SlideShare a Scribd company logo
William Stallings
Computer Organization
and Architecture
8th Edition
Chapter 4
Cache Memory
Characteristics
• Location
• Capacity
• Unit of transfer
• Access method
• Performance
• Physical type
• Physical characteristics
• Organisation
Location
• CPU
• Internal
• External
Capacity
• Word size
—The natural unit of organisation
• Number of words
—or Bytes
Unit of Transfer
• Internal
—Usually governed by data bus width
• External
—Usually a block which is much larger than a
word
• Addressable unit
—Smallest location which can be uniquely
addressed
—Word internally
—Cluster on M$ disks
Access Methods (1)
• Sequential
—Start at the beginning and read through in
order
—Access time depends on location of data and
previous location
—e.g. tape
• Direct
—Individual blocks have unique address
—Access is by jumping to vicinity plus sequential
search
—Access time depends on location and previous
location
—e.g. disk
Access Methods (2)
• Random
—Individual addresses identify locations exactly
—Access time is independent of location or
previous access
—e.g. RAM
• Associative
—Data is located by a comparison with contents
of a portion of the store
—Access time is independent of location or
previous access
—e.g. cache
Memory Hierarchy
• Registers
—In CPU
• Internal or Main memory
—May include one or more levels of cache
—“RAM”
• External memory
—Backing store
Memory Hierarchy - Diagram
Performance
• Access time
—Time between presenting the address and
getting the valid data
• Memory Cycle time
—Time may be required for the memory to
“recover” before next access
—Cycle time is access + recovery
• Transfer Rate
—Rate at which data can be moved
Physical Types
• Semiconductor
—RAM
• Magnetic
—Disk & Tape
• Optical
—CD & DVD
• Others
—Bubble
—Hologram
Physical Characteristics
• Decay
• Volatility
• Erasable
• Power consumption
Organisation
• Physical arrangement of bits into words
• Not always obvious
• e.g. interleaved
The Bottom Line
• How much?
—Capacity
• How fast?
—Time is money
• How expensive?
Hierarchy List
• Registers
• L1 Cache
• L2 Cache
• Main memory
• Disk cache
• Disk
• Optical
• Tape
So you want fast?
• It is possible to build a computer which
uses only static RAM (see later)
• This would be very fast
• This would need no cache
—How can you cache cache?
• This would cost a very large amount
Locality of Reference
• During the course of the execution of a
program, memory references tend to
cluster
• e.g. loops
Cache
• Small amount of fast memory
• Sits between normal main memory and
CPU
• May be located on CPU chip or module
Cache and Main Memory
Cache/Main Memory Structure
Cache operation – overview
• CPU requests contents of memory location
• Check cache for this data
• If present, get from cache (fast)
• If not present, read required block from
main memory to cache
• Then deliver from cache to CPU
• Cache includes tags to identify which
block of main memory is in each cache
slot
Cache Read Operation - Flowchart
Cache Design
• Addressing
• Size
• Mapping Function
• Replacement Algorithm
• Write Policy
• Block Size
• Number of Caches
Cache Addressing
• Where does cache sit?
—Between processor and virtual memory management
unit
—Between MMU and main memory
• Logical cache (virtual cache) stores data using
virtual addresses
—Processor accesses cache directly, not thorough physical
cache
—Cache access faster, before MMU address translation
—Virtual addresses use same address space for different
applications
– Must flush cache on each context switch
• Physical cache stores data using main memory
physical addresses
Size does matter
• Cost
—More cache is expensive
• Speed
—More cache is faster (up to a point)
—Checking cache for data takes time
Typical Cache Organization
Comparison of Cache Sizes
Processor Type
Year of
Introduction
L1 cache L2 cache L3 cache
IBM 360/85 Mainframe 1968 16 to 32 KB — —
PDP-11/70 Minicomputer 1975 1 KB — —
VAX 11/780 Minicomputer 1978 16 KB — —
IBM 3033 Mainframe 1978 64 KB — —
IBM 3090 Mainframe 1985 128 to 256 KB — —
Intel 80486 PC 1989 8 KB — —
Pentium PC 1993 8 KB/8 KB 256 to 512 KB —
PowerPC 601 PC 1993 32 KB — —
PowerPC 620 PC 1996 32 KB/32 KB — —
PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB
IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB
IBM S/390 G6 Mainframe 1999 256 KB 8 MB —
Pentium 4 PC/server 2000 8 KB/8 KB 256 KB —
IBM SP
High-end server/
supercomputer
2000 64 KB/32 KB 8 MB —
CRAY MTAb Supercomputer 2000 8 KB 2 MB —
Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB
SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB —
Itanium 2 PC/server 2002 32 KB 256 KB 6 MB
IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB
CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB —
Mapping Function
• Cache of 64kByte
• Cache block of 4 bytes
—i.e. cache is 16k (214
) lines of 4 bytes
• 16MBytes main memory
• 24 bit address
—(224
=16M)
Direct Mapping
• Each block of main memory maps to only
one cache line
—i.e. if a block is in cache, it must be in one
specific place
