConceptOf(C1, C) Set_SubConceptOf(C2, C) ... Set_SubConceptOf(Cm, C) move common properties to the super-concept C  … … T1 T2 Tm T1 T2 Tm
Evolving Ontology Concepts Using Database Tables case 4 one concept C corresponds to several tables T1, T2, …, Tm case 4.2 one concept C corresponds to the join of T1, T2, …, Tm C … C1 C2 Cm C … C1 C2 Cm cb1 = conceptBridge(C1, T1) cb2 = conceptBridge(C2, T2) ... cbm = conceptBridge(Cm, Tm) Set_SubConceptOf(C, C1) Set_SubConceptOf(C, C2) ... Set_SubConceptOf(C, Cm) … … T1 T2 Tm T1 T2 Tm
Evolving Ontology Concepts Using Database Tables case 5 one table T corresponds to several concepts C1, C2, …, Cn C2 C1 Cn C2 C1 Cn C conceptBridge(C, T) Add_Concept(C) Set_SubConceptOf(C1, C) Set_SubConceptOf(C2, C) Set_SubConceptOf(Cn, C) … … T T
Evolving Ontology Concepts Using Database Tables case 6 several concepts C1, C2, …, Cn correspond to several tables T1, T2, …, Tm C2 C1 Cn … … T1 T2 Tm
Evolving Ontology Properties Using Columns   Category 1. Correspondences between C properties and T columns. Category 2. Correspondences between C properties and columns in other tables. Category 3. Correspondences between T columns and properties of other concepts. C D 1 2 3 conceptBridge(C, T) T U
Evolving Ontology Properties Using Columns case 1 A (datatype or object) property has no corresponding column nothing happens cb = conceptBridge(C, T) dp C op T
Evolving Ontology Properties Using Columns case 2 A column  col  has no corresponding property cb = conceptBridge(C, T) C col T
Evolving Ontology Properties Using Columns case 2 A column  col  has no corresponding property cb = conceptBridge(C, T) C case 2.1 col  is not a foreign key dp DPB(dp, cb, col) C Add_DatatypeProperty(dp, C -> type) col T col T
Evolving Ontology Properties Using Columns case 2 A column  col  has no corresponding property cb = conceptBridge(C, T) cb1 = conceptBridge(D, RT) C case 2.2 col  is a foreign key  fk  referring to a column  rc  in another table  RT D C D op OPB(op, cb, cb1,  join: T.fk = RT.rc ) Add_ObjectProperty(op, C -> D) fk T rc RT fk T rc RT
Evolving Ontology Properties Using Columns dp case 3 A datatype property  dp  corresponds directly to one column  col cb = conceptBridge(C, T) C dp DPB(dp, cb, col) C col T col T
Evolving Ontology Properties Using Columns case 4 An object property  op  corresponds directly to a foreign key  fk cb = conceptBridge(C, T) C D op fk T rc RT
Evolving Ontology Properties Using Columns case 4 An object property  op  corresponds directly to a foreign key  fk C D op RT  is mapped to the concept  D case 4.1 C D op cb = conceptBridge(C, T) cb1 = conceptBridge(D, RT) OPB(op, cb, cb1,  join: T.fk = RT.rc ) fk T rc RT fk T rc RT
Evolving Ontology Properties Using Columns case 4 An object property  op  corresponds directly to a foreign key  fk C D op RT  is mapped to a concept  F  different from  D case 4.2 C D op cb = conceptBridge(C, T) cb1 = conceptBridge(F, RT) F    D Set_SubConceptOf(F, D) Add_ObjectProperty(op’, C -> F) Set_SubPropertyOf(op’, op) F F op' OPB(op’, cb, cb1,  join: T.fk = RT.rc )  fk T rc RT fk T rc RT
Evolving Ontology Properties Using Columns dp case 5 A datatype property  dp  corresponds to a transformation of one column  col cb = conceptBridge(C, T) C dp DPB(dp, cb, Trans(col)) C Trans Trans col T col T
Evolving Ontology Properties Using Columns dp case 6 cb = conceptBridge(C, T) C Trans A datatype property  dp  corresponds to a transformation/combination of multiple columns  col1 ,  col2 , …,  colm col2 col1 T
Evolving Ontology Properties Using Columns dp case 6 cb = conceptBridge(C, T) C dp DPB(dp, cb, Trans(col1, col2)) C Trans Trans A datatype property  dp  corresponds to a transformation/combination of multiple columns  col1 ,  col2 , …,  colm First solution col2 col1 T col2 col1 T
Evolving Ontology Properties Using Columns dp case 6 cb = conceptBridge(C, T) C Trans A datatype property  dp  corresponds to a transformation/combination of multiple columns  col1 ,  col2 , …,  colm Second solution DPB(dp1, cb, col1) DPB(dp2, cb, col2) Split_Property(dp AS dp1 = Trans1(dp),  dp2 = Trans2(dp)) col2 col1 T col2 col1 T dp1 C dp2
Evolving Ontology Properties Using Columns dp1 case 7 cb = conceptBridge(C, T) C A column  col  corresponds to a combination/transformation of multiple datatype properties  dp1 ,  dp2 , …,  dpn DPB(dp1, cb, Trans1(col)) DPB(dp2, cb, Trans2(col)) dp2 Trans col T col T dp1 C dp2 Trans1 Trans2
Conclusions & Future Works Ontology-Evolution based Approach Semi-Automatic Process Non-exhaustive list of correspondence cases Conditional Mappings Implementation
Thank You. Questions ?

