SlideShare a Scribd company logo
1
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Regression/Curve Fitting
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Objectives
• Understanding the difference between
regression and interpolation
• Knowing how to “best fit” a polynomial into
a set of data
• Knowing how to use a polynomial to
interpolate data
2
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Measured Data
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Polynomial Fit!
3
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Line Fit!
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Which is better?
4
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Curve Fitting
• If the data measured is of high accuracy
and it is required to estimate the values of
the function between the given points,
then, polynomial interpolation is the best
choice.
• If the measurements are expected to be of
low accuracy, or the number of measured
points is too large, regression would be
the best choice.
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Regression
5
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Why Regression?
• Measurements that we get from real
situations are not usually consistent!
• The number of “pieces” of information that
we can get about a certain project is
HUGE
• You can NEVER measure exact values!
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Measured Data
6
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
But, how to get the equation of a
line that is “good” for all the data
you have!
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Equation of a Line: Revision
xaay 10 +=
If you have two points
1101 xaay +=
2102 xaay += 





=












2
1
1
0
2
1
1
1
y
y
a
a
x
x
7
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solving for the constants!
12
12
1
12
2112
0 &
xx
yy
a
xx
yxyx
a
−
−
=
−
−
=
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
What if I have more than two
points?
8
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
For every point
nn xaay
xaay
xaay
10
2102
1101
+≠
+≠
+≠
M 

















≠














1
02
1
2
1
1
1
1
a
a
x
x
x
y
y
y
nn
MMM
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
So, we may write the error vector


















−














=














1
02
1
2
1
2
1
1
1
1
a
a
x
x
x
y
y
y
e
e
e
nnn
MMMM
{ } { } [ ] { } 1*22*1*1* aAye nnn −=
9
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Square the error
{ } { } [ ]{ }aAye −=
{ } { } { } { } { } [ ]{ }
{ } [ ] { } { } [ ] [ ]{ } 2
eaAAayAa
aAyyyee
TTTT
TTT
=+−
−=
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Note: this is a scalar equation!
{ } { } { } { } { } [ ]{ }
{ } [ ] { } { } [ ] [ ]{ } 2
eaAAayAa
aAyyyee
TTTT
TTT
=+−
−=
{ } [ ]{ } { } [ ] { }yAaaAy
TTT
=
{ } { } { } [ ] { } { } [ ] [ ]{ }aAAayAayye
TTTTT
+−= 2
2
10
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Note: this is a quadratic equation in {a}!!!
{ } { } { } [ ] { } { } [ ] [ ]{ }aAAayAayye
TTTTT
+−= 2
2
To minimize the error in the above equation, we need to
differentiate with respect to the parameters
{ }
[ ] { } [ ] [ ]{ } 022
2
=+−= aAAyA
ad
ed TT
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solving the equation
We get:
{ }
[ ] { } [ ] [ ]{ } 022
2
=+−= aAAyA
ad
ed TT
[ ] [ ] { } [ ] { } 1**21*22**2 n
T
nn
T
n yAaAA =
[ ] { } { } 1*21*22*2 yaA = { } [ ] { }yAa
1−
=
11
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• If you are given the
data.
• Find the equation of
the “best-fit” line.
y=a1+a2x
5.57
66
3.55
44
23
2.52
0.51
yx
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution






















=




























5.5
6
5.3
4
2
5.2
5.0
71
61
51
41
31
21
11
1
0
a
a
[ ] { }






















=






















=
5.5
6
5.3
4
2
5.2
5.0
&
71
61
51
41
31
21
11
yA
12
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
[ ] [ ] 





=




























=
14028
287
71
61
51
41
31
21
11
7654321
1111111
AA
T
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
[ ] { }






=




























=
5.119
24
5.5
6
5.3
4
2
5.2
5.0
7654321
1111111
yA
T
13
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution






=












5.119
24
14028
287
1
0
a
a
[ ] [ ]{ } [ ] { }yAaAA
TT
=






=






8393.0
0714.0
1
0
a
a
0714.08393.0 += xy
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• If you are given the
data.
• Find the equation of
the “best-fit” parabola.
y=a0+a1x+a2x2
5.57
66
3.55
44
23
2.52
0.51
yx
14
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution






