• Address is in two parts
• Least Significant w bits identify unique
word
• Most Significant s bits specify one memory
block
• The MSBs are split into a cache line field r
and a tag of s-r (most significant)
Direct Mapping
Address Structure
Tag s-r Line or Slot r Word w
8 14 2
• 24 bit address
• 2 bit word identifier (4 byte block)
• 22 bit block identifier
— 8 bit tag (=22-14)
— 14 bit slot or line
• No two blocks in the same line have the same Tag field
• Check contents of cache by finding line and checking Tag
Direct Mapping from Cache to Main Memory
Direct Mapping
Cache Line Table
Cache line Main Memory blocks held
0 0, m, 2m, 3m…2s-m
1 1,m+1, 2m+1…2s-m+1
…
m-1 m-1, 2m-1,3m-1…2s-1
Direct Mapping Cache Organization
Direct
Mapping
Example
Direct Mapping Summary
• Address length = (s + w) bits
• Number of addressable units = 2s+w
words or bytes
• Block size = line size = 2w words or bytes
• Number of blocks in main memory = 2s+
w/2w = 2s
• Number of lines in cache = m = 2r
• Size of tag = (s – r) bits
Direct Mapping pros & cons
• Simple
• Inexpensive
• Fixed location for given block
—If a program accesses 2 blocks that map to
the same line repeatedly, cache misses are
very high
Victim Cache
• Lower miss penalty
• Remember what was discarded
—Already fetched
—Use again with little penalty
• Fully associative
• 4 to 16 cache lines
• Between direct mapped L1 cache and next
memory level
Associative Mapping
• A main memory block can load into any
line of cache
• Memory address is interpreted as tag and
word
• Tag uniquely identifies block of memory
• Every line’s tag is examined for a match
• Cache searching gets expensive
Associative Mapping from
Cache to Main Memory
Fully Associative Cache Organization
Associative
Mapping
Example
Tag 22 bit
Word
2 bit
Associative Mapping
Address Structure
• 22 bit tag stored with each 32 bit block of data
• Compare tag field with tag entry in cache to
check for hit
• Least significant 2 bits of address identify which
16 bit word is required from 32 bit data block
• e.g.
—Address Tag Data Cache line
—FFFFFC FFFFFC24682468 3FFF
Associative Mapping Summary
• Address length = (s + w) bits
• Number of addressable units = 2s+w
words or bytes
• Block size = line size = 2w words or bytes
• Number of blocks in main memory = 2s+
w/2w = 2s
• Number of lines in cache = undetermined
• Size of tag = s bits
Set Associative Mapping
• Cache is divided into a number of sets
• Each set contains a number of lines
• A given block maps to any line in a given
set
—e.g. Block B can be in any line of set i
• e.g. 2 lines per set
—2 way associative mapping
—A given block can be in one of 2 lines in only
one set
Set Associative Mapping
Example
• 13 bit set number
• Block number in main memory is modulo
213
• 000000, 00A000, 00B000, 00C000 … map
to same set
Mapping From Main Memory to Cache:
v Associative
Mapping From Main Memory to Cache:
k-way Associative
K-Way Set Associative Cache
Organization
Set Associative Mapping
Address Structure
• Use set field to determine cache set to
look in
• Compare tag field to see if we have a hit
• e.g
—Address Tag Data Set
number
—1FF 7FFC 1FF 12345678 1FFF
—001 7FFC 001 11223344 1FFF
Tag 9 bit Set 13 bit
Word
2 bit
Two Way Set Associative Mapping
Example
Set Associative Mapping Summary
• Address length = (s + w) bits
• Number of addressable units = 2s+w
words or bytes
• Block size = line size = 2w words or bytes
• Number of blocks in main memory = 2d
• Number of lines in set = k
• Number of sets = v = 2d
• Number of lines in cache = kv = k * 2d
• Size of tag = (s – d) bits
Direct and Set Associative Cache
Performance Differences
• Significant up to at least 64kB for 2-way
• Difference between 2-way and 4-way at
4kB much less than 4kB to 8kB
• Cache complexity increases with
associativity
• Not justified against increasing cache to
8kB or 16kB
• Above 32kB gives no improvement
• (simulation results)
Figure 4.16
Varying Associativity over Cache Size
Replacement Algorithms (1)
Direct mapping
• No choice
• Each block only maps to one line
• Replace that line
Replacement Algorithms (2)
Associative & Set Associative
• Hardware implemented algorithm (speed)
• Least Recently used (LRU)
• e.g. in 2 way set associative
—Which of the 2 block is lru?
• First in first out (FIFO)
—replace block that has been in cache longest
• Least frequently used
—replace block which has had fewest hits
• Random
Write Policy
• Must not overwrite a cache block unless
main memory is up to date
• Multiple CPUs may have individual caches
• I/O may address main memory directly
Write through
• All writes go to main memory as well as
cache
• Multiple CPUs can monitor main memory
traffic to keep local (to CPU) cache up to
date
• Lots of traffic
• Slows down writes
• Remember bogus write through caches!
Write back
• Updates initially made in cache only
• Update bit for cache slot is set when
update occurs
• If block is to be replaced, write to main
memory only if update bit is set
• Other caches get out of sync
• I/O must access main memory through
