Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
1
SMAN 12 MAKASSAR
SOAL DAN PEMBAHASAN LIMIT FUNGSI TRIGONOMETRI
1. Nilai lim
𝑥→
𝜋
3
2 tan 𝑥−sin 𝑥
cos 𝑥
= ⋯.
A. 3√3 D.
3
4
√3
B.
5
2
√3 E.
1
4
√3
C.
3
2
√3
Pembahasan
lim
𝑥→
𝜋
3
2 tan 𝑥 − sin 𝑥
cos 𝑥 =
2 tan
𝜋
3
− sin
𝜋
3
cos
𝜋
3
=
2. √3 −
1
2 √3
1
2
=
4√3 − √3
2
1
2
=
4√3 − √3
1
= 3√3
Jawaban A
2. Nilai lim
𝑥→
𝜋
4
sin 2𝑥
sin 𝑥+ cos 𝑥
= ⋯.
A. √2 D. 0
B.
1
2
√2 E. −1
C. 1
Pembahasan
lim
𝑥→
𝜋
4
sin 2𝑥
sin 𝑥 + cos 𝑥 =
sin 2.
𝜋
4
sin
𝜋
4
+ cos
𝜋
4
=
sin
𝜋
2
sin
𝜋
4
+ cos
𝜋
4
=
1
1
2 √2 +
1
2 √2
=
1
√2
=
1
2
√2
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
2
SMAN 12 MAKASSAR
3. Nilai lim
𝑥→
𝜋
4
1−2 𝑠𝑖𝑛2 𝑥
cos 𝑥−sin 𝑥
= ⋯.
A. 0 D. √2
B.
1
2
√2 E. ∞
C. 1
Pembahasan
lim
𝑥→
𝜋
4
1 − 2 𝑠𝑖𝑛2
𝑥
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
𝑐𝑜𝑠2
𝑥 + 𝑠𝑖𝑛2
𝑥 − 2 𝑠𝑖𝑛2
𝑥
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
𝑐𝑜𝑠2
𝑥 − 𝑠𝑖𝑛2
𝑥
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
(cos 𝑥 − sin 𝑥)(cos 𝑥 + sin 𝑥)
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
(cos 𝑥 + sin 𝑥)
= cos
𝜋
4
+ sin
𝜋
4
=
1
2
√2 +
1
2
√2
= √2
Jawaban D
4. Nilai lim
𝑥→
𝜋
4
cos 2𝑥
cos 𝑥−sin 𝑥
= ⋯.
A. −√2 D.
1
2
√2
B. −
1
2
√2 E. √2
C. 0
Pembahasan
lim
𝑥→
𝜋
4
cos 2𝑥
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
𝑐𝑜𝑠2
𝑥 − 𝑠𝑖𝑛2
𝑥
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
(cos 𝑥 − sin 𝑥)(cos 𝑥 + sin 𝑥)
cos 𝑥 − sin 𝑥
= lim
𝑥→
𝜋
4
(cos 𝑥 + sin 𝑥)
= cos
𝜋
4
+ sin
𝜋
4
=
1
2
√2 +
1
2
√2
= √2
Jawaban E
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
3
SMAN 12 MAKASSAR
5. Nilai lim
𝑥→
𝜋
4
1−2 sin 𝑥.cos 𝑥
sin 𝑥−cos 𝑥
= ⋯.
A. 1 D. 0
B.
1
2
√2 E. −1
C.
1
2
Pembahasan
lim
𝑥→
𝜋
4
1 − 2 sin 𝑥 . cos 𝑥
sin 𝑥 − cos 𝑥
= lim
𝑥→
𝜋
4
sin2x+cos2x−2 sin 𝑥.cos 𝑥
sin 𝑥−cos 𝑥
;karena sin2
x + cos2
x = 1
= lim
𝑥→
𝜋
4
(sin 𝑥 − cos 𝑥)2
sin 𝑥 − cos 𝑥
= lim
𝑥→
𝜋
4
(sin 𝑥 − cos 𝑥)
= sin
𝜋
4
− cos
𝜋
4
=
1
2
√2 −
1
2
√2
=0
Jawaban D
6. Nilai dari lim
𝑥→
𝜋
8
𝑠𝑖𝑛22𝑥−𝑐𝑜𝑠22𝑥
sin 2𝑥−cos 2𝑥
= ….