More Related Content

PDF
Contravariant functors in scala
PDF
Automata And Compiler Design
PPTX
Computer Science Assignment Help
PDF
Why functional programming and category theory strongly matters
PDF
L6
PDF
Lecture 05 Association Rules Advanced Topics
PPTX
Software Construction Assignment Help
PDF
Contravariant functors in scala
Automata And Compiler Design
Computer Science Assignment Help
Why functional programming and category theory strongly matters
L6
Lecture 05 Association Rules Advanced Topics
Software Construction Assignment Help

What's hot (20)

PPTX
Sequential pattern mining
DOC
Data structures question paper anna university
DOCX
Karnaugh mapping allaboutcircuits
PDF
Computer science sqp
DOCX
Data structure
PPT
Admissions in india 2015
PDF
Cs gate-2011
PPT
M3 search
PDF
Programming modulo representations
DOCX
All aboutcircuits karnaugh maps
PDF
A Simple Algorithm for Minimal Unsatisfiable core
PDF
Introduction to Category Theory for software engineers
DOCX
Cs6660 compiler design may june 2017 answer key
PDF
Program Derivation of Operations in Finite Fields of Prime Order
PDF
C interview questions
DOCX
Cs6660 compiler design november december 2016 Answer key
PPT
Formulae
Sequential pattern mining
Data structures question paper anna university
Karnaugh mapping allaboutcircuits
Computer science sqp
Data structure
Admissions in india 2015
Cs gate-2011
M3 search
Programming modulo representations
All aboutcircuits karnaugh maps
A Simple Algorithm for Minimal Unsatisfiable core
Introduction to Category Theory for software engineers
Cs6660 compiler design may june 2017 answer key
Program Derivation of Operations in Finite Fields of Prime Order
C interview questions
Cs6660 compiler design november december 2016 Answer key
Formulae

Similar to Building Ontologies from Multiple Information Sources (20)

