SlideShare a Scribd company logo
10x Performance Improvements
          in 10 steps
    A MySQL Case Study
                Ronald Bradford
           http://ronaldbradford.com

       MySQL Users Conference - 2010.04
Application
Typical Web 2.0 social media site (Europe based)

• Users - Visitors, Free Members, Paying Members
• Friends
• User Content - Video, Pictures
• Forums, Chat, Email
Server Environment
• 1 Master Database Server (MySQL 5.0.x)
• 3 Slave Database Servers (MySQL 5.0.x)
• 5 Web Servers (Apache/PHP)
• 1 Static Content Server (Nginx)
• 1 Mail Server
Step 1


Monitor, Monitor, Monitor
1. Monitor, Monitor, Monitor
• What’s happened?
• What’s happening now?
• What’s going to happen?

             Past, Present, Future
1. Monitor, Monitor, Monitor
                                                            Action 1
Monitoring Software

• Installation of Cacti http://www.cacti.net/
                      -



• Installation of MySQL Cacti Templates     -
  http://code.google.com/p/mysql-cacti-templates/

• (Optional) Installation of MONyog   -   http://www.webyog.com/
1. Monitor, Monitor, Monitor
                                            Action 2
Custom Dashboard

• Most important - The state of NOW
• Single Page Alerts - GREEN YELLOW   RED
Screen print goes here




                         Dashboard
                          Example
1. Monitor, Monitor, Monitor
                                                  Action 3
Alerting Software

• Installation of Nagios http://www.nagios.org/
                       -



• MONyog also has some DB specific alerts
1. Monitor, Monitor, Monitor
                               Action 4
Application Metrics

• Total page generation time
Step 2


  Identify problem SQL
2. Identify Problem SQL
Identify SQL Statements

• Slow Query Log
• Processlist
• Binary Log
• Status Statistics
2. Identify Problem SQL
Problems

• Sampling
• Granularity
Solution

• tcpdump + mk-query-digest
2. Identify Problem SQL
                                                                Action 1
• Install maatkit - http://www.maatkit.org
• Install OS tcpdump (if necessary)
• Get sudo access to tcpdump

http://ronaldbradford.com/blog/take-a-look-at-mk-query-digest-2009-10-08/
# Rank Query ID           Response time    Calls    R/Call       Item
# ==== ================== ================ ======= ==========    ====
#    1 0xB8CE56EEC1A2FBA0    14.0830 26.8%       78   0.180552   SELECT   c u
#    2 0x195A4D6CB65C4C53     6.7800 12.9%     257    0.026381   SELECT   u
#    3 0xCD107808735A693C     3.7355 7.1%         8   0.466943   SELECT   c u
#    4 0xED55DD72AB650884     3.6225 6.9%        77   0.047046   SELECT   u
#    5 0xE817EFFFF5F6FFFD     3.3616 6.4%      147    0.022868   SELECT   UNION c
#    6 0x15FD03E7DB5F1B75     2.8842 5.5%         2   1.442116   SELECT   c u
#    7 0x83027CD415FADB8B     2.8676 5.5%        70   0.040965   SELECT   c u
#    8 0x1577013C472FD0C6     1.8703 3.6%        61   0.030660   SELECT   c
#    9 0xE565A2ED3959DF4E     1.3962 2.7%         5   0.279241   SELECT   c t u
#   10 0xE15AE2542D98CE76     1.3638 2.6%         6   0.227306   SELECT   c
#   11 0x8A94BB83CB730494     1.2523 2.4%      148    0.008461   SELECT   hv u
#   12 0x959C3B3A967928A6     1.1663 2.2%         5   0.233261   SELECT   c t u
#   13 0xBC6E3F701328E95E     1.1122 2.1%         4   0.278044   SELECT   c t u
# Query 2: 4.94 QPS, 0.13x concurrency, ID 0x195A4D6CB65C4C53 at byte 4851683
# This item is included in the report because it matches --limit.
#              pct   total     min     max     avg     95% stddev median
# Count          3      257
# Exec time     10       7s   35us   492ms    26ms   189ms    78ms    332us
# Time range 2009-10-16 11:48:55.896978 to 2009-10-16 11:49:47.760802
# bytes          2 10.75k       41      43   42.85   42.48    0.67    42.48
# Errors                  1   none
# Rows affe      0        0       0      0       0       0        0       0
# Warning c      0        0       0      0       0       0        0       0
# Query_time distribution
#   1us
# 10us #
# 100us ################################################################
#   1ms ####
# 10ms ###
# 100ms ########
#    1s
# 10s+
# Tables
#    SHOW TABLE STATUS LIKE 'u'G
#    SHOW CREATE TABLE `u`G
# EXPLAIN
SELECT ... FROM u ...G
2. Identify Problem SQL
                                          Action 2
• Wrappers to capture SQL
• Re-run on single/multiple servers
  • e.g. Different slave configurations
2. Identify Problem SQL
                                                    Tip