=
































5.5
6
5.3
4
2
5.2
5.0
49
36
25
16
9
4
1
71
61
51
41
31
21
11
2
1
0
a
a
a
[ ] { }






















=






















=
5.5
6
5.3
4
2
5.2
5.0
&
49
36
25
16
9
4
1
71
61
51
41
31
21
11
yA
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
[ ] [ ]










=
































=
4676784140
78414028
140287
49
36
25
16
9
4
1
71
61
51
41
31
21
11
49362516941
7654321
1111111
AA
T
15
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
[ ] { }










=
































=
5.665
5.119
24
5.5
6
5.3
4
2
5.2
5.0
49362516941
7654321
1111111
yA
T
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
[ ] [ ]{ } [ ] { }yAaAA
TT
=










−
−
=










0298.0
0774.1
2857.0
2
1
0
a
a
a
2857.00774.10298.0 2
−+−= xxy
16
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Homework #4
• Chapter 17, pp. 471-472, numbers:
17.4,17.5.
• Use the data and regression to get the
equation of the line that best fits the data
• Number 17.7
• Use the data and regression to get the
equation of the line and the parabola that
best fit the data

More Related Content

PDF
04 gaussmethods
Mohammad Tawfik
 
PDF
07 interpolationnewton
Mohammad Tawfik
 
PPT
09 numerical differentiation
Mohammad Tawfik
 
PPT
07 interpolation
Mohammad Tawfik
 
PDF
13 weightedresidual
Mohammad Tawfik
 
PDF
A uniform distribution has density function find n (1)
Nadeem Uddin
 
PDF
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
DavidIlejimi
 
PDF
Ijetcas14 608
Iasir Journals
 
04 gaussmethods
Mohammad Tawfik
 
07 interpolationnewton
Mohammad Tawfik
 
09 numerical differentiation
Mohammad Tawfik
 
07 interpolation
Mohammad Tawfik
 
13 weightedresidual
Mohammad Tawfik
 
A uniform distribution has density function find n (1)
Nadeem Uddin
 
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
DavidIlejimi
 
Ijetcas14 608
Iasir Journals
 

What's hot (18)

DOCX
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
Rai University
 
PDF
Adomian decomposition Method and Differential Transform Method to solve the H...
IJERA Editor
 
PDF
Chebyshev Collocation Approach for a Continuous Formulation of Implicit Hybri...
IOSR Journals
 
PDF
Q0749397
IOSR Journals
 
DOCX
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
Rai University
 
PPTX
Scrodinger wave equation
Sujit K Shah, Ph D
 
PDF
Direct and indirect methods
Ejaz hussain
 
PPTX
Definition of statistical efficiency
RuhulAmin339
 
PPT
Top schools in noida
Edhole.com
 
DOCX
Course pack unit 5
Rai University
 
PPTX
Fixed point Iterative Method
Nasima Akhtar
 
PPTX
Measures of Central tendency
Edrin Jay Morta
 
PPTX
Elements of Statistical Learning 読み会 第2章
Tsuyoshi Sakama
 
PPTX
Math533 finalexamreviewapr13
Brent Heard
 
PPTX
Curve fitting
aashikareliya
 
PPTX
Contactless Calipper - English
Giga Khizanishvili
 
PPTX
1006 formulas and geom
jbianco9910
 
PPT
TechMathII - 1.6 - Matrices
lmrhodes
 
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
Rai University
 
Adomian decomposition Method and Differential Transform Method to solve the H...
IJERA Editor
 
Chebyshev Collocation Approach for a Continuous Formulation of Implicit Hybri...
IOSR Journals
 
Q0749397
IOSR Journals
 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
Rai University
 
Scrodinger wave equation
Sujit K Shah, Ph D
 
Direct and indirect methods
Ejaz hussain
 
Definition of statistical efficiency
RuhulAmin339
 
Top schools in noida
Edhole.com
 
Course pack unit 5
Rai University
 
Fixed point Iterative Method
Nasima Akhtar
 
Measures of Central tendency
Edrin Jay Morta
 
Elements of Statistical Learning 読み会 第2章
Tsuyoshi Sakama
 
Math533 finalexamreviewapr13
Brent Heard
 
Curve fitting
aashikareliya
 
Contactless Calipper - English
Giga Khizanishvili
 
1006 formulas and geom
jbianco9910
 
TechMathII - 1.6 - Matrices
lmrhodes
 
Ad

Viewers also liked (20)

