SlideShare a Scribd company logo
ECE 1010 ECE Problem Solving I




MATLAB                                                      3
Functions
Overview
In this chapter we start studying the many, many, mathematical
functions that are included in MATLAB. Some time will be spent
introducing complex variables and how MATLAB handles them.
Later we will learn how to write custom (user written) functions
which are a special form of m-file. Two dimensional plotting
functions will be introduced. We will also explore programming
constructs for flow control (if-else-elseif code blocks)
and looping (for loop etc.). Next data analysis functions will be
investigated, which includes sample statistics and histogram plot-
ting functions.




Chapter 3: Overview                                            3–1
ECE 1010 ECE Problem Solving I


Mathematical Functions
Common Math Functions
                        Table 3.1: Common math functions

    Function             Description      Function         Description
  abs(x)             x                  sqrt(x)            x
  round(x) nearest integer              fix(x)         nearest integer
  floor(x) nearest integer              ceil(x)        nearest integer
           toward – ∞                                  toward ∞
  sign(x)                               rem(x,y) the remainder
                     – 1, x < 0
                                                of x ⁄ y
                     0, x = 0
                    
                     1, x > 0
  exp(x)                x               log(x)         natural log ln x
                    e

  log10(x) log base 10
           log 10 x

Examples:
            » x = [-5.5 5.5];
            » round(x)
            ans =     -6    6
            » fix(x)
            ans =     -5    5
            » floor(x)
            ans =     -6    5
            » ceil(x)

Chapter 3: Mathematical Functions                                        3–2
ECE 1010 ECE Problem Solving I


            ans =     -5            6
            » sign(x)
            ans =     -1            1
            » rem(23,6)
            ans =      5

Trigonometric and Hyperbolic Functions
 • Unlike pocket calculators, the trigonometric functions always
   assume the input argument is in radians
 • The inverse trigonometric functions produce outputs that are
   in radians
                      Table 3.2: Trigonometric functions

    Function           Description          Function         Description
  sin(x)            sin ( x )           cos(x)             cos ( x )
  tan(x)            tan ( x )           asin(x)               –1
                                                           sin ( x )
  acos(x)               –1              atan(x)                –1
                    cos ( x )                              tan ( x )
  atan2(y,          the inverse tan-
  x)                gent of y ⁄ x
                    including the
                    correct quad-
                    rant

Examples:
                                        2           2
 • A simple verification that sin ( x ) + cos ( x ) = 1



Chapter 3: Mathematical Functions                                          3–3
ECE 1010 ECE Problem Solving I


      » x = 0:pi/10:pi;
      » [x' sin(x)' cos(x)' (sin(x).^2+cos(x).^2)']
      ans =
               0         0    1.0000    1.0000
          0.3142    0.3090    0.9511    1.0000
          0.6283    0.5878    0.8090    1.0000
          0.9425    0.8090    0.5878    1.0000
          1.2566    0.9511    0.3090    1.0000
          1.5708    1.0000    0.0000    1.0000
          1.8850    0.9511   -0.3090    1.0000
          2.1991    0.8090   -0.5878    1.0000
          2.5133    0.5878   -0.8090    1.0000
          2.8274    0.3090   -0.9511    1.0000
          3.1416    0.0000   -1.0000    1.0000
 • Parametric plotting:
    – Verify that by plotting sin θ versus cos θ for 0 ≤ θ ≤ 2π we
      obtain a circle
» theta = 0:2*pi/100:2*pi;  % Span 0 to 2pi with 100 pts
» plot(cos(theta),sin(theta)); axis('square')
» title('Parametric Plotting','fontsize',18)
» ylabel('y - axis','fontsize',14)
» xlabel('x - axis','fontsize',14)
» figure(2)
» hold
Current plot held
» plot(cos(5*theta).*cos(theta), ...
    cos(5*theta).*sin(theta)); % A five-leaved rose




Chapter 3: Mathematical Functions                              3–4
ECE 1010 ECE Problem Solving I



                                       Parametric Plotting
                1
                                                                         Circle
              0.8