A. 0 D.
1
2
√2
B.
1
2
E. 1
C. √2
Pembahasan
lim
𝑥→
𝜋
8
𝑠𝑖𝑛2
2𝑥 − 𝑐𝑜𝑠2
2𝑥
sin 2𝑥 − cos 2𝑥
= lim
𝑥→
𝜋
8
(sin 2𝑥 − cos 2𝑥)(𝑠𝑖𝑛 2𝑥 + cos 2𝑥)
sin 2𝑥 − cos 2𝑥
= lim
𝑥→
𝜋
8
(𝑠𝑖𝑛 2𝑥 + cos 2𝑥)
= (𝑠𝑖𝑛 2.
𝜋
8
+ cos 2.
𝜋
8
)
= sin
𝜋
4
+ cos
𝜋
4
=
1
2
√2 +
1
2
√2
= √2
Jawaban C
7. Nilai dari lim
𝑥→
𝜋
2
𝑥 𝑐𝑜𝑡2 𝑥
1−sin 𝑥
= ….
A. −2𝜋 D. 𝜋
B. – 𝜋 E. 2𝜋
C. 0
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
4
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→
𝜋
2
𝑥 𝑐𝑜𝑡2
𝑥
1 − sin 𝑥
= lim
𝑥→
𝜋
2
𝑥 𝑠𝑖𝑛2
𝑥
𝑐𝑜𝑠2 𝑥(1 − sin 𝑥)
.
(1 + sin 𝑥)
(1 + sin 𝑥)
= lim
𝑥→
𝜋
2
𝑥 𝑐𝑜𝑠2
𝑥. (1 + sin 𝑥)
𝑠𝑖𝑛2 𝑥(1 − 𝑠𝑖𝑛2 𝑥)
= lim
𝑥→
𝜋
2
𝑥 𝑐𝑜𝑠2
𝑥. (1 + sin 𝑥)
𝑠𝑖𝑛2 𝑥. 𝑐𝑜𝑠2 𝑥
= lim
𝑥→
𝜋
2
𝑥 (1 + sin 𝑥)
𝑠𝑖𝑛2 𝑥
=
𝜋
2
(1 + sin
𝜋
2
)
𝑠𝑖𝑛2 𝜋
2
=
𝜋
2
(1 + 1)
12
=
𝜋
2
. 2
1
= 𝜋
;𝑐𝑜𝑡2
𝑥 =
𝑠𝑖𝑛2 𝑥
𝑐𝑜𝑠2 𝑥
;1 − 𝑠𝑖𝑛2
𝑥 = 𝑐𝑜𝑠2
𝑥
Jawaban D
8. Nilai lim
𝑥→
𝜋
4
sin 𝑥 −cos 𝑥
1−tan 𝑥
= ⋯.
A. −√2 D.
1
2
√2
B. −
1
2
√2 E. √2
C. 0
Pembahasan
lim
𝑥→
𝜋
4
sin 𝑥 − cos 𝑥
1 − tan 𝑥
= lim
𝑥→
𝜋
4
sin 𝑥 −cos 𝑥
1−
sin 𝑥
cos 𝑥
; karena tan 𝑥 =
sin 𝑥
cos 𝑥
= lim
𝑥→
𝜋
4
sin 𝑥 − cos 𝑥
cos x − sin 𝑥
cos 𝑥
= lim
𝑥→
𝜋
4
cos 𝑥 (sin 𝑥 − cos 𝑥)
cos x − sin 𝑥
= lim
𝑥→
𝜋
4
− cos 𝑥
= − cos
𝜋
4
= −
1
2
√2
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
5
SMAN 12 MAKASSAR
9. Nilai lim
𝑥→ 0
sin 2𝑥 −2 sin 𝑥
𝑥3 = ⋯.