• Enable General Query Log in Development/Testing
• Great for testing Batch Jobs
2. Identify Problem SQL
                                                       Action 3
Application Logic

• Show total master/slave SQL statements executed
• Show all SQL with execution time (admin user only)
                                                        Tip

• Have abstracted class/method to execute ALL SQL
Step 3


  Analyze problem SQL
3. Analyze Problem SQL
• Query Execution Plan (QEP)
  • EXPLAIN [EXTENDED] SELECT ...
• Table/Index Structure
  • SHOW CREATE TABLE <tablename>G
• Table Statistics
  • SHOW TABLE STATUS LIKE ‘<tablename>’G
3. Analyze Problem SQL                                Good

mysql> EXPLAIN SELECT id FROM example_table WHERE id=1G

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: example_table
         type: const
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: const
         rows: 1
        Extra: Using index
3. Analyze Problem SQL                                Bad

  mysql> EXPLAIN SELECT * FROM example_tableG

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: example_table
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 659
        Extra:
3. Analyze Problem SQL                 Tip

• SQL Commenting
   • Identify batch statement SQL
   • Identify cached SQL

  SELECT /* Cache: 10m */ ....
  SELECT /* Batch: EOD report */ ...
  SELECT /* Func: 123 */        ....
Step 4


    The Art of Indexes
4. The Art of Indexes
• Different Types
  • Column
  • Concatenated
  • Covering
  • Partial
http://ronaldbradford.com/blog/understanding-different-mysql-index-implementations-2009-07-22/
4. The Art of Indexes
                        Action 1
• EXPLAIN Output
  • Possible keys
  • Key used
  • Key length
  • Using Index
4. The Art of Indexes                     Tip

• Generally only 1 index used per table
• Make column NOT NULL when possible
• Statistics affect index choices
• Storage engines affect operations
Before (7.88 seconds)                    After (0.04 seconds)
*************************** 2. row **   *************************** 2. row ***
           id: 2                                   id: 2
  select_type: DEPENDENT SUBQUERY         select_type: DEPENDENT SUBQUERY
        table: h_p                              table: h_p
         type: ALL                               type: index_subquery
possible_keys: NULL                     possible_keys: UId
          key: NULL                               key: UId
      key_len: NULL                           key_len: 4
          ref: NULL                               ref: func
         rows: 33789                             rows: 2
        Extra: Using where                      Extra: Using index



         ALTER TABLE h_p ADD INDEX (UId);
mysql> explain SELECT UID, FUID, COUNT(*) AS Count FROM f
               GROUP BY UID, FUID ORDER BY Count DESC LIMIT 2000G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: f
         type: index
possible_keys: NULL
          key: UID
      key_len: 8
          ref: NULL
         rows: 2151326
        Extra: Using index; Using temporary; Using filesort



ALTER TABLE f DROP INDEX UID,
ADD INDEX (UID,FUID)
4. The Art of Indexes



  Indexes can hurt performance
Step 5


 Offloading Master Load
5. Offloading Master Load
• Identify statements for READ ONLY slave(s)
  • e.g. Long running batch statements



  Single point v scalable solution
Step 6


         Improving SQL
6. Improving SQL
• Poor SQL Examples
   • ORDER BY RAND()
   • SELECT *
   • Lookup joins
   • ORDER BY
         The database is best for storing
          and retrieving data not logic
Step 7