              0.6


              0.4                                                 Rose
              0.2
   y - axis




                0


              -0.2


              -0.4


              -0.6


              -0.8


               -1
                -1   -0.8   -0.6   -0.4   -0.2      0       0.2    0.4   0.6    0.8   1
                                                 x - axis
 • The trig functions are what you would expect, except the fea-
   tures of atan2(y,x) may be unfamiliar
                y                              y
                                   4
                                     2 x                                 2                x
                            φ 1 = 0.4636
                                                                     4
                                                                               φ 2 = – 2.0344



Chapter 3: Mathematical Functions                                                             3–5
ECE 1010 ECE Problem Solving I


      » [atan(2/4) atan2(2,4)]
          ans =    0.4636    0.4636 % the same
      » [atan(-4/-2) atan2(-4,-2)]
          ans =    1.1071   -2.0344 % different; why?
                                                x
 • The hyperbolic functions are defined in terms of e
                            Table 3.3: Hyperbolic functions

    Function            Description            Function          Description
  sinh(x)              x         –x           cosh(x)           x         –x
                     e –e                                     e –e
                     -----------------
                                     -                        -----------------
                                                                              -
                             2                                        2
  tanh(x)               x         –x          asinh(x)                            2
                     e –e
                     ------------------                        ln ( x + x + 1 )
                        x          –x
                     e +e
  acosh(x)                                2   atanh(x)           1+x
                     ln ( x + x – 1 )                         ln -----------, x ≤ 1
                                                                           -
                                                                 1–x

 • There are no special concerns in the use of these functions
   except that atanh requires an argument that must not
   exceed an absolute value of one

Complex Number Functions
 • Before discussing these functions we first review a few facts
   about complex variable theory
 • In electrical engineering complex numbers appear frequently
 • A complex number is an ordered pair of real numbers1

   1. Tom M. Apostle, Mathematical Analysis, second edition, Addison Wesley,
      p. 15, 1974.

Chapter 3: Mathematical Functions                                                     3–6
ECE 1010 ECE Problem Solving I


    denoted ( a, b )
    – The first number, a, is called the real part, while the second
      number, b, is called the imaginary part
    – For algebraic manipulation purposes we write ( a, b )
        = a + ib = a + jb where i = j = – 1 ; electrical
      engineers typically use j since i is often used to denote cur-
      rent
    Note:        –1 × –1 = –1 ⇒ j × j = –1
 • For complex numbers z 1 = a 1 + jb 1 and z 2 = a 2 + jb 2
   we define/calculate
                  z1 + z2 = ( a1 + a2 ) + j ( b1 + b2 )                              (sum)
             z 1 – z 2 = ( a 1 – a 2 ) + j ( b 1 – b 2 ) (difference)
         z 1 z 2 = ( a 1 a 2 – b 1 b 2 ) + j ( a 1 b 2 + b 1 a 2 ) (product)
          z1     ( a1 a2 + b1 b2 ) – j ( a1 b2 – b1 a2 )
          ---- = --------------------------------------------------------------------------- (quotient)
                                                                                           -
          z2                                     2            2
                                              a +b
                                              2         2

                                               2        2
                             z1 =           a 1 + b 1 (magnitude)
                                                  –1
                           ∠z 1 = tan ( b 1 ⁄ a 1 ) (angle)

                     z 1∗ = a 1 – jb 1 (complex conjugate)
 • MATLAB is consistent with all of the above, starting with the
   fact that i and j are predefined to be – 1



Chapter 3: Mathematical Functions                                                                         3–7
ECE 1010 ECE Problem Solving I


 • The rectangular form of a complex number is as defined
   above,
                             z = ( a, b ) = a + jb
 • The corresponding polar form is
                                        z = r ∠θ
                         2     2                   –1
    where r =          a + b and θ = tan ( b ⁄ a )
                        Imaginary Axis
  Complex Plane                     b
                                             r
                                                   θ       Real
                                                       a   Axis