PPTX
Coneixer barcelona(15 16). ppt
mvilage
 
PDF
Transfer Printable fabrics Silhouette Cameo 2
Silhouette Cameo 2 Europe
 
PDF
รูปพื้นที่ผิว
Krueed Huaybong
 
DOCX
Tech coach flyer
Charlotte Hardacre
 
PPT
Prematuridad y bajo peso al nacer
Antonio Fernandez
 
DOCX
filosofias de la calidad
Roberto' Mtz Torre
 
PPT
Curso deferias
Germana Rolim
 
PDF
Object Oriented Principles
Sujit Majety
 
PDF
Arquitetura de informação
Princi Agência Web
 
PPTX
5 jobs where bots will replace humans
Softweb Solutions
 
PPT
The Most effective models for Customer Support Operations
David Loia
 
PPTX
Expo condiciones imagen
Jose Joubran
 
PDF
MEI
JoeChengQ
 
PPTX
ไอโซเมอร์
Maruko Supertinger
 
PPTX
Verden lige nu
persloth
 
PPT
Webwriting That Works
posgraduacaorj
 
PPT
Arquitetura de Informação - Personas e Cenários
posgraduacaorj
 
PDF
Dossier prensa COTIF 2016
Alba Obscura
 
PPTX
Introduction to NOSQL And MongoDB
Behrouz Bakhtiari
 
ODP
Superlative
Aurora Santano Cañete
 
Coneixer barcelona(15 16). ppt
mvilage
 
Transfer Printable fabrics Silhouette Cameo 2
Silhouette Cameo 2 Europe
 
รูปพื้นที่ผิว
Krueed Huaybong
 
Tech coach flyer
Charlotte Hardacre
 
Prematuridad y bajo peso al nacer
Antonio Fernandez
 
filosofias de la calidad
Roberto' Mtz Torre
 
Curso deferias
Germana Rolim
 
Object Oriented Principles
Sujit Majety
 
Arquitetura de informação
Princi Agência Web
 
5 jobs where bots will replace humans
Softweb Solutions
 
The Most effective models for Customer Support Operations
David Loia
 
Expo condiciones imagen
Jose Joubran
 
ไอโซเมอร์
Maruko Supertinger
 
Verden lige nu
persloth
 
Webwriting That Works
posgraduacaorj
 
Arquitetura de Informação - Personas e Cenários
posgraduacaorj
 
Dossier prensa COTIF 2016
Alba Obscura
 
Introduction to NOSQL And MongoDB
Behrouz Bakhtiari
 
Ad

Similar to 06 regression (20)

PDF
me310_5_regression.pdf numerical method for engineering
kedirabdisa61
 
DOC
Lesson 8
Vinnu Vinay
 
PDF
Curvefitting
Philberto Saroni
 
PDF
Applied numerical methods lec8
Yasser Ahmed
 
PDF
curve fitting lecture slides February 24
TaiwoD
 
PDF
Basic concepts of curve fittings
Tarun Gehlot
 
PDF
Lec3
Amba Research
 
PDF
Mit6 094 iap10_lec03
Tribhuwan Pant
 
PDF
Numerical Methods: curve fitting and interpolation
Nikolai Priezjev
 
PPT
Least square method
Somya Bagai
 
PPTX
Curve fitting
shopnohinami
 
PPT
matlab lecture 4 solving mathematical problems.ppt
aaaaboud1
 
PPTX
Linear Algebra in python programming....
divyamitraworkmail
 
PDF
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Enthought, Inc.
 
PDF
Regression
Mohammad Tawfik
 
PPT
Systems of linear equations
gandhinagar
 
PDF
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
guest3f9c6b
 
PPT
Systems of equations and matricies
ST ZULAIHA NURHAJARURAHMAH
 
PPT
08 numerical integration
Mohammad Tawfik
 
PPTX
Interpolation.pptx
MinaSafwatMSR
 
me310_5_regression.pdf numerical method for engineering
kedirabdisa61
 
Lesson 8
Vinnu Vinay
 
Curvefitting
Philberto Saroni
 
Applied numerical methods lec8
Yasser Ahmed
 
curve fitting lecture slides February 24
TaiwoD
 
Basic concepts of curve fittings
Tarun Gehlot
 
Mit6 094 iap10_lec03
Tribhuwan Pant
 
Numerical Methods: curve fitting and interpolation
Nikolai Priezjev
 
Least square method
Somya Bagai
 
Curve fitting
shopnohinami
 
matlab lecture 4 solving mathematical problems.ppt
aaaaboud1
 
Linear Algebra in python programming....
divyamitraworkmail
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Enthought, Inc.
 