cache
• N.B. 15% of memory references are
writes
Line Size
• Retrieve not only desired word but a number of
adjacent words as well
• Increased block size will increase hit ratio at first
—the principle of locality
• Hit ratio will decreases as block becomes even
bigger
—Probability of using newly fetched information becomes
less than probability of reusing replaced
• Larger blocks
—Reduce number of blocks that fit in cache
—Data overwritten shortly after being fetched
—Each additional word is less local so less likely to be
needed
• No definitive optimum value has been found
• 8 to 64 bytes seems reasonable
• For HPC systems, 64- and 128-byte most
common
Multilevel Caches
• High logic density enables caches on chip
—Faster than bus access
—Frees bus for other transfers
• Common to use both on and off chip
cache
—L1 on chip, L2 off chip in static RAM
—L2 access much faster than DRAM or ROM
—L2 often uses separate data path
—L2 may now be on chip
—Resulting in L3 cache
– Bus access or now on chip…
Hit Ratio (L1 & L2)
For 8 kbytes and 16 kbyte L1
Unified v Split Caches
• One cache for data and instructions or
two, one for data and one for instructions
• Advantages of unified cache
—Higher hit rate
– Balances load of instruction and data fetch
– Only one cache to design & implement
• Advantages of split cache
—Eliminates cache contention between
instruction fetch/decode unit and execution
unit
– Important in pipelining
Pentium 4 Cache
• 80386 – no on chip cache
• 80486 – 8k using 16 byte lines and four way set
associative organization
• Pentium (all versions) – two on chip L1 caches
—Data & instructions
• Pentium III – L3 cache added off chip
• Pentium 4
—L1 caches
– 8k bytes
– 64 byte lines
– four way set associative
—L2 cache
– Feeding both L1 caches
– 256k
– 128 byte lines
– 8 way set associative
—L3 cache on chip
Intel Cache Evolution
Problem Solution
Processor on which feature
first appears
External memory slower than the system bus.
Add external cache using faster
memory technology.
386
Increased processor speed results in external bus becoming a
bottleneck for cache access.
Move external cache on-chip,
operating at the same speed as the
processor.
486
Internal cache is rather small, due to limited space on chip
Add external L2 cache using faster
technology than main memory
486
Contention occurs when both the Instruction Prefetcher and
the Execution Unit simultaneously require access to the
cache. In that case, the Prefetcher is stalled while the
Execution Unit’s data access takes place.
Create separate data and instruction
caches.
Pentium
Increased processor speed results in external bus becoming a
bottleneck for L2 cache access.
Create separate back-side bus that
runs at higher speed than the main
(front-side) external bus. The BSB is
dedicated to the L2 cache.
Pentium Pro
Move L2 cache on to the processor
chip.
Pentium II
Some applications deal with massive databases and must
have rapid access to large amounts of data. The on-chip
caches are too small.
Add external L3 cache. Pentium III
Move L3 cache on-chip. Pentium 4
Pentium 4 Block Diagram
Pentium 4 Core Processor
• Fetch/Decode Unit
—Fetches instructions from L2 cache
—Decode into micro-ops
—Store micro-ops in L1 cache
• Out of order execution logic
—Schedules micro-ops
—Based on data dependence and resources
—May speculatively execute
• Execution units
—Execute micro-ops
—Data from L1 cache
—Results in registers
• Memory subsystem
—L2 cache and systems bus
Pentium 4 Design Reasoning
• Decodes instructions into RISC like micro-ops before L1
cache
• Micro-ops fixed length
— Superscalar pipelining and scheduling
• Pentium instructions long & complex
• Performance improved by separating decoding from
scheduling & pipelining
— (More later – ch14)
• Data cache is write back
— Can be configured to write through
• L1 cache controlled by 2 bits in register
— CD = cache disable
— NW = not write through
— 2 instructions to invalidate (flush) cache and write back then
invalidate
• L2 and L3 8-way set-associative
— Line size 128 bytes
ARM Cache Features
Core Cache
Type
Cache Size (kB) Cache Line Size
(words)
Associativity Location Write Buffer
Size (words)
ARM720T Unified 8 4 4-way Logical 8
ARM920T Split 16/16 D/I 8 64-way Logical 16
ARM926EJ-S Split 4-128/4-128 D/I 8 4-way Logical 16
ARM1022E Split 16/16 D/I 8 64-way Logical 16
ARM1026EJ-S Split 4-128/4-128 D/I 8 4-way Logical 8
Intel StrongARM Split 16/16 D/I 4 32-way Logical 32
Intel Xscale Split 32/32 D/I 8 32-way Logical 32
ARM1136-JF-S Split 4-64/4-64 D/I 8 4-way Physical 32
ARM Cache Organization
• Small FIFO write buffer
—Enhances memory write performance
—Between cache and main memory
—Small c.f. cache
—Data put in write buffer at processor clock
speed
—Processor continues execution
—External write in parallel until empty
—If buffer full, processor stalls
—Data in write buffer not available until written
– So keep buffer small
ARM Cache and Write Buffer Organization
Internet Sources
• Manufacturer sites
—Intel
—ARM
• Search on cache