A.
3
2
D. −1
B.
1
2
E. −2
C. −
1
2
Pembahasan
lim
𝑥→ 0
sin 2𝑥 − 2 sin 𝑥
𝑥3
= lim
𝑥→ 0
2 sin 𝑥 cos 𝑥 − 2 sin 𝑥
𝑥3
= lim
𝑥→ 0
2 sin 𝑥 (cos 𝑥 − 1)
𝑥3
= lim
𝑥→ 0
2 sin 𝑥 (−2𝑠𝑖𝑛2 1
2
𝑥)
𝑥3
= −4 lim
𝑥→ 0
sin 𝑥 . sin
1
2
𝑥 . sin
1
2
𝑥
𝑥3
= −4 lim
𝑥→ 0
sin 𝑥
𝑥
lim
𝑥→ 0
sin
1
2
𝑥
𝑥
. lim
𝑥→ 0
sin
1
2
𝑥
𝑥
= −4.
1
2
.
1
2
=−1
Jawaban D
10. Nilai lim
𝑥→
𝜋
4
2−𝑐𝑠𝑐2 𝑥
1−cot 𝑥
adalah ….
A. – 2 D. 1
B. – 1 E. 2
C. 0
Pembahasan
lim
𝑥→
𝜋
4
2 − 𝑐𝑠𝑐2
𝑥
1 − cot 𝑥
= lim
𝑥→
𝜋
4
2 − (1 + 𝑐𝑜𝑡2
𝑥)
1 − cot 𝑥
= lim
𝑥→
𝜋
4
1 − 𝑐𝑜𝑡2
𝑥
1 − cot 𝑥
= lim
𝑥→
𝜋
4
(1 − cot 𝑥)(1 + cot 𝑥)
1 − cot 𝑥
= lim
𝑥→
𝜋
4
(1 + cot 𝑥)
= (1 + cot
𝜋
4
)
= 1 + 1
=2
Jawaban E
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
6
SMAN 12 MAKASSAR
11. Nilai 





 x
xx
x 5
sin.4cos
0
lim
…
A.
3
5
B. 1
C.
5
3
D.
5
1
E. 0
Pembahasan
lim
𝑥→ 0
cos 4𝑥. sin 𝑥
5𝑥
= lim
𝑥→ 0
cos 4𝑥 . lim
𝑥→ 0
sin 𝑥
5𝑥
= cos 4.0 .
1
5
= 1.
1
5
=
1
5
Jawaban D
12. Nilai lim
𝑥→0
sin 3𝑥
2𝑥
= ⋯.
A. 3 D.
2
3
B. 2 E.
1
2
C. 1
1
2
Pembahasan
lim
𝑥→0
sin 3𝑥
2𝑥
=
3
2
= 1
1
2
Jawaban C
13. lim
𝑥→0
sin 8𝑥
tan 2𝑥
A. 4 D.
2
3
B. 3 E.
1
2
C. 2
Pembahasan
lim
𝑥→0
sin 8𝑥
tan 2𝑥
= lim
𝑥→0
sin 8𝑥
tan 2𝑥
.
8𝑥
8𝑥
.
2𝑥
2𝑥
= lim
𝑥→0
sin 8𝑥
8𝑥
. lim
𝑥→0
2𝑥
tan 2𝑥
.
8𝑥
2𝑥
= 1.1.
8
2
= 4
Jawaban A
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
7
SMAN 12 MAKASSAR
14. Nilai lim
𝜃→0
2𝜃
sin4𝜃
= ⋯.
A.
1
4
D. 2
B.
1
2
E. 4
C. 0
Pembahasan
lim
𝜃→0
2𝜃
sin 4𝜃
=
2
4
=
1
2
Jawaban B
15. Nilai lim
𝑥→0
sin 2𝑥
sin 6𝑥
=….
A.
1
6
D. 3
B.