 • MATLAB has five basic complex functions, but in reality
   most all of MATLAB’s functions accept complex arguments
   and deal with them correctly
                      Table 3.4: Basic complex functions

       Function                              Description
    conj(x)            Computes the conjugate of z = a + jb
                       which is z∗ = a – jb
    real(x)            Extracts the real part of z = a + jb
                       which is real ( z ) = a
    imag(x)            Extracts the imaginary part of
                        z = a + jb which is imag ( z ) = b

Chapter 3: Mathematical Functions                                 3–8
ECE 1010 ECE Problem Solving I


                      Table 3.4: Basic complex functions

       Function                                 Description
    angle(x)           computes the angle of z = a + jb using
                       atan2 which is
                       atan2(imag(z),real(z))
Euler’s Formula: A special mathematical result of, special
importance to electrical engineers, is the fact that
                             jb
                         e        = cos b + j sin b             (3.1)
 • Turning (3.1) around yields
                                          jθ       – jθ
                                   e –e
                           sin θ = ---------------------
                                                       -        (3.2)
                                            2j
                                          jθ        – jθ
                                  e +e
                          cos θ = ---------------------
                                                      -         (3.3)
                                            2
 • It also follows that
                                                      jθ
                          z = a + jb = re                       (3.4)
    where
                  2   2         –1 b
         r=      a + b , θ = tan --, a = r cos θ, b = r sin θ
                                   -
                                   a




Chapter 3: Mathematical Functions                                 3–9
ECE 1010 ECE Problem Solving I


 • Some examples:
      » z1 = 2+j*4; z2 = -5+j*7;
      » [z1 z2]
      ans =
         2.0000 + 4.0000i -5.0000 + 7.0000i
      » [real(z1) imag(z1) abs(z1) angle(z1)]
      ans =
         2.0000    4.0000    4.4721    1.1071
      » [conj(z1) conj(z2)]
      ans =
         2.0000 - 4.0000i -5.0000 - 7.0000i
      » [z1+z2 z1-z2 z1*z2 z1/z2]
      ans =
        -3.0000 +11.0000i   7.0000 - 3.0000i
       -38.0000 - 6.0000i   0.2432 - 0.4595i

Polar Plots: When dealing with complex numbers we often deal
with the polar form. The plot command which directly plots vec-
tors of magnitude and angle is polar(theta,r)
 • This function is also useful for general plotting
 • As an example the equation of a cardioid in polar form, with
   parameter a, is
                       r = a ( 1 + cos θ ), 0 ≤ θ ≤ 2π
» theta = 0:2*pi/100:2*pi;             % Span 0 to 2pi with 100 pts
» r = 1+cos(theta);
» polar(theta,r)




Chapter 3: Mathematical Functions                              3–10
ECE 1010 ECE Problem Solving I



                                    90
    Polar Plot                                  2
                       120                           60

                                               1.5



            150                            1               30



                                          0.5




      180                                                        0




            210                                            330




                       240                           300

                                    270




Chapter 3: Mathematical Functions                                    3–11

More Related Content

PPT
Grph quad fncts
Edrian Gustin Camacho
 
PDF
138191 rvsp lecture notes
Ahmed Tayeh
 
PDF
Derivadas
CEU Benito Juarez
 
PPTX
[4] num integration
ikhulsys
 
PDF
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm 2012
 
PPTX
Interpolation and Extrapolation
VNRacademy
 
PDF
Formulario de calculo
Henry Romero
 
PDF
Lecture 1
SaeedShahAhmed
 
Grph quad fncts
Edrian Gustin Camacho
 
138191 rvsp lecture notes
Ahmed Tayeh
 
[4] num integration
ikhulsys
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm 2012
 
Interpolation and Extrapolation
VNRacademy
 
Formulario de calculo
Henry Romero
 
Lecture 1
SaeedShahAhmed
 

What's hot (16)