More Related Content

What's hot (20)

PPTX
8086 addressing modes
HarshitParkar6677
 
PPTX
Memory interface
Dr. Girish GS
 
PDF
ARM architcture
Hossam Adel
 
PPTX
Architecture of 80286 microprocessor
Syed Ahmed Zaki
 
PPT
Atm traffic management geekssay.com
Hemant Gautam
 
PPTX
EE5440 – Computer Architecture - Lecture 2
Dilawar Khan
 
PPTX
8251 USART
ShivamSood22
 
PPT
Interface
Siddique Ibrahim
 
PPTX
Pipeline processing - Computer Architecture
S. Hasnain Raza
 
PPTX
Organisation of cache memory
KomalBhat6
 
PPT
multiprocessors and multicomputers
Pankaj Kumar Jain
 
PPT
Computer architecture pipelining
Mazin Alwaaly
 
PPTX
Status register
Pradeep Kumar TS
 
PDF
Basics of Mpeg 4 Video Compression
Marius Preda PhD
 
PDF
Memory interfacing of microcontroller 8051
Nilesh Bhaskarrao Bahadure
 
PPTX
Memory organization (Computer architecture)
Sandesh Jonchhe
 
PPTX
User and operating system interface.pptx
MSivani
 
DOCX
8085 interfacing with memory chips
Srikrishna Thota
 
PPTX
DMA and DMA controller
nishant upadhyay
 
PPTX
Concurrency
rizwanaabassi
 
8086 addressing modes
HarshitParkar6677
 
Memory interface
Dr. Girish GS
 
ARM architcture
Hossam Adel
 
Architecture of 80286 microprocessor
Syed Ahmed Zaki
 
Atm traffic management geekssay.com
Hemant Gautam
 
EE5440 – Computer Architecture - Lecture 2
Dilawar Khan
 
8251 USART
ShivamSood22
 
Interface
Siddique Ibrahim
 
Pipeline processing - Computer Architecture
S. Hasnain Raza
 
Organisation of cache memory
KomalBhat6
 
multiprocessors and multicomputers
Pankaj Kumar Jain
 
Computer architecture pipelining
Mazin Alwaaly
 
Status register
Pradeep Kumar TS
 
Basics of Mpeg 4 Video Compression
Marius Preda PhD
 
Memory interfacing of microcontroller 8051
Nilesh Bhaskarrao Bahadure
 
Memory organization (Computer architecture)
Sandesh Jonchhe
 
User and operating system interface.pptx
MSivani
 
8085 interfacing with memory chips
Srikrishna Thota
 
DMA and DMA controller
nishant upadhyay
 
Concurrency
rizwanaabassi
 

Similar to 04 cache memory (20)

PPT
04 cache memory.ppt 1
Anwal Mirza
 
PPT
04_Cache Memory.ppt
BanglaTutorial
 
PPT
Cache Memory.ppt
AmarDura2
 
PPT
04_Cache Memory.ppt
BanglaTutorial
 
PPT
04_Cache Memory-computer-architecture.ppt
ssuser39f59e
 
PPT
04_Cache_Memory_William _Stallings_COA.ppt
maheeeesharma
 
PPT
Detailed representation of Cache Memory.
ananya195642
 
PPT
total cache memory is here.please read this for better knowledge
JoysreeNandy
 