1
3
E. 6
C. 2
Pembahasan
lim
𝑥→0
sin 2𝑥
sin 6𝑥
=
2
6
=
1
3
Jawaban B
16. Nilai lim
𝜃→0
tan 5𝜃
sin 2𝜃
= ⋯.
A.
5
2
D.
2
3
B.
3
2
E.
2
5
C. 2
Pembahasan
lim
𝜃→0
tan 5𝜃
sin 2𝜃
=
5
2
Jawaban A
17. Nilai lim
𝑥→0
𝑥 cos2𝑥
sin 𝑥
= ⋯.
A. −2 D.1
B. −1 E.2
C. 0
Pembahasan
lim
𝑥→0
𝑥 cos 2𝑥
sin 𝑥
= lim
𝑥→0
𝑥
sin 𝑥
. lim
𝑥→0
cos 2𝑥 = 1. cos 2.0 = 1.1 = 1
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
8
SMAN 12 MAKASSAR
18. Nilai lim
𝑥→0
2𝑥 tan 𝑥
𝑡𝑎𝑛2 𝑥
6
= ⋯.
A.
1
3
D. 36
B. 3 E. 72
C. 12
Pembahasan
lim
𝑥→0
2𝑥 tan 𝑥
𝑡𝑎𝑛2 𝑥
6
= lim
𝑥→0
2𝑥
tan
𝑥
6
. lim
𝑥→0
𝑡𝑎𝑛 𝑥
tan
𝑥
6
=
2
1
6
.
1
1
6
= 12.6 = 72
Jawaban E
19. Nilai lim
𝑥→0
tan 2𝑥.tan 3𝑥
3𝑥2
= ⋯.
A. 0 D. 2
B.
2
3
E. 6
C.
3
2
Pembahasan
lim
𝑥→0
tan 2𝑥 . tan 3𝑥
3𝑥2
= lim
𝑥→0
tan 2𝑥
3𝑥
. lim
𝑥→0
tan 3𝑥
𝑥
=
2
3
. 3 = 2
Jawaban D
20. Nilai lim
𝑥→0
sin 4𝑥−sin2𝑥
6𝑥
= ⋯.
A.
1
6
D.
2
3
B.
1
3
E.1
C.
1
2
Pembahasan
lim
𝑥→0
sin 4𝑥 − sin 2𝑥
6𝑥
= lim
𝑥→0
2 cos
1
2
(4𝑥 + 2𝑥) . sin
1
2
(4𝑥 − 2𝑥)
6𝑥
= lim
𝑥→0
2 cos 3𝑥 . sin 𝑥
6𝑥
=
2
6
lim
𝑥→0
cos 3𝑥 . lim
𝑥→0
sin 𝑥
𝑥
=
2
6
. cos 0.1
=
1
3
. 1.1
=
1
3
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
9
SMAN 12 MAKASSAR
21. Nilai lim
𝑥→0
sin 5𝑥+sin 𝑥
6𝑥
= ⋯.
A. −2 D.
1
2
B. −1 E.1
C.
1
3
Pembahasan
lim
𝑥→0
sin 5𝑥 + sin 𝑥
6𝑥
= lim
𝑥→0
sin 5𝑥
6𝑥
+ lim
𝑥→0
sin 𝑥
6𝑥
=
5
6
+
1
6
=
6
6
= 1
Jawaban E
22. Nilai lim
𝑥→0
sin 7𝑥 +tan3𝑥−sin5𝑥
tan 9𝑥−tan 3𝑥 −sin 𝑥
= ⋯
A. 9 D. 3
B. 7 E. 1
C. 5
Pembahasan
lim
𝑥→0
sin 7𝑥 + tan 3𝑥 − sin 5𝑥
tan 9𝑥 − tan 3𝑥 − sin 𝑥
=
7 + 3 − 5
9 − 3 − 1
=
5
5
= 1
Jawaban E
23. Nilai lim
𝑥→0
sin 4𝑥+sin2𝑥
3𝑥 cos 𝑥
= ⋯.