DOC
Chapter 3 (maths 3)
Prathab Harinathan
 
PPT
Introduction to matlab
krishna_093
 
PDF
Lesson 21: Curve Sketching (slides)
Matthew Leingang
 
PDF
01 derivadas
klorofila
 
PDF
Identidades
mchamorro2
 
PDF
Actividad 4 calculo diferencial
SIGIFREDO12222
 
PDF
Amth250 octave matlab some solutions (1)
asghar123456
 
PPT
Chapter 3
aabdel96
 
PPT
Fuzzy calculation
Amir Rafati
 
DOC
mathematics formulas
Prathab Harinathan
 
PDF
Numerical Methods 3
Dr. Nirav Vyas
 
DOC
Chapter 4 (maths 3)
Prathab Harinathan
 
PDF
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
PDF
Hw2 s
Nick Nick
 
PDF
Amth250 octave matlab some solutions (2)
asghar123456
 
PDF
11 X1 T02 07 sketching graphs (2010)
Nigel Simmons
 
Chapter 3 (maths 3)
Prathab Harinathan
 
Introduction to matlab
krishna_093
 
Lesson 21: Curve Sketching (slides)
Matthew Leingang
 
01 derivadas
klorofila
 
Identidades
mchamorro2
 
Actividad 4 calculo diferencial
SIGIFREDO12222
 
Amth250 octave matlab some solutions (1)
asghar123456
 
Chapter 3
aabdel96
 
Fuzzy calculation
Amir Rafati
 
mathematics formulas
Prathab Harinathan
 
Numerical Methods 3
Dr. Nirav Vyas
 
Chapter 4 (maths 3)
Prathab Harinathan
 
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
Hw2 s
Nick Nick
 
Amth250 octave matlab some solutions (2)
asghar123456
 
11 X1 T02 07 sketching graphs (2010)
Nigel Simmons
 
Ad

Similar to 1010n3a (20)

PPTX
Precalc review for calc p pt
gregcross22
 
DOC
C3 January 2012 QP
anicholls1234
 
PPTX
Graphing Exponentials
teachingfools
 
PDF
Chapter 1 (math 1)
Amr Mohamed
 
PDF
Cs 601
Web Developer
 
DOC
Mathematics
Rapson Pyakurel
 
DOC
Functions
Educación
 
PPTX
VIT - Mathematics -2007 Unsolved Paper
Vasista Vinuthan
 
PPTX
Mathematical physics group 16
derry92
 
DOC
C4 January 2012 QP
anicholls1234
 
PPTX
AMU - Mathematics - 2000
Vasista Vinuthan
 
PPT
Graph functions
daisy_yani
 
PDF
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
PDF
Linear Equations And Graphing
Mr. Hobbs
 
PDF
Lesson 2: A Catalog of Essential Functions (slides)
Mel Anthony Pepito
 
PDF
Lesson 2: A Catalog of Essential Functions (slides)
Matthew Leingang
 
PDF
Educell Maths Sample
sracy.com
 
PPTX
AMU - Mathematics - 1996
Vasista Vinuthan
 
PDF
Engr 213 midterm 2b sol 2010
akabaka12
 
PDF
solving a trig problem and sketching a graph example problems
Tyler Murphy
 
Precalc review for calc p pt
gregcross22
 
C3 January 2012 QP
anicholls1234
 
Graphing Exponentials
teachingfools
 
Chapter 1 (math 1)
Amr Mohamed
 
Mathematics
Rapson Pyakurel
 
Functions
Educación
 
VIT - Mathematics -2007 Unsolved Paper
Vasista Vinuthan
 
Mathematical physics group 16
derry92
 
C4 January 2012 QP
anicholls1234
 
AMU - Mathematics - 2000
Vasista Vinuthan
 
Graph functions
daisy_yani
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
Linear Equations And Graphing
Mr. Hobbs
 
Lesson 2: A Catalog of Essential Functions (slides)
Mel Anthony Pepito
 
Lesson 2: A Catalog of Essential Functions (slides)
Matthew Leingang
 
Educell Maths Sample
sracy.com
 
AMU - Mathematics - 1996
Vasista Vinuthan
 
Engr 213 midterm 2b sol 2010
akabaka12
 
solving a trig problem and sketching a graph example problems
Tyler Murphy
 
Ad

More from Faiza Saher (8)