Regression
Mohammad Tawfik
 
Systems of linear equations
gandhinagar
 
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
guest3f9c6b
 
Systems of equations and matricies
ST ZULAIHA NURHAJARURAHMAH
 
08 numerical integration
Mohammad Tawfik
 
Interpolation.pptx
MinaSafwatMSR
 

More from Mohammad Tawfik (20)

PDF
Supply Chain Management for Engineers - INDE073
Mohammad Tawfik
 
PDF
Supply Chain Management 01 - Introduction
Mohammad Tawfik
 
PDF
Supply Chain Management 02 - Logistics
Mohammad Tawfik
 
PDF
Supply Chain Management 03 - Inventory Management
Mohammad Tawfik
 
PDF
Creative problem solving and decision making
Mohammad Tawfik
 
PDF
Digital content for teaching introduction
Mohammad Tawfik
 
PDF
Crisis Management Basics
Mohammad Tawfik
 
PDF
DISC Personality Model
Mohammad Tawfik
 
PDF
Training of Trainers
Mohammad Tawfik
 
PDF
Effective Delegation Skills
Mohammad Tawfik
 
PDF
Train The Trainer
Mohammad Tawfik
 
PDF
Business Management - Marketing
Mohammad Tawfik
 
PDF
Stress Management
Mohammad Tawfik
 
PDF
Project Management (CAPM) - Integration
Mohammad Tawfik
 
PDF
Project Management (CAPM) - The Framework
Mohammad Tawfik
 
PDF
Project Management (CAPM) - Introduction
Mohammad Tawfik
 
PDF
The Creative Individual
Mohammad Tawfik
 
PDF
Introduction to Wind Energy
Mohammad Tawfik
 
PDF
Finite Element for Trusses in 2-D
Mohammad Tawfik
 
PDF
Future of Drones ITW'16
Mohammad Tawfik
 
Supply Chain Management for Engineers - INDE073
Mohammad Tawfik
 
Supply Chain Management 01 - Introduction
Mohammad Tawfik
 
Supply Chain Management 02 - Logistics
Mohammad Tawfik
 
Supply Chain Management 03 - Inventory Management
Mohammad Tawfik
 
Creative problem solving and decision making
Mohammad Tawfik
 
Digital content for teaching introduction
Mohammad Tawfik
 
Crisis Management Basics
Mohammad Tawfik
 
DISC Personality Model
Mohammad Tawfik
 
Training of Trainers
Mohammad Tawfik
 
Effective Delegation Skills
Mohammad Tawfik
 
Train The Trainer
Mohammad Tawfik
 
Business Management - Marketing
Mohammad Tawfik
 
Stress Management
Mohammad Tawfik
 
Project Management (CAPM) - Integration
Mohammad Tawfik
 
Project Management (CAPM) - The Framework
Mohammad Tawfik
 
Project Management (CAPM) - Introduction
Mohammad Tawfik
 
The Creative Individual
Mohammad Tawfik
 
Introduction to Wind Energy
Mohammad Tawfik
 
Finite Element for Trusses in 2-D
Mohammad Tawfik
 
Future of Drones ITW'16
Mohammad Tawfik
 

06 regression

  • 1. 1 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Regression/Curve Fitting ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Objectives • Understanding the difference between regression and interpolation • Knowing how to “best fit” a polynomial into a set of data • Knowing how to use a polynomial to interpolate data
  • 2. 2 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Measured Data ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Polynomial Fit!
  • 3. 3 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Line Fit! ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Which is better?
  • 4. 4 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Curve Fitting • If the data measured is of high accuracy and it is required to estimate the values of the function between the given points, then, polynomial interpolation is the best choice. • If the measurements are expected to be of low accuracy, or the number of measured points is too large, regression would be the best choice. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Regression
  • 5. 5 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Why Regression? • Measurements that we get from real situations are not usually consistent! • The number of “pieces” of information that we can get about a certain project is HUGE • You can NEVER measure exact values! ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Measured Data
  • 6. 6 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik But, how to get the equation of a line that is “good” for all the data you have! ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Equation of a Line: Revision xaay 10 += If you have two points 1101 xaay += 2102 xaay +=       =             2 1 1 0 2 1 1 1 y y a a x x