PDF
unit 4.faosdfjasl;dfkjas lskadfj asdlfk jasdf;laksjdf ;laskdjf a;slkdjf
impro1837
 
PDF
Chache memory ( chapter number 4 ) by William stalling
ZainabShahzad9
 
PPT
04 cache memory
dilip kumar
 
PPT
cache memory
Widyan Sastro
 
PPT
cache memory introduction, level, function
TeddyIswahyudi1
 
PPT
Cache Memory for Computer Architecture.ppt
rularofclash69
 
PPT
04_Cache_Memory-cust memori memori memori.ppt
TeddyIswahyudi1
 
PPT
Ch_4.pptInnovation technology pptInnovation technology ppt
sultanahimed3
 
PPT
Cache Memory from Computer Architecture.ppt
ArifatunNesa
 
PPT
04 Cache Memory
Jeanie Delos Arcos
 
PPT
Cache memory by Foysal
Foysal Mahmud
 
04 cache memory.ppt 1
Anwal Mirza
 
04_Cache Memory.ppt
BanglaTutorial
 
Cache Memory.ppt
AmarDura2
 
04_Cache Memory.ppt
BanglaTutorial
 
04_Cache Memory-computer-architecture.ppt
ssuser39f59e
 
04_Cache_Memory_William _Stallings_COA.ppt
maheeeesharma
 
Detailed representation of Cache Memory.
ananya195642
 
total cache memory is here.please read this for better knowledge
JoysreeNandy
 
unit 4.faosdfjasl;dfkjas lskadfj asdlfk jasdf;laksjdf ;laskdjf a;slkdjf
impro1837
 
Chache memory ( chapter number 4 ) by William stalling
ZainabShahzad9
 
04 cache memory
dilip kumar
 
cache memory
Widyan Sastro
 
cache memory introduction, level, function
TeddyIswahyudi1
 
Cache Memory for Computer Architecture.ppt
rularofclash69
 
04_Cache_Memory-cust memori memori memori.ppt
TeddyIswahyudi1
 
Ch_4.pptInnovation technology pptInnovation technology ppt
sultanahimed3
 
Cache Memory from Computer Architecture.ppt
ArifatunNesa
 
04 Cache Memory
Jeanie Delos Arcos
 
Cache memory by Foysal
Foysal Mahmud
 
Ad

Recently uploaded (20)

PPTX
Pyhton with Mysql to perform CRUD operations.pptx
Ramakrishna Reddy Bijjam
 
PDF
CHILD RIGHTS AND PROTECTION QUESTION BANK
Dr Raja Mohammed T
 
PPTX
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
PPTX
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
PPTX
How to Manage Promotions in Odoo 18 Sales
Celine George
 
PPTX
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PDF
People & Earth's Ecosystem -Lesson 2: People & Population
marvinnbustamante1
 
PPSX
Health Planning in india - Unit 03 - CHN 2 - GNM 3RD YEAR.ppsx
Priyanshu Anand
 
PPTX
PPT on the Development of Education in the Victorian England
Beena E S
 
PPTX
How to Manage Access Rights & User Types in Odoo 18
Celine George
 
PPTX
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PPTX
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
PPTX
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
PDF
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
PPTX
How to Configure Prepayments in Odoo 18 Sales
Celine George
 
PPTX
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
PPSX
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
Pyhton with Mysql to perform CRUD operations.pptx
Ramakrishna Reddy Bijjam
 
CHILD RIGHTS AND PROTECTION QUESTION BANK
Dr Raja Mohammed T
 
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
How to Manage Promotions in Odoo 18 Sales
Celine George
 
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
People & Earth's Ecosystem -Lesson 2: People & Population
marvinnbustamante1
 
Health Planning in india - Unit 03 - CHN 2 - GNM 3RD YEAR.ppsx
Priyanshu Anand
 
PPT on the Development of Education in the Victorian England
Beena E S
 
How to Manage Access Rights & User Types in Odoo 18
Celine George
 
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
Dimensions of Societal Planning in Commonism
StefanMz
 
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
How to Configure Prepayments in Odoo 18 Sales
Celine George
 