PPTX
Basic CCNA course 1 (CISCO SYSTEMS).pptx
Faiza Saher
 
PPT
Lecture 05
Faiza Saher
 
PPT
Chapter3
Faiza Saher
 
PPT
Ch04
Faiza Saher
 
PPT
Lecture 1 wireless
Faiza Saher
 
PDF
Modern digital and analog communications systems by b p-lathi-solutions-manual
Faiza Saher
 
PDF
Fourier series 1
Faiza Saher
 
PDF
Fourier series
Faiza Saher
 
Basic CCNA course 1 (CISCO SYSTEMS).pptx
Faiza Saher
 
Lecture 05
Faiza Saher
 
Chapter3
Faiza Saher
 
Lecture 1 wireless
Faiza Saher
 
Modern digital and analog communications systems by b p-lathi-solutions-manual
Faiza Saher
 
Fourier series 1
Faiza Saher
 
Fourier series
Faiza Saher
 

Recently uploaded (20)

PPTX
CDH. pptx
AneetaSharma15
 
PPTX
How to Manage Leads in Odoo 18 CRM - Odoo Slides
Celine George
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PPTX
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
DOCX
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
PPTX
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
PDF
Virat Kohli- the Pride of Indian cricket
kushpar147
 
PPTX
Care of patients with elImination deviation.pptx
AneetaSharma15
 
PPTX
Cleaning Validation Ppt Pharmaceutical validation
Ms. Ashatai Patil
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
PPTX
Tips Management in Odoo 18 POS - Odoo Slides
Celine George
 
PDF
What is CFA?? Complete Guide to the Chartered Financial Analyst Program
sp4989653
 
PPTX
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PDF
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
PPTX
A Smarter Way to Think About Choosing a College
Cyndy McDonald
 
PPTX
Gupta Art & Architecture Temple and Sculptures.pptx
Virag Sontakke
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PPTX
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
PDF
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
CDH. pptx
AneetaSharma15
 
How to Manage Leads in Odoo 18 CRM - Odoo Slides
Celine George
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
Virat Kohli- the Pride of Indian cricket
kushpar147
 
Care of patients with elImination deviation.pptx
AneetaSharma15
 
Cleaning Validation Ppt Pharmaceutical validation
Ms. Ashatai Patil
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
Tips Management in Odoo 18 POS - Odoo Slides
Celine George
 
What is CFA?? Complete Guide to the Chartered Financial Analyst Program
sp4989653
 
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
A Smarter Way to Think About Choosing a College
Cyndy McDonald
 
Gupta Art & Architecture Temple and Sculptures.pptx
Virag Sontakke
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 