PDF
TRANSFORMATION RULES FOR BUILDING OWL ONTOLOGIES FROM RELATIONAL DATABASES
PDF
TRANSFORMATION RULES FOR BUILDING OWL ONTOLOGIES FROM RELATIONAL DATABASES
PDF
What Have The Properties Ever Done For Us
PPT
Ontology-based Cooperation of Information Systems
PDF
International Conference on Knowledge Discovery and Information Retrieval 2009
PDF
codecentric AG: Using Cassandra and Clojure for Data Crunching backends
PDF
Bridging the gap between the semantic web and big data: answering SPARQL que...
PPTX
Data Integration at the Ontology Engineering Group
PPTX
ONTOLOGY BASED DATA ACCESS
PDF
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
PPTX
Logical Detection of Invalid SameAs Statements in RDF Data
PPT
Database-to-Ontology Mapping Generation for Semantic Interoperability
PDF
Next Top Data Model by Ian Plosker
PDF
DBMS 11 | Design Theory [Normalization 1]
PDF
Cassandra Data Modelling with CQL (OSCON 2015)
PPT
Fusing semantic data
PDF
A N E XTENSION OF P ROTÉGÉ FOR AN AUTOMA TIC F UZZY - O NTOLOGY BUILDING U...
PDF
Ontology-based multi-domain metadata for research data management using tripl...
PPT
Intro to OWL & Ontology
TRANSFORMATION RULES FOR BUILDING OWL ONTOLOGIES FROM RELATIONAL DATABASES
TRANSFORMATION RULES FOR BUILDING OWL ONTOLOGIES FROM RELATIONAL DATABASES
What Have The Properties Ever Done For Us
Ontology-based Cooperation of Information Systems
International Conference on Knowledge Discovery and Information Retrieval 2009
codecentric AG: Using Cassandra and Clojure for Data Crunching backends
Bridging the gap between the semantic web and big data: answering SPARQL que...
Data Integration at the Ontology Engineering Group
ONTOLOGY BASED DATA ACCESS
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
Logical Detection of Invalid SameAs Statements in RDF Data
Database-to-Ontology Mapping Generation for Semantic Interoperability
Next Top Data Model by Ian Plosker
DBMS 11 | Design Theory [Normalization 1]
Cassandra Data Modelling with CQL (OSCON 2015)
Fusing semantic data
A N E XTENSION OF P ROTÉGÉ FOR AN AUTOMA TIC F UZZY - O NTOLOGY BUILDING U...
Ontology-based multi-domain metadata for research data management using tripl...
Intro to OWL & Ontology

More from Raji Ghawi (10)

PPTX
Database Programming Techniques
PPTX
Java and XML Schema
PPTX
Java and XML
PPTX
Java and SPARQL
PPTX
Java and OWL
PPTX
SPARQL
PPTX
XQuery
PPTX
XPath
PPT
OWSCIS: Ontology and Web Service based Cooperation of Information Sources
PPT
Coopération des Systèmes d'Informations basée sur les Ontologies
Database Programming Techniques
Java and XML Schema
Java and XML
Java and SPARQL
Java and OWL
SPARQL
XQuery
XPath
OWSCIS: Ontology and Web Service based Cooperation of Information Sources
Coopération des Systèmes d'Informations basée sur les Ontologies

Recently uploaded (20)