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
Ad

04 cache memory

  • 1. William Stallings Computer Organization and Architecture 8th Edition Chapter 4 Cache Memory
  • 2. Characteristics • Location • Capacity • Unit of transfer • Access method • Performance • Physical type • Physical characteristics • Organisation
  • 4. Capacity • Word size —The natural unit of organisation • Number of words —or Bytes
  • 5. Unit of Transfer • Internal —Usually governed by data bus width • External —Usually a block which is much larger than a word • Addressable unit —Smallest location which can be uniquely addressed —Word internally —Cluster on M$ disks
  • 6. Access Methods (1) • Sequential —Start at the beginning and read through in order —Access time depends on location of data and previous location —e.g. tape • Direct —Individual blocks have unique address —Access is by jumping to vicinity plus sequential search —Access time depends on location and previous location —e.g. disk
  • 7. Access Methods (2) • Random —Individual addresses identify locations exactly —Access time is independent of location or previous access —e.g. RAM • Associative —Data is located by a comparison with contents of a portion of the store —Access time is independent of location or previous access —e.g. cache
  • 8. Memory Hierarchy • Registers —In CPU • Internal or Main memory —May include one or more levels of cache —“RAM” • External memory —Backing store
  • 10. Performance • Access time —Time between presenting the address and getting the valid data • Memory Cycle time —Time may be required for the memory to “recover” before next access —Cycle time is access + recovery • Transfer Rate —Rate at which data can be moved
  • 11. Physical Types • Semiconductor —RAM • Magnetic —Disk & Tape • Optical —CD & DVD • Others —Bubble —Hologram
  • 12. Physical Characteristics • Decay • Volatility • Erasable • Power consumption
  • 13. Organisation • Physical arrangement of bits into words • Not always obvious • e.g. interleaved
  • 14. The Bottom Line • How much? —Capacity • How fast? —Time is money • How expensive?
  • 15. Hierarchy List • Registers • L1 Cache • L2 Cache • Main memory • Disk cache • Disk • Optical • Tape
  • 16. So you want fast? • It is possible to build a computer which uses only static RAM (see later) • This would be very fast • This would need no cache —How can you cache cache? • This would cost a very large amount
  • 17. Locality of Reference • During the course of the execution of a program, memory references tend to cluster • e.g. loops
  • 18. Cache • Small amount of fast memory • Sits between normal main memory and CPU • May be located on CPU chip or module
  • 19. Cache and Main Memory
  • 21. Cache operation – overview • CPU requests contents of memory location • Check cache for this data • If present, get from cache (fast) • If not present, read required block from main memory to cache • Then deliver from cache to CPU • Cache includes tags to identify which block of main memory is in each cache slot
  • 22. Cache Read Operation - Flowchart
  • 23. Cache Design • Addressing • Size • Mapping Function • Replacement Algorithm • Write Policy • Block Size • Number of Caches
  • 24. Cache Addressing • Where does cache sit? —Between processor and virtual memory management unit —Between MMU and main memory • Logical cache (virtual cache) stores data using virtual addresses —Processor accesses cache directly, not thorough physical cache —Cache access faster, before MMU address translation —Virtual addresses use same address space for different applications – Must flush cache on each context switch • Physical cache stores data using main memory physical addresses
  • 25. Size does matter • Cost —More cache is expensive • Speed —More cache is faster (up to a point) —Checking cache for data takes time
  • 27. Comparison of Cache Sizes Processor Type Year of Introduction L1 cache L2 cache L3 cache IBM 360/85 Mainframe 1968 16 to 32 KB — — PDP-11/70 Minicomputer 1975 1 KB — — VAX 11/780 Minicomputer 1978 16 KB — — IBM 3033 Mainframe 1978 64 KB — — IBM 3090 Mainframe 1985 128 to 256 KB — — Intel 80486 PC 1989 8 KB — — Pentium PC 1993 8 KB/8 KB 256 to 512 KB — PowerPC 601 PC 1993 32 KB — — PowerPC 620 PC 1996 32 KB/32 KB — — PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB IBM S/390 G6 Mainframe 1999 256 KB 8 MB — Pentium 4 PC/server 2000 8 KB/8 KB 256 KB — IBM SP High-end server/ supercomputer 2000 64 KB/32 KB 8 MB — CRAY MTAb Supercomputer 2000 8 KB 2 MB — Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB — Itanium 2 PC/server 2002 32 KB 256 KB 6 MB IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB —
  • 28. Mapping Function • Cache of 64kByte • Cache block of 4 bytes —i.e. cache is 16k (214 ) lines of 4 bytes • 16MBytes main memory • 24 bit address —(224 =16M)
  • 29. Direct Mapping • Each block of main memory maps to only one cache line —i.e. if a block is in cache, it must be in one specific place • Address is in two parts • Least Significant w bits identify unique word • Most Significant s bits specify one memory block • The MSBs are split into a cache line field r and a tag of s-r (most significant)