1010n3a

  • 1. ECE 1010 ECE Problem Solving I MATLAB 3 Functions Overview In this chapter we start studying the many, many, mathematical functions that are included in MATLAB. Some time will be spent introducing complex variables and how MATLAB handles them. Later we will learn how to write custom (user written) functions which are a special form of m-file. Two dimensional plotting functions will be introduced. We will also explore programming constructs for flow control (if-else-elseif code blocks) and looping (for loop etc.). Next data analysis functions will be investigated, which includes sample statistics and histogram plot- ting functions. Chapter 3: Overview 3–1
  • 2. ECE 1010 ECE Problem Solving I Mathematical Functions Common Math Functions Table 3.1: Common math functions Function Description Function Description abs(x) x sqrt(x) x round(x) nearest integer fix(x) nearest integer floor(x) nearest integer ceil(x) nearest integer toward – ∞ toward ∞ sign(x) rem(x,y) the remainder  – 1, x < 0  of x ⁄ y  0, x = 0   1, x > 0 exp(x) x log(x) natural log ln x e log10(x) log base 10 log 10 x Examples: » x = [-5.5 5.5]; » round(x) ans = -6 6 » fix(x) ans = -5 5 » floor(x) ans = -6 5 » ceil(x) Chapter 3: Mathematical Functions 3–2
  • 3. ECE 1010 ECE Problem Solving I ans = -5 6 » sign(x) ans = -1 1 » rem(23,6) ans = 5 Trigonometric and Hyperbolic Functions • Unlike pocket calculators, the trigonometric functions always assume the input argument is in radians • The inverse trigonometric functions produce outputs that are in radians Table 3.2: Trigonometric functions Function Description Function Description sin(x) sin ( x ) cos(x) cos ( x ) tan(x) tan ( x ) asin(x) –1 sin ( x ) acos(x) –1 atan(x) –1 cos ( x ) tan ( x ) atan2(y, the inverse tan- x) gent of y ⁄ x including the correct quad- rant Examples: 2 2 • A simple verification that sin ( x ) + cos ( x ) = 1 Chapter 3: Mathematical Functions 3–3
  • 4. ECE 1010 ECE Problem Solving I » x = 0:pi/10:pi; » [x' sin(x)' cos(x)' (sin(x).^2+cos(x).^2)'] ans = 0 0 1.0000 1.0000 0.3142 0.3090 0.9511 1.0000 0.6283 0.5878 0.8090 1.0000 0.9425 0.8090 0.5878 1.0000 1.2566 0.9511 0.3090 1.0000 1.5708 1.0000 0.0000 1.0000 1.8850 0.9511 -0.3090 1.0000 2.1991 0.8090 -0.5878 1.0000 2.5133 0.5878 -0.8090 1.0000 2.8274 0.3090 -0.9511 1.0000 3.1416 0.0000 -1.0000 1.0000 • Parametric plotting: – Verify that by plotting sin θ versus cos θ for 0 ≤ θ ≤ 2π we obtain a circle » theta = 0:2*pi/100:2*pi; % Span 0 to 2pi with 100 pts » plot(cos(theta),sin(theta)); axis('square') » title('Parametric Plotting','fontsize',18) » ylabel('y - axis','fontsize',14) » xlabel('x - axis','fontsize',14) » figure(2) » hold Current plot held » plot(cos(5*theta).*cos(theta), ... cos(5*theta).*sin(theta)); % A five-leaved rose Chapter 3: Mathematical Functions 3–4
  • 5. ECE 1010 ECE Problem Solving I Parametric Plotting 1 Circle 0.8 0.6 0.4 Rose 0.2 y - axis 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 x - axis • The trig functions are what you would expect, except the fea- tures of atan2(y,x) may be unfamiliar y y 4 2 x 2 x φ 1 = 0.4636 4 φ 2 = – 2.0344 Chapter 3: Mathematical Functions 3–5
  • 6. ECE 1010 ECE Problem Solving I » [atan(2/4) atan2(2,4)] ans = 0.4636 0.4636 % the same » [atan(-4/-2) atan2(-4,-2)] ans = 1.1071 -2.0344 % different; why? x • The hyperbolic functions are defined in terms of e Table 3.3: Hyperbolic functions Function Description Function Description sinh(x) x –x cosh(x) x –x e –e e –e ----------------- - ----------------- - 2 2 tanh(x) x –x asinh(x) 2 e –e ------------------ ln ( x + x + 1 ) x –x e +e acosh(x) 2 atanh(x) 1+x ln ( x + x – 1 ) ln -----------, x ≤ 1 - 1–x • There are no special concerns in the use of these functions except that atanh requires an argument that must not exceed an absolute value of one Complex Number Functions • Before discussing these functions we first review a few facts about complex variable theory • In electrical engineering complex numbers appear frequently • A complex number is an ordered pair of real numbers1 1. Tom M. Apostle, Mathematical Analysis, second edition, Addison Wesley, p. 15, 1974. Chapter 3: Mathematical Functions 3–6