     Storage Engines
7. Storage Engines
• MyISAM is default
• Table level locking
  • Concurrent SELECT statements
  • INSERT/UPDATE/DELETE blocked by long running SELECT
  • All SELECT’s blocked by INSERT/UPDATE/DELETE
• Supports FULLTEXT
7. Storage Engines
• InnoDB supports transactions
• Row level locking with MVCC
• Does not support FULLTEXT
• Different memory management
• Different system variables
7. Storage Engines
• There are other storage engines
  • Memory
  • Archive
  • Blackhole
  • Third party
7. Storage Engines
Using Multiple Engines

• Different memory management
• Different system variables
• Different monitoring
• Affects backup strategy
7. Storage Engines
                                     Action 1
• Configure InnoDB correctly
  • innodb_buffer_pool_size
  • innodb_log_file_size
  • innodb_flush_log_at_trx_commit
7. Storage Engines
                                     Action 2
• Converted the two primary tables
   • Users
   • Content

              Locking eliminated
Step 8


         Caching
8. Caching
                                                  Action 1
• Memcache is your friend http://memcached.org/
                         -



  • Cache query results
  • Cache lookup data (eliminate joins)
  • Cache aggregated per user information
• Caching Page Content
  • Top rated (e.g. for 5 minutes)
8. Caching
                                              Action 2
• MySQL has a Query Cache
  • Determine the real benefit
  • Turn on or off dynamically
  • SET GLOBAL query_cache_size   = 1024*1024*32;
8. Caching                        Tip




     The best performance
    improvement for an SQL
  statement is to eliminate it.
Step 9


         Sharding
9. Sharding
• Application level horizontal and vertical partitioning
• Vertical Partitioning
  • Grouping like structures together (e.g. logging, forums)
• Horizontal Partitioning
  • Affecting a smaller set of users (i.e. not 100%)
9. Sharding
                                                  Action 1
• Separate Logging
   • Reduced replication load on primary server
Step 10


 Database Management
10. Database Management
Database Maintenance

• Adding indexes (e.g. ALTER)
• OPTIMIZE TABLE
• Archive/purging data (e.g DELETE)

             Blocking Operations
10. Database Maintenance
                                          Action 1
• Automate slave inclusion/exclusion
• Ability to apply DB changes to slaves
• Master still a problem
10. Database Maintenance
                                             Action 2
• Install Fail-Over Master Server
  • Slave + Master features
  • Master extra configuration
• Scripts to switch slaves
• Scripts to enable/disable Master(s)
• Scripts to change application connection
10. Database Maintenance

      Higher Availability
              &
   Testing Disaster Recovery
Bonus




Front End Improvements
11. Front End Improvements
• Know your total website load time http://getfirebug.com/
                                   -



  • How much time is actually database related?
• Reduce HTML page size - 15% improvement
  • Remove full URL’s, inline css styles
• Reduce/combine css & js files
• Identify blocking elements (e.g. js)
11. Front End Improvements
• Split static content to different ServerName
• Spread static content over multiple ServerNames (e.g. 3)
• Sprites - Combining lightweight images http://spriteme.org/
                                        -



• Cookie-less domain name for static content
Conclusion
Before
• Users experienced slow or unreliable load times
• Management could observe, but no quantifiable details
• Concern over load for increased growth
• Release of some new features on hold
Now
• Users experienced consistent load times (~60ms)
 • Quantifiable and visible real-time results
• Far greater load now supported (Clients + DB)
• Better testability and verification for scaling
• New features can be deployed
Consulting Available Now


  http://ronaldbradford.com

More Related Content

What's hot (20)