PDF
Be ready for tomorrow’s needs with a longer-lasting, higher-performing PC
PDF
Secure Java Applications against Quantum Threats
PDF
Revolutionizing recommendations a survey: a comprehensive exploration of mode...
PDF
TicketRoot: Event Tech Solutions Deck 2025
PDF
State of AI in Business 2025 - MIT NANDA
PDF
Examining Bias in AI Generated News Content.pdf
PPTX
Information-Technology-in-Human-Society (2).pptx
PDF
substrate PowerPoint Presentation basic one
PDF
NewMind AI Journal Monthly Chronicles - August 2025
PPTX
Slides World Game (s) Great Redesign Eco Economic Epochs.pptx
PDF
CCUS-as-the-Missing-Link-to-Net-Zero_AksCurious.pdf
PDF
Child-friendly e-learning for artificial intelligence education in Indonesia:...
PPTX
AQUEEL MUSHTAQUE FAKIH COMPUTER CENTER .
PDF
GDG Cloud Southlake #45: Patrick Debois: The Impact of GenAI on Development a...
PDF
Slides World Game (s) Great Redesign Eco Economic Epochs.pdf
PPTX
From XAI to XEE through Influence and Provenance.Controlling model fairness o...
PDF
Addressing the challenges of harmonizing law and artificial intelligence tech...
PDF
Advancements in abstractive text summarization: a deep learning approach
PPTX
Rise of the Digital Control Grid Zeee Media and Hope and Tivon FTWProject.com
PDF
Decision Optimization - From Theory to Practice
Be ready for tomorrow’s needs with a longer-lasting, higher-performing PC
Secure Java Applications against Quantum Threats
Revolutionizing recommendations a survey: a comprehensive exploration of mode...
TicketRoot: Event Tech Solutions Deck 2025
State of AI in Business 2025 - MIT NANDA
Examining Bias in AI Generated News Content.pdf
Information-Technology-in-Human-Society (2).pptx
substrate PowerPoint Presentation basic one
NewMind AI Journal Monthly Chronicles - August 2025
Slides World Game (s) Great Redesign Eco Economic Epochs.pptx
CCUS-as-the-Missing-Link-to-Net-Zero_AksCurious.pdf
Child-friendly e-learning for artificial intelligence education in Indonesia:...
AQUEEL MUSHTAQUE FAKIH COMPUTER CENTER .
GDG Cloud Southlake #45: Patrick Debois: The Impact of GenAI on Development a...
Slides World Game (s) Great Redesign Eco Economic Epochs.pdf
From XAI to XEE through Influence and Provenance.Controlling model fairness o...
Addressing the challenges of harmonizing law and artificial intelligence tech...
Advancements in abstractive text summarization: a deep learning approach
Rise of the Digital Control Grid Zeee Media and Hope and Tivon FTWProject.com
Decision Optimization - From Theory to Practice