  • 7. ECE 1010 ECE Problem Solving I denoted ( a, b ) – The first number, a, is called the real part, while the second number, b, is called the imaginary part – For algebraic manipulation purposes we write ( a, b ) = a + ib = a + jb where i = j = – 1 ; electrical engineers typically use j since i is often used to denote cur- rent Note: –1 × –1 = –1 ⇒ j × j = –1 • For complex numbers z 1 = a 1 + jb 1 and z 2 = a 2 + jb 2 we define/calculate z1 + z2 = ( a1 + a2 ) + j ( b1 + b2 ) (sum) z 1 – z 2 = ( a 1 – a 2 ) + j ( b 1 – b 2 ) (difference) z 1 z 2 = ( a 1 a 2 – b 1 b 2 ) + j ( a 1 b 2 + b 1 a 2 ) (product) z1 ( a1 a2 + b1 b2 ) – j ( a1 b2 – b1 a2 ) ---- = --------------------------------------------------------------------------- (quotient) - z2 2 2 a +b 2 2 2 2 z1 = a 1 + b 1 (magnitude) –1 ∠z 1 = tan ( b 1 ⁄ a 1 ) (angle) z 1∗ = a 1 – jb 1 (complex conjugate) • MATLAB is consistent with all of the above, starting with the fact that i and j are predefined to be – 1 Chapter 3: Mathematical Functions 3–7
  • 8. ECE 1010 ECE Problem Solving I • The rectangular form of a complex number is as defined above, z = ( a, b ) = a + jb • The corresponding polar form is z = r ∠θ 2 2 –1 where r = a + b and θ = tan ( b ⁄ a ) Imaginary Axis Complex Plane b r θ Real a Axis • MATLAB has five basic complex functions, but in reality most all of MATLAB’s functions accept complex arguments and deal with them correctly Table 3.4: Basic complex functions Function Description conj(x) Computes the conjugate of z = a + jb which is z∗ = a – jb real(x) Extracts the real part of z = a + jb which is real ( z ) = a imag(x) Extracts the imaginary part of z = a + jb which is imag ( z ) = b Chapter 3: Mathematical Functions 3–8
  • 9. ECE 1010 ECE Problem Solving I Table 3.4: Basic complex functions Function Description angle(x) computes the angle of z = a + jb using atan2 which is atan2(imag(z),real(z)) Euler’s Formula: A special mathematical result of, special importance to electrical engineers, is the fact that jb e = cos b + j sin b (3.1) • Turning (3.1) around yields jθ – jθ e –e sin θ = --------------------- - (3.2) 2j jθ – jθ e +e cos θ = --------------------- - (3.3) 2 • It also follows that jθ z = a + jb = re (3.4) where 2 2 –1 b r= a + b , θ = tan --, a = r cos θ, b = r sin θ - a Chapter 3: Mathematical Functions 3–9
  • 10. ECE 1010 ECE Problem Solving I • Some examples: » z1 = 2+j*4; z2 = -5+j*7; » [z1 z2] ans = 2.0000 + 4.0000i -5.0000 + 7.0000i » [real(z1) imag(z1) abs(z1) angle(z1)] ans = 2.0000 4.0000 4.4721 1.1071 » [conj(z1) conj(z2)] ans = 2.0000 - 4.0000i -5.0000 - 7.0000i » [z1+z2 z1-z2 z1*z2 z1/z2] ans = -3.0000 +11.0000i 7.0000 - 3.0000i -38.0000 - 6.0000i 0.2432 - 0.4595i Polar Plots: When dealing with complex numbers we often deal with the polar form. The plot command which directly plots vec- tors of magnitude and angle is polar(theta,r) • This function is also useful for general plotting • As an example the equation of a cardioid in polar form, with parameter a, is r = a ( 1 + cos θ ), 0 ≤ θ ≤ 2π » theta = 0:2*pi/100:2*pi; % Span 0 to 2pi with 100 pts » r = 1+cos(theta); » polar(theta,r) Chapter 3: Mathematical Functions 3–10
  • 11. ECE 1010 ECE Problem Solving I 90 Polar Plot 2 120 60 1.5 150 1 30 0.5 180 0 210 330 240 300 270 Chapter 3: Mathematical Functions 3–11