PDF
MySQL Idiosyncrasies That Bite SF
Ronald Bradford
 
PDF
New features in Performance Schema 5.7 in action
Sveta Smirnova
 
PDF
Performance Schema for MySQL troubleshooting
Sveta Smirnova
 
PDF
Troubleshooting MySQL Performance
Sveta Smirnova
 
PDF
Introduction to MySQL InnoDB Cluster
I Goo Lee
 
PDF
Developers’ mDay 2021: Bogdan Kecman, Oracle – MySQL nekad i sad
mCloud
 
PDF
MySQL Document Store
I Goo Lee
 
PDF
MySQL Troubleshooting with the Performance Schema
Sveta Smirnova
 
PDF
Basic MySQL Troubleshooting for Oracle DBAs
Sveta Smirnova
 
PDF
UKOUG 2011: Practical MySQL Tuning
FromDual GmbH
 
PDF
MySQL JSON Functions
Sveta Smirnova
 
PDF
Mysql 56-experiences-bugs-solutions-50mins
Valeriy Kravchuk
 
PDF
Highload Perf Tuning
HighLoad2009
 
PDF
MySQL 5.7 + JSON
Morgan Tocker
 
PDF
MySQL Replication Update - DEbconf 2020 presentation
Dave Stokes
 
PDF
Introducing new SQL syntax and improving performance with preparse Query Rewr...
Sveta Smirnova
 
PDF
My sql tutorial-oscon-2012
John David Duncan
 
PDF
MySQL Performance schema missing_manual_flossuk
Valeriy Kravchuk
 
PDF
Optimizing MySQL
Morgan Tocker
 
PPTX
My sql administration
Mohd yasin Karim
 
MySQL Idiosyncrasies That Bite SF
Ronald Bradford
 
New features in Performance Schema 5.7 in action
Sveta Smirnova
 
Performance Schema for MySQL troubleshooting
Sveta Smirnova
 
Troubleshooting MySQL Performance
Sveta Smirnova
 
Introduction to MySQL InnoDB Cluster
I Goo Lee
 
Developers’ mDay 2021: Bogdan Kecman, Oracle – MySQL nekad i sad
mCloud
 
MySQL Document Store
I Goo Lee
 
MySQL Troubleshooting with the Performance Schema
Sveta Smirnova
 
Basic MySQL Troubleshooting for Oracle DBAs
Sveta Smirnova
 
UKOUG 2011: Practical MySQL Tuning
FromDual GmbH
 
MySQL JSON Functions
Sveta Smirnova
 
Mysql 56-experiences-bugs-solutions-50mins
Valeriy Kravchuk
 
Highload Perf Tuning
HighLoad2009
 
MySQL 5.7 + JSON
Morgan Tocker
 
MySQL Replication Update - DEbconf 2020 presentation
Dave Stokes
 
Introducing new SQL syntax and improving performance with preparse Query Rewr...
Sveta Smirnova
 
My sql tutorial-oscon-2012
John David Duncan
 
MySQL Performance schema missing_manual_flossuk
Valeriy Kravchuk
 
Optimizing MySQL
Morgan Tocker
 
My sql administration
Mohd yasin Karim
 

Similar to 10x Performance Improvements (20)

PDF
Scaling MySQL Strategies for Developers
Jonathan Levin
 
PDF
Quick Wins
HighLoad2009
 
PDF
Performance Schema for MySQL Troubleshooting
Sveta Smirnova
 
PDF
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Daniel Coupal
 
PDF
6 tips for improving ruby performance
Engine Yard
 
PDF
Query Optimization with MySQL 5.6: Old and New Tricks
MYXPLAIN
 
PDF
What you wanted to know about MySQL, but could not find using inernal instrum...
Sveta Smirnova
 
PDF
MySQL 5.7 in a Nutshell
Emily Ikuta
 
PDF
MySQL Performance Schema in Action
Sveta Smirnova
 
PDF
Vendor session myFMbutler DoSQL 2
Koen Van Hulle
 
PPTX
Hack through Injections
Nazar Tymoshyk, CEH, Ph.D.
 
PDF
MySQL Performance Schema in 20 Minutes
Sveta Smirnova
 
PPTX
Database training for developers
Bhaveshkumar Thakkar
 
PDF
Performance Schema in Action: demo
Sveta Smirnova
 
PDF
sveta smirnova - my sql performance schema in action
Dariia Seimova
 
PDF
MFF UK - Advanced iOS Topics
Petr Dvorak
 
PPTX
Sql killedserver
ColdFusionConference
 
PPTX
My SQL Skills Killed the Server
devObjective
 
PDF
MySQL Performance Schema in Action: the Complete Tutorial
Sveta Smirnova
 
PDF
Building source code level profiler for C++.pdf
ssuser28de9e
 
Scaling MySQL Strategies for Developers
Jonathan Levin
 
Quick Wins
HighLoad2009
 
Performance Schema for MySQL Troubleshooting
Sveta Smirnova
 
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Daniel Coupal
 
6 tips for improving ruby performance
Engine Yard
 
Query Optimization with MySQL 5.6: Old and New Tricks
MYXPLAIN
 
What you wanted to know about MySQL, but could not find using inernal instrum...
Sveta Smirnova
 