  • 7. 7 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solving for the constants! 12 12 1 12 2112 0 & xx yy a xx yxyx a − − = − − = ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik What if I have more than two points?
  • 8. 8 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik For every point nn xaay xaay xaay 10 2102 1101 +≠ +≠ +≠ M                   ≠               1 02 1 2 1 1 1 1 a a x x x y y y nn MMM ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik So, we may write the error vector                   −               =               1 02 1 2 1 2 1 1 1 1 a a x x x y y y e e e nnn MMMM { } { } [ ] { } 1*22*1*1* aAye nnn −=
  • 9. 9 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Square the error { } { } [ ]{ }aAye −= { } { } { } { } { } [ ]{ } { } [ ] { } { } [ ] [ ]{ } 2 eaAAayAa aAyyyee TTTT TTT =+− −= ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Note: this is a scalar equation! { } { } { } { } { } [ ]{ } { } [ ] { } { } [ ] [ ]{ } 2 eaAAayAa aAyyyee TTTT TTT =+− −= { } [ ]{ } { } [ ] { }yAaaAy TTT = { } { } { } [ ] { } { } [ ] [ ]{ }aAAayAayye TTTTT +−= 2 2
  • 10. 10 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Note: this is a quadratic equation in {a}!!! { } { } { } [ ] { } { } [ ] [ ]{ }aAAayAayye TTTTT +−= 2 2 To minimize the error in the above equation, we need to differentiate with respect to the parameters { } [ ] { } [ ] [ ]{ } 022 2 =+−= aAAyA ad ed TT ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solving the equation We get: { } [ ] { } [ ] [ ]{ } 022 2 =+−= aAAyA ad ed TT [ ] [ ] { } [ ] { } 1**21*22**2 n T nn T n yAaAA = [ ] { } { } 1*21*22*2 yaA = { } [ ] { }yAa 1− =
  • 11. 11 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Example • If you are given the data. • Find the equation of the “best-fit” line. y=a1+a2x 5.57 66 3.55 44 23 2.52 0.51 yx ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution                       =                             5.5 6 5.3 4 2 5.2 5.0 71 61 51 41 31 21 11 1 0 a a [ ] { }                       =                       = 5.5 6 5.3 4 2 5.2 5.0 & 71 61 51 41 31 21 11 yA
  • 12. 12 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution [ ] [ ]       =                             = 14028 287 71 61 51 41 31 21 11 7654321 1111111 AA T ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution [ ] { }       =                             = 5.119 24 5.5 6 5.3 4 2 5.2 5.0 7654321 1111111 yA T
  • 13. 13 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution       =             5.119 24 14028 287 1 0 a a [ ] [ ]{ } [ ] { }yAaAA TT =       =       8393.0 0714.0 1 0 a a 0714.08393.0 += xy ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Example • If you are given the data. • Find the equation of the “best-fit” parabola. y=a0+a1x+a2x2 5.57 66 3.55 44 23 2.52 0.51 yx
  • 14. 14 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution                       =                                 5.5 6 5.3 4 2 5.2 5.0 49 36 25 16 9 4 1 71 61 51 41 31 21 11 2 1 0 a a a [ ] { }                       =                       = 5.5 6 5.3 4 2 5.2 5.0 & 49 36 25 16 9 4 1 71 61 51 41 31 21 11 yA ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution [ ] [ ]           =                                 = 4676784140 78414028 140287 49 36 25 16 9 4 1 71 61 51 41 31 21 11 49362516941 7654321 1111111 AA T
  • 15. 15 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution [ ] { }           =                                 = 5.665 5.119 24 5.5 6 5.3 4 2 5.2 5.0 49362516941 7654321 1111111 yA T ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution [ ] [ ]{ } [ ] { }yAaAA TT =           − − =           0298.0 0774.1 2857.0 2 1 0 a a a 2857.00774.10298.0 2 −+−= xxy
  • 16. 16 ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Homework #4 • Chapter 17, pp. 471-472, numbers: 17.4,17.5. • Use the data and regression to get the equation of the line that best fits the data • Number 17.7 • Use the data and regression to get the equation of the line and the parabola that best fit the data