Building Ontologies from Multiple Information Sources

  • 1. Building Ontologies from Multiple Information Sources Raji Ghawi and Nadine Cullot Laboratoire Électronique, Informatique et Image University of Burgundy, Dijon, France Information Technologies (IT2009), Kaunas, Lithuania 23 – 24 April 2009
  • 2. Introduction Information Integration Semantic Heterogeneity Ontologies Content Explanation Query Formulation Building Ontologies ?
  • 3. Building Ontologies Building Ontologies from Scratch from Existing Sources Costly and difficult
  • 4. Building Ontologies Building Ontologies from Scratch from Existing Sources Costly and difficult from Single Information Source from Multiple Information Sources ? P
  • 5. Building Ontologies from Multiple Information Sources Possible Solutions creating local ontologies merging local ontologies merging source schemas building ontology from unified schema Ontology-Merging-based Approach Schema-Merging-based Approach
  • 6. Our Proposition Ontology-Evolution-based Approach creating initial ontology involving local sources Ontology Evolution
  • 7. Evolution Step New Information Source Ontology Initial correspondences Mapping Bridges Automatic Treatement Rules Ontology Change Operations Mapping Document Ontology Modification Mapping Doc 2 Mapping Doc 1 Mapping Doc n Updating Previous Mappings Expert
  • 8. Ontology Change Operations (Atomic) dp1 dp2 dp1 A B C A B Add_Concept A A Add_DatatypeProperty B C B Add_ObjectProperty C op B Set_SubConceptOf C B C is_a Set_SubPropertyOf op1 Set_InverseOf op2 op1 op2 op1 op2 B C op1 op2 B C dp1 dp2 dp1 A A Remove_Property
  • 9. Ontology Change Operations (Complex) dp dp1 dp2 dp A B Convert_Property A A Split_Property A B op dp1 dp2 dp A dp1 dp2 A Add_DatatypeProperty Remove_Property dp A B op A B op Remove_Property Add_ObjectProperty
  • 10. Ontology Evolution by Involving a Database Evolving Ontology Concepts Using Database Tables Evolving Ontology Properties Using Columns
  • 11. Evolving Ontology Concepts Using Database Tables C nothing happens case 1 A concept C has no corresponding table
  • 12. Evolving Ontology Concepts Using Database Tables C conceptBridge(C, T) C case 2 one concept C corresponds to exactly one table T T T
  • 13. Evolving Ontology Concepts Using Database Tables case 3 A table T has no corresponding concept T Case 3.1. Case 3.2. Case 3.3. … PK1 T1 PFK2 PFK1 T … PK2 T2 … PK1 T1 … PFK1 T … … T
  • 14. Evolving Ontology Concepts Using Database Tables C conceptBridge(C, T) Add_Concept(C) case 3 A table T has no corresponding concept case 3.3 default case T T
  • 15. Evolving Ontology Concepts Using Database Tables case 3 A table T has no corresponding concept case 3.2 T is related to T1 using a FK which is a PK D conceptBridge(D, T1) Add_Concept(C) Set_SubConceptOf (C, D) D C conceptBridge(C, T) pfk1 T pk1 T1 pfk1 T pk1 T1
  • 16. Evolving Ontology Concepts Using Database Tables case 3 A table T has no corresponding concept case 3.1 T is used to relate T1 and T2 in many-to-many relationship D1 D2 D1 D2 op1 op2 cb1 = conceptBridge(D1, T1) cb2 = conceptBridge(D2, T2) Add_ObjectProperty(op1, D1, D2) Add_ObjectProperty(op2, D2, D1) Set_InverseOf(op1, op2) OPB(op1, cb1, cb2, join:T.pfk1=T1.pk1 AND T.pfk2=T2.pk2) OPB(op2, cb2, cb1, join:T.pfk1=T1.pk1 AND T.pfk2=T2.pk2) pfk2 pfk1 T pk2 T2 pk1 T1 pfk2 pfk1 T pk2 T2 pk1 T1
  • 17. Evolving Ontology Concepts Using Database Tables case 4 one concept C corresponds to several tables T1, T2, …, Tm C … C1 C2 Cm cb1 = conceptBridge(C1, T1) cb2 = conceptBridge(C2, T2) ... cbm = conceptBridge(Cm, Tm) … T1 T2 Tm
  • 18. Evolving Ontology Concepts Using Database Tables case 4 one concept C corresponds to several tables T1, T2, …, Tm case 4.1 one concept C corresponds to the union of T1, T2, …, Tm C … C1 C2 Cm C … C1 C2 Cm cb1 = conceptBridge(C1, T1) cb2 = conceptBridge(C2, T2) ... cbm = conceptBridge(Cm, Tm) Set_SubConceptOf(C1, C) Set_SubConceptOf(C2, C) ... Set_SubConceptOf(Cm, C) move common properties to the super-concept C … … T1 T2 Tm T1 T2 Tm
  • 19. Evolving Ontology Concepts Using Database Tables case 4 one concept C corresponds to several tables T1, T2, …, Tm case 4.2 one concept C corresponds to the join of T1, T2, …, Tm C … C1 C2 Cm C … C1 C2 Cm cb1 = conceptBridge(C1, T1) cb2 = conceptBridge(C2, T2) ... cbm = conceptBridge(Cm, Tm) Set_SubConceptOf(C, C1) Set_SubConceptOf(C, C2) ... Set_SubConceptOf(C, Cm) … … T1 T2 Tm T1 T2 Tm