  • 30. Direct Mapping Address Structure Tag s-r Line or Slot r Word w 8 14 2 • 24 bit address • 2 bit word identifier (4 byte block) • 22 bit block identifier — 8 bit tag (=22-14) — 14 bit slot or line • No two blocks in the same line have the same Tag field • Check contents of cache by finding line and checking Tag
  • 31. Direct Mapping from Cache to Main Memory
  • 32. Direct Mapping Cache Line Table Cache line Main Memory blocks held 0 0, m, 2m, 3m…2s-m 1 1,m+1, 2m+1…2s-m+1 … m-1 m-1, 2m-1,3m-1…2s-1
  • 33. Direct Mapping Cache Organization
  • 35. Direct Mapping Summary • Address length = (s + w) bits • Number of addressable units = 2s+w words or bytes • Block size = line size = 2w words or bytes • Number of blocks in main memory = 2s+ w/2w = 2s • Number of lines in cache = m = 2r • Size of tag = (s – r) bits
  • 36. Direct Mapping pros & cons • Simple • Inexpensive • Fixed location for given block —If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very high
  • 37. Victim Cache • Lower miss penalty • Remember what was discarded —Already fetched —Use again with little penalty • Fully associative • 4 to 16 cache lines • Between direct mapped L1 cache and next memory level
  • 38. Associative Mapping • A main memory block can load into any line of cache • Memory address is interpreted as tag and word • Tag uniquely identifies block of memory • Every line’s tag is examined for a match • Cache searching gets expensive
  • 40. Fully Associative Cache Organization
  • 42. Tag 22 bit Word 2 bit Associative Mapping Address Structure • 22 bit tag stored with each 32 bit block of data • Compare tag field with tag entry in cache to check for hit • Least significant 2 bits of address identify which 16 bit word is required from 32 bit data block • e.g. —Address Tag Data Cache line —FFFFFC FFFFFC24682468 3FFF
  • 43. Associative Mapping Summary • Address length = (s + w) bits • Number of addressable units = 2s+w words or bytes • Block size = line size = 2w words or bytes • Number of blocks in main memory = 2s+ w/2w = 2s • Number of lines in cache = undetermined • Size of tag = s bits
  • 44. Set Associative Mapping • Cache is divided into a number of sets • Each set contains a number of lines • A given block maps to any line in a given set —e.g. Block B can be in any line of set i • e.g. 2 lines per set —2 way associative mapping —A given block can be in one of 2 lines in only one set
  • 45. Set Associative Mapping Example • 13 bit set number • Block number in main memory is modulo 213 • 000000, 00A000, 00B000, 00C000 … map to same set
  • 46. Mapping From Main Memory to Cache: v Associative
  • 47. Mapping From Main Memory to Cache: k-way Associative
  • 48. K-Way Set Associative Cache Organization
  • 49. Set Associative Mapping Address Structure • Use set field to determine cache set to look in • Compare tag field to see if we have a hit • e.g —Address Tag Data Set number —1FF 7FFC 1FF 12345678 1FFF —001 7FFC 001 11223344 1FFF Tag 9 bit Set 13 bit Word 2 bit
  • 50. Two Way Set Associative Mapping Example
  • 51. Set Associative Mapping Summary • Address length = (s + w) bits • Number of addressable units = 2s+w words or bytes • Block size = line size = 2w words or bytes • Number of blocks in main memory = 2d • Number of lines in set = k • Number of sets = v = 2d • Number of lines in cache = kv = k * 2d • Size of tag = (s – d) bits
  • 52. Direct and Set Associative Cache Performance Differences • Significant up to at least 64kB for 2-way • Difference between 2-way and 4-way at 4kB much less than 4kB to 8kB • Cache complexity increases with associativity • Not justified against increasing cache to 8kB or 16kB • Above 32kB gives no improvement • (simulation results)
  • 54. Replacement Algorithms (1) Direct mapping • No choice • Each block only maps to one line • Replace that line
  • 55. Replacement Algorithms (2) Associative & Set Associative • Hardware implemented algorithm (speed) • Least Recently used (LRU) • e.g. in 2 way set associative —Which of the 2 block is lru? • First in first out (FIFO) —replace block that has been in cache longest • Least frequently used —replace block which has had fewest hits • Random
  • 56. Write Policy • Must not overwrite a cache block unless main memory is up to date • Multiple CPUs may have individual caches • I/O may address main memory directly
  • 57. Write through • All writes go to main memory as well as cache • Multiple CPUs can monitor main memory traffic to keep local (to CPU) cache up to date • Lots of traffic • Slows down writes • Remember bogus write through caches!
  • 58. Write back • Updates initially made in cache only • Update bit for cache slot is set when update occurs • If block is to be replaced, write to main memory only if update bit is set • Other caches get out of sync • I/O must access main memory through cache • N.B. 15% of memory references are writes
