The document presents a new method for segmenting MR brain images that combines a hidden Markov random field (HMRF) model with a hybrid metaheuristic optimization algorithm. The HMRF model uses adaptive parameters to balance contributions from different tissue classes during segmentation. The hybrid metaheuristic algorithm improves the quality of solutions during HMRF optimization by combining the cuckoo search and particle swarm optimization algorithms. Experimental results on simulated and real MR brain images show the proposed method achieves satisfactory segmentation performance for images with noise and intensity inhomogeneity.