  • 20. Evolving Ontology Concepts Using Database Tables case 5 one table T corresponds to several concepts C1, C2, …, Cn C2 C1 Cn C2 C1 Cn C conceptBridge(C, T) Add_Concept(C) Set_SubConceptOf(C1, C) Set_SubConceptOf(C2, C) Set_SubConceptOf(Cn, C) … … T T
  • 21. Evolving Ontology Concepts Using Database Tables case 6 several concepts C1, C2, …, Cn correspond to several tables T1, T2, …, Tm C2 C1 Cn … … T1 T2 Tm
  • 22. Evolving Ontology Properties Using Columns Category 1. Correspondences between C properties and T columns. Category 2. Correspondences between C properties and columns in other tables. Category 3. Correspondences between T columns and properties of other concepts. C D 1 2 3 conceptBridge(C, T) T U
  • 23. Evolving Ontology Properties Using Columns case 1 A (datatype or object) property has no corresponding column nothing happens cb = conceptBridge(C, T) dp C op T
  • 24. Evolving Ontology Properties Using Columns case 2 A column col has no corresponding property cb = conceptBridge(C, T) C col T
  • 25. Evolving Ontology Properties Using Columns case 2 A column col has no corresponding property cb = conceptBridge(C, T) C case 2.1 col is not a foreign key dp DPB(dp, cb, col) C Add_DatatypeProperty(dp, C -> type) col T col T
  • 26. Evolving Ontology Properties Using Columns case 2 A column col has no corresponding property cb = conceptBridge(C, T) cb1 = conceptBridge(D, RT) C case 2.2 col is a foreign key fk referring to a column rc in another table RT D C D op OPB(op, cb, cb1, join: T.fk = RT.rc ) Add_ObjectProperty(op, C -> D) fk T rc RT fk T rc RT
  • 27. Evolving Ontology Properties Using Columns dp case 3 A datatype property dp corresponds directly to one column col cb = conceptBridge(C, T) C dp DPB(dp, cb, col) C col T col T
  • 28. Evolving Ontology Properties Using Columns case 4 An object property op corresponds directly to a foreign key fk cb = conceptBridge(C, T) C D op fk T rc RT
  • 29. Evolving Ontology Properties Using Columns case 4 An object property op corresponds directly to a foreign key fk C D op RT is mapped to the concept D case 4.1 C D op cb = conceptBridge(C, T) cb1 = conceptBridge(D, RT) OPB(op, cb, cb1, join: T.fk = RT.rc ) fk T rc RT fk T rc RT
  • 30. Evolving Ontology Properties Using Columns case 4 An object property op corresponds directly to a foreign key fk C D op RT is mapped to a concept F different from D case 4.2 C D op cb = conceptBridge(C, T) cb1 = conceptBridge(F, RT) F  D Set_SubConceptOf(F, D) Add_ObjectProperty(op’, C -> F) Set_SubPropertyOf(op’, op) F F op' OPB(op’, cb, cb1, join: T.fk = RT.rc )  fk T rc RT fk T rc RT
  • 31. Evolving Ontology Properties Using Columns dp case 5 A datatype property dp corresponds to a transformation of one column col cb = conceptBridge(C, T) C dp DPB(dp, cb, Trans(col)) C Trans Trans col T col T
  • 32. Evolving Ontology Properties Using Columns dp case 6 cb = conceptBridge(C, T) C Trans A datatype property dp corresponds to a transformation/combination of multiple columns col1 , col2 , …, colm col2 col1 T
  • 33. Evolving Ontology Properties Using Columns dp case 6 cb = conceptBridge(C, T) C dp DPB(dp, cb, Trans(col1, col2)) C Trans Trans A datatype property dp corresponds to a transformation/combination of multiple columns col1 , col2 , …, colm First solution col2 col1 T col2 col1 T
  • 34. Evolving Ontology Properties Using Columns dp case 6 cb = conceptBridge(C, T) C Trans A datatype property dp corresponds to a transformation/combination of multiple columns col1 , col2 , …, colm Second solution DPB(dp1, cb, col1) DPB(dp2, cb, col2) Split_Property(dp AS dp1 = Trans1(dp), dp2 = Trans2(dp)) col2 col1 T col2 col1 T dp1 C dp2
  • 35. Evolving Ontology Properties Using Columns dp1 case 7 cb = conceptBridge(C, T) C A column col corresponds to a combination/transformation of multiple datatype properties dp1 , dp2 , …, dpn DPB(dp1, cb, Trans1(col)) DPB(dp2, cb, Trans2(col)) dp2 Trans col T col T dp1 C dp2 Trans1 Trans2
  • 36. Conclusions & Future Works Ontology-Evolution based Approach Semi-Automatic Process Non-exhaustive list of correspondence cases Conditional Mappings Implementation