  • 59. Line Size • Retrieve not only desired word but a number of adjacent words as well • Increased block size will increase hit ratio at first —the principle of locality • Hit ratio will decreases as block becomes even bigger —Probability of using newly fetched information becomes less than probability of reusing replaced • Larger blocks —Reduce number of blocks that fit in cache —Data overwritten shortly after being fetched —Each additional word is less local so less likely to be needed • No definitive optimum value has been found • 8 to 64 bytes seems reasonable • For HPC systems, 64- and 128-byte most common
  • 60. Multilevel Caches • High logic density enables caches on chip —Faster than bus access —Frees bus for other transfers • Common to use both on and off chip cache —L1 on chip, L2 off chip in static RAM —L2 access much faster than DRAM or ROM —L2 often uses separate data path —L2 may now be on chip —Resulting in L3 cache – Bus access or now on chip…
  • 61. Hit Ratio (L1 & L2) For 8 kbytes and 16 kbyte L1
  • 62. Unified v Split Caches • One cache for data and instructions or two, one for data and one for instructions • Advantages of unified cache —Higher hit rate – Balances load of instruction and data fetch – Only one cache to design & implement • Advantages of split cache —Eliminates cache contention between instruction fetch/decode unit and execution unit – Important in pipelining
  • 63. Pentium 4 Cache • 80386 – no on chip cache • 80486 – 8k using 16 byte lines and four way set associative organization • Pentium (all versions) – two on chip L1 caches —Data & instructions • Pentium III – L3 cache added off chip • Pentium 4 —L1 caches – 8k bytes – 64 byte lines – four way set associative —L2 cache – Feeding both L1 caches – 256k – 128 byte lines – 8 way set associative —L3 cache on chip
  • 64. Intel Cache Evolution Problem Solution Processor on which feature first appears External memory slower than the system bus. Add external cache using faster memory technology. 386 Increased processor speed results in external bus becoming a bottleneck for cache access. Move external cache on-chip, operating at the same speed as the processor. 486 Internal cache is rather small, due to limited space on chip Add external L2 cache using faster technology than main memory 486 Contention occurs when both the Instruction Prefetcher and the Execution Unit simultaneously require access to the cache. In that case, the Prefetcher is stalled while the Execution Unit’s data access takes place. Create separate data and instruction caches. Pentium Increased processor speed results in external bus becoming a bottleneck for L2 cache access. Create separate back-side bus that runs at higher speed than the main (front-side) external bus. The BSB is dedicated to the L2 cache. Pentium Pro Move L2 cache on to the processor chip. Pentium II Some applications deal with massive databases and must have rapid access to large amounts of data. The on-chip caches are too small. Add external L3 cache. Pentium III Move L3 cache on-chip. Pentium 4
  • 65. Pentium 4 Block Diagram
  • 66. Pentium 4 Core Processor • Fetch/Decode Unit —Fetches instructions from L2 cache —Decode into micro-ops —Store micro-ops in L1 cache • Out of order execution logic —Schedules micro-ops —Based on data dependence and resources —May speculatively execute • Execution units —Execute micro-ops —Data from L1 cache —Results in registers • Memory subsystem —L2 cache and systems bus
  • 67. Pentium 4 Design Reasoning • Decodes instructions into RISC like micro-ops before L1 cache • Micro-ops fixed length — Superscalar pipelining and scheduling • Pentium instructions long & complex • Performance improved by separating decoding from scheduling & pipelining — (More later – ch14) • Data cache is write back — Can be configured to write through • L1 cache controlled by 2 bits in register — CD = cache disable — NW = not write through — 2 instructions to invalidate (flush) cache and write back then invalidate • L2 and L3 8-way set-associative — Line size 128 bytes
  • 68. ARM Cache Features Core Cache Type Cache Size (kB) Cache Line Size (words) Associativity Location Write Buffer Size (words) ARM720T Unified 8 4 4-way Logical 8 ARM920T Split 16/16 D/I 8 64-way Logical 16 ARM926EJ-S Split 4-128/4-128 D/I 8 4-way Logical 16 ARM1022E Split 16/16 D/I 8 64-way Logical 16 ARM1026EJ-S Split 4-128/4-128 D/I 8 4-way Logical 8 Intel StrongARM Split 16/16 D/I 4 32-way Logical 32 Intel Xscale Split 32/32 D/I 8 32-way Logical 32 ARM1136-JF-S Split 4-64/4-64 D/I 8 4-way Physical 32
  • 69. ARM Cache Organization • Small FIFO write buffer —Enhances memory write performance —Between cache and main memory —Small c.f. cache —Data put in write buffer at processor clock speed —Processor continues execution —External write in parallel until empty —If buffer full, processor stalls —Data in write buffer not available until written – So keep buffer small
  • 70. ARM Cache and Write Buffer Organization
  • 71. Internet Sources • Manufacturer sites —Intel —ARM • Search on cache