MySQL 5.7 in a Nutshell
Emily Ikuta
 
MySQL Performance Schema in Action
Sveta Smirnova
 
Vendor session myFMbutler DoSQL 2
Koen Van Hulle
 
Hack through Injections
Nazar Tymoshyk, CEH, Ph.D.
 
MySQL Performance Schema in 20 Minutes
Sveta Smirnova
 
Database training for developers
Bhaveshkumar Thakkar
 
Performance Schema in Action: demo
Sveta Smirnova
 
sveta smirnova - my sql performance schema in action
Dariia Seimova
 
MFF UK - Advanced iOS Topics
Petr Dvorak
 
Sql killedserver
ColdFusionConference
 
My SQL Skills Killed the Server
devObjective
 
MySQL Performance Schema in Action: the Complete Tutorial
Sveta Smirnova
 
Building source code level profiler for C++.pdf
ssuser28de9e
 
Ad

More from Ronald Bradford (20)

PDF
Successful Scalability Principles - Part 1
Ronald Bradford
 
PDF
MySQL Backup and Recovery Essentials
Ronald Bradford
 
PDF
The History and Future of the MySQL ecosystem
Ronald Bradford
 
PDF
Lessons Learned Managing Large AWS Environments
Ronald Bradford
 
PDF
Monitoring your technology stack with New Relic
Ronald Bradford
 
PDF
MySQL Scalability Mistakes - OTN
Ronald Bradford
 
PDF
My SQL Idiosyncrasies That Bite OTN
Ronald Bradford
 
PDF
Successful MySQL Scalability
Ronald Bradford
 
PDF
MySQL Idiosyncrasies That Bite 2010.07
Ronald Bradford
 
PDF
Capturing, Analyzing and Optimizing MySQL
Ronald Bradford
 
PDF
MySQL Idiosyncrasies That Bite
Ronald Bradford
 
PDF
LIFTOFF - MySQLCamp for the Oracle DBA
Ronald Bradford
 
PDF
IGNITION - MySQLCamp for the Oracle DBA
Ronald Bradford
 
PDF
Dolphins Now And Beyond - FOSDEM 2010
Ronald Bradford
 
PDF
Drizzle - Status, Principles and Ecosystem
Ronald Bradford
 
PDF
SQL v No SQL
Ronald Bradford
 
PDF
MySQL for the Oracle DBA - Object Management
Ronald Bradford
 
PDF
Know Your Competitor - Oracle 10g Express Edition
Ronald Bradford
 
PDF
MySQL For Oracle DBA's and Developers
Ronald Bradford
 
PDF
MySQL For Oracle Developers
Ronald Bradford
 
Successful Scalability Principles - Part 1
Ronald Bradford
 
MySQL Backup and Recovery Essentials
Ronald Bradford
 
The History and Future of the MySQL ecosystem
Ronald Bradford
 
Lessons Learned Managing Large AWS Environments
Ronald Bradford
 
Monitoring your technology stack with New Relic
Ronald Bradford
 
MySQL Scalability Mistakes - OTN
Ronald Bradford
 
My SQL Idiosyncrasies That Bite OTN
Ronald Bradford
 
Successful MySQL Scalability
Ronald Bradford
 
MySQL Idiosyncrasies That Bite 2010.07
Ronald Bradford
 
Capturing, Analyzing and Optimizing MySQL
Ronald Bradford
 
MySQL Idiosyncrasies That Bite
Ronald Bradford
 
LIFTOFF - MySQLCamp for the Oracle DBA
Ronald Bradford
 
IGNITION - MySQLCamp for the Oracle DBA
Ronald Bradford
 
Dolphins Now And Beyond - FOSDEM 2010
Ronald Bradford
 
Drizzle - Status, Principles and Ecosystem
Ronald Bradford
 
SQL v No SQL
Ronald Bradford
 
MySQL for the Oracle DBA - Object Management
Ronald Bradford
 
Know Your Competitor - Oracle 10g Express Edition
Ronald Bradford
 
MySQL For Oracle DBA's and Developers
Ronald Bradford
 
MySQL For Oracle Developers
Ronald Bradford
 
Ad

10x Performance Improvements

  • 1. 10x Performance Improvements in 10 steps A MySQL Case Study Ronald Bradford http://ronaldbradford.com MySQL Users Conference - 2010.04
  • 2. Application Typical Web 2.0 social media site (Europe based) • Users - Visitors, Free Members, Paying Members • Friends • User Content - Video, Pictures • Forums, Chat, Email
  • 3. Server Environment • 1 Master Database Server (MySQL 5.0.x) • 3 Slave Database Servers (MySQL 5.0.x) • 5 Web Servers (Apache/PHP) • 1 Static Content Server (Nginx) • 1 Mail Server
  • 5. 1. Monitor, Monitor, Monitor • What’s happened? • What’s happening now? • What’s going to happen? Past, Present, Future
  • 6. 1. Monitor, Monitor, Monitor Action 1 Monitoring Software • Installation of Cacti http://www.cacti.net/ - • Installation of MySQL Cacti Templates - http://code.google.com/p/mysql-cacti-templates/ • (Optional) Installation of MONyog - http://www.webyog.com/
  • 7. 1. Monitor, Monitor, Monitor Action 2 Custom Dashboard • Most important - The state of NOW • Single Page Alerts - GREEN YELLOW RED
  • 8. Screen print goes here Dashboard Example
  • 9. 1. Monitor, Monitor, Monitor Action 3 Alerting Software • Installation of Nagios http://www.nagios.org/ - • MONyog also has some DB specific alerts
  • 10. 1. Monitor, Monitor, Monitor Action 4 Application Metrics • Total page generation time
  • 11. Step 2 Identify problem SQL
  • 12. 2. Identify Problem SQL Identify SQL Statements • Slow Query Log • Processlist • Binary Log • Status Statistics
  • 13. 2. Identify Problem SQL Problems • Sampling • Granularity Solution • tcpdump + mk-query-digest
  • 14. 2. Identify Problem SQL Action 1 • Install maatkit - http://www.maatkit.org • Install OS tcpdump (if necessary) • Get sudo access to tcpdump http://ronaldbradford.com/blog/take-a-look-at-mk-query-digest-2009-10-08/
  • 15. # Rank Query ID Response time Calls R/Call Item # ==== ================== ================ ======= ========== ==== # 1 0xB8CE56EEC1A2FBA0 14.0830 26.8% 78 0.180552 SELECT c u # 2 0x195A4D6CB65C4C53 6.7800 12.9% 257 0.026381 SELECT u # 3 0xCD107808735A693C 3.7355 7.1% 8 0.466943 SELECT c u # 4 0xED55DD72AB650884 3.6225 6.9% 77 0.047046 SELECT u # 5 0xE817EFFFF5F6FFFD 3.3616 6.4% 147 0.022868 SELECT UNION c # 6 0x15FD03E7DB5F1B75 2.8842 5.5% 2 1.442116 SELECT c u # 7 0x83027CD415FADB8B 2.8676 5.5% 70 0.040965 SELECT c u # 8 0x1577013C472FD0C6 1.8703 3.6% 61 0.030660 SELECT c # 9 0xE565A2ED3959DF4E 1.3962 2.7% 5 0.279241 SELECT c t u # 10 0xE15AE2542D98CE76 1.3638 2.6% 6 0.227306 SELECT c # 11 0x8A94BB83CB730494 1.2523 2.4% 148 0.008461 SELECT hv u # 12 0x959C3B3A967928A6 1.1663 2.2% 5 0.233261 SELECT c t u # 13 0xBC6E3F701328E95E 1.1122 2.1% 4 0.278044 SELECT c t u
  • 16. # Query 2: 4.94 QPS, 0.13x concurrency, ID 0x195A4D6CB65C4C53 at byte 4851683 # This item is included in the report because it matches --limit. # pct total min max avg 95% stddev median # Count 3 257 # Exec time 10 7s 35us 492ms 26ms 189ms 78ms 332us # Time range 2009-10-16 11:48:55.896978 to 2009-10-16 11:49:47.760802 # bytes 2 10.75k 41 43 42.85 42.48 0.67 42.48 # Errors 1 none # Rows affe 0 0 0 0 0 0 0 0 # Warning c 0 0 0 0 0 0 0 0 # Query_time distribution # 1us # 10us # # 100us ################################################################ # 1ms #### # 10ms ### # 100ms ######## # 1s # 10s+ # Tables # SHOW TABLE STATUS LIKE 'u'G # SHOW CREATE TABLE `u`G # EXPLAIN SELECT ... FROM u ...G
  • 17. 2. Identify Problem SQL Action 2 • Wrappers to capture SQL • Re-run on single/multiple servers • e.g. Different slave configurations
  • 18. 2. Identify Problem SQL Tip • Enable General Query Log in Development/Testing • Great for testing Batch Jobs
  • 19. 2. Identify Problem SQL Action 3 Application Logic • Show total master/slave SQL statements executed • Show all SQL with execution time (admin user only) Tip • Have abstracted class/method to execute ALL SQL
  • 20. Step 3 Analyze problem SQL
  • 21. 3. Analyze Problem SQL • Query Execution Plan (QEP) • EXPLAIN [EXTENDED] SELECT ... • Table/Index Structure • SHOW CREATE TABLE <tablename>G • Table Statistics • SHOW TABLE STATUS LIKE ‘<tablename>’G
  • 22. 3. Analyze Problem SQL Good mysql> EXPLAIN SELECT id FROM example_table WHERE id=1G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: example_table type: const possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: const rows: 1 Extra: Using index
  • 23. 3. Analyze Problem SQL Bad mysql> EXPLAIN SELECT * FROM example_tableG *************************** 1. row *************************** id: 1 select_type: SIMPLE table: example_table type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 659 Extra:
  • 24. 3. Analyze Problem SQL Tip • SQL Commenting • Identify batch statement SQL • Identify cached SQL SELECT /* Cache: 10m */ .... SELECT /* Batch: EOD report */ ... SELECT /* Func: 123 */ ....
  • 25. Step 4 The Art of Indexes
  • 26. 4. The Art of Indexes • Different Types • Column • Concatenated • Covering • Partial http://ronaldbradford.com/blog/understanding-different-mysql-index-implementations-2009-07-22/
  • 27. 4. The Art of Indexes Action 1 • EXPLAIN Output • Possible keys • Key used • Key length • Using Index
  • 28. 4. The Art of Indexes Tip • Generally only 1 index used per table • Make column NOT NULL when possible • Statistics affect index choices • Storage engines affect operations
  • 29. Before (7.88 seconds) After (0.04 seconds) *************************** 2. row ** *************************** 2. row *** id: 2 id: 2 select_type: DEPENDENT SUBQUERY select_type: DEPENDENT SUBQUERY table: h_p table: h_p type: ALL type: index_subquery possible_keys: NULL possible_keys: UId key: NULL key: UId key_len: NULL key_len: 4 ref: NULL ref: func rows: 33789 rows: 2 Extra: Using where Extra: Using index ALTER TABLE h_p ADD INDEX (UId);
  • 30. mysql> explain SELECT UID, FUID, COUNT(*) AS Count FROM f GROUP BY UID, FUID ORDER BY Count DESC LIMIT 2000G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: f type: index possible_keys: NULL key: UID key_len: 8 ref: NULL rows: 2151326 Extra: Using index; Using temporary; Using filesort ALTER TABLE f DROP INDEX UID, ADD INDEX (UID,FUID)
  • 31. 4. The Art of Indexes Indexes can hurt performance
  • 32. Step 5 Offloading Master Load
  • 33. 5. Offloading Master Load • Identify statements for READ ONLY slave(s) • e.g. Long running batch statements Single point v scalable solution
  • 34. Step 6 Improving SQL
  • 35. 6. Improving SQL • Poor SQL Examples • ORDER BY RAND() • SELECT * • Lookup joins • ORDER BY The database is best for storing and retrieving data not logic
  • 36. Step 7 Storage Engines
  • 37. 7. Storage Engines • MyISAM is default • Table level locking • Concurrent SELECT statements • INSERT/UPDATE/DELETE blocked by long running SELECT • All SELECT’s blocked by INSERT/UPDATE/DELETE • Supports FULLTEXT
  • 38. 7. Storage Engines • InnoDB supports transactions • Row level locking with MVCC • Does not support FULLTEXT • Different memory management • Different system variables
  • 39. 7. Storage Engines • There are other storage engines • Memory • Archive • Blackhole • Third party
  • 40. 7. Storage Engines Using Multiple Engines • Different memory management • Different system variables • Different monitoring • Affects backup strategy
  • 41. 7. Storage Engines Action 1 • Configure InnoDB correctly • innodb_buffer_pool_size • innodb_log_file_size • innodb_flush_log_at_trx_commit
  • 42. 7. Storage Engines Action 2 • Converted the two primary tables • Users • Content Locking eliminated
  • 43. Step 8 Caching
  • 44. 8. Caching Action 1 • Memcache is your friend http://memcached.org/ - • Cache query results • Cache lookup data (eliminate joins) • Cache aggregated per user information • Caching Page Content • Top rated (e.g. for 5 minutes)
  • 45. 8. Caching Action 2 • MySQL has a Query Cache • Determine the real benefit • Turn on or off dynamically • SET GLOBAL query_cache_size = 1024*1024*32;
  • 46. 8. Caching Tip The best performance improvement for an SQL statement is to eliminate it.
  • 47. Step 9 Sharding
  • 48. 9. Sharding • Application level horizontal and vertical partitioning • Vertical Partitioning • Grouping like structures together (e.g. logging, forums) • Horizontal Partitioning • Affecting a smaller set of users (i.e. not 100%)
  • 49. 9. Sharding Action 1 • Separate Logging • Reduced replication load on primary server
  • 50. Step 10 Database Management
  • 51. 10. Database Management Database Maintenance • Adding indexes (e.g. ALTER) • OPTIMIZE TABLE • Archive/purging data (e.g DELETE) Blocking Operations
  • 52. 10. Database Maintenance Action 1 • Automate slave inclusion/exclusion • Ability to apply DB changes to slaves • Master still a problem
  • 53. 10. Database Maintenance Action 2 • Install Fail-Over Master Server • Slave + Master features • Master extra configuration • Scripts to switch slaves • Scripts to enable/disable Master(s) • Scripts to change application connection
  • 54. 10. Database Maintenance Higher Availability & Testing Disaster Recovery
  • 56. 11. Front End Improvements • Know your total website load time http://getfirebug.com/ - • How much time is actually database related? • Reduce HTML page size - 15% improvement • Remove full URL’s, inline css styles • Reduce/combine css & js files • Identify blocking elements (e.g. js)
  • 57. 11. Front End Improvements • Split static content to different ServerName • Spread static content over multiple ServerNames (e.g. 3) • Sprites - Combining lightweight images http://spriteme.org/ - • Cookie-less domain name for static content
  • 59. Before • Users experienced slow or unreliable load times • Management could observe, but no quantifiable details • Concern over load for increased growth • Release of some new features on hold
  • 60. Now • Users experienced consistent load times (~60ms) • Quantifiable and visible real-time results • Far greater load now supported (Clients + DB) • Better testability and verification for scaling • New features can be deployed
  • 61. Consulting Available Now http://ronaldbradford.com

Editor's Notes

  • #8: Server (Ping, Uptime) Database Processlist (Total/Active/Idle/Locked) Database Replication (Up,Lag) Web Server (Page Load x 3, Page Size, http processes)
  • #13: Traditional Existing Methods
  • #29: InnoDb, the PK value is stored
  • #32: Too many indexes Disk volume Slows DML Index with unused columns
  • #36: Text fields network bandwidth temporary tables filesort
  • #52: Site is effectively unavailable
  • #53: DB Changes * Add indexes * Change Storage Engines * Change Table structure