A. 0,25 D. 1,50
B. 0,50 E. 2,00
C. 1,00
Pembahasan
lim
𝑥→0
sin 4𝑥 + sin 2𝑥
3𝑥 cos 𝑥
= lim
𝑥→0
sin 4𝑥 + sin 2𝑥
3𝑥
. lim
𝑥→0
1
cos 𝑥
=
4 + 2
3
.
1
cos 0
=
6
3
.
1
1
=
6
3
= 2
Jawaban E
24. Nilai lim
𝑥→0
4𝑥 cos 𝑥
sin 𝑥+ sin3𝑥
= ⋯.
A. 4 D. 1
B. 3 E.
3
4
C.
4
3
Pembahasan
lim
𝑥→0
4𝑥 cos 𝑥
sin 𝑥 + sin 3𝑥
= lim
𝑥→0
4𝑥
sin 𝑥 + sin 3𝑥
. lim
𝑥→0
cos 𝑥 =
4
1 + 3
. cos 0 =
4
4
. 1 = 1
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
10
SMAN 12 MAKASSAR
25. Nilai lim
𝑥→0
𝑥−sin 2𝑥
𝑥+sin 3𝑥
= ⋯.
A. −
2
3
D.
2
3
B. −
1
4
E.
3
4
C.
1
4
Pembahasan
lim
𝑥→0
𝑥 − sin 2𝑥
𝑥 + sin 3𝑥 = lim
𝑥→0
𝑥
𝑥
−
sin 2𝑥
𝑥
𝑥
𝑥
+
sin 3𝑥
𝑥
= lim
𝑥→0
1 −
sin 2𝑥
𝑥
1 +
sin 3𝑥
𝑥
=
lim
𝑥→0
1 − lim
𝑥→0
sin 2𝑥
𝑥
lim
𝑥→0
1 + lim
𝑥→0
sin 3𝑥
𝑥
=
1 − 2
1 + 3
=
−1
4
Jawaban B
26. Nilai lim
𝑥→0
sin 𝑥+tan 2𝑥
3𝑥−sin 4𝑥
= ⋯.
A. −3 D. 3
B. 0 E. ∞
C. 1
Pembahasan
lim
𝑥→0
sin 𝑥 + tan 2𝑥
3𝑥 − sin 4𝑥 = lim
𝑥→0
sin 𝑥
𝑥
+
tan 2𝑥
𝑥
3𝑥
𝑥
−
sin 4𝑥
𝑥
=
lim
𝑥→0
sin 𝑥
𝑥
+ lim
𝑥→0
tan 2𝑥
𝑥
lim
𝑥→0
3 − lim
𝑥→0
sin 4𝑥
𝑥
=
1 + 2
3 − 4
=
3
−1
= −3
Jawaban A
27. Nilai lim
𝑥→0
sin 4𝑥.𝑡𝑎𝑛23𝑥+6𝑥2
2𝑥2+sin3𝑥.𝑐𝑜𝑠2𝑥
=….
A. 0 D. 5
B. 3 E. 7
C. 4
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
11
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→0
sin 4𝑥 . 𝑡𝑎𝑛2
3𝑥 + 6𝑥2
2𝑥2 + sin 3𝑥 . 𝑐𝑜𝑠2𝑥 = lim
𝑥→0
sin 4𝑥 . 𝑡𝑎𝑛2
3𝑥
𝑥
+
6𝑥2
𝑥
2𝑥2
𝑥
+
sin 3𝑥 . 𝑐𝑜𝑠2𝑥
𝑥
=
lim
𝑥→0
sin 4𝑥 . 𝑡𝑎𝑛2
3𝑥
𝑥
+ lim
𝑥→0
6𝑥
lim
𝑥→0
2𝑥 + lim
𝑥→0
sin 3𝑥 . 𝑐𝑜𝑠2𝑥
𝑥
=
lim
𝑥→0
𝑠𝑖𝑛4𝑥
𝑥
. lim
𝑥→0
𝑡𝑎𝑛2
3𝑥 + lim
𝑥→0
6𝑥
lim
𝑥→0
2𝑥 + lim
𝑥→0
sin 3𝑥
𝑥
. lim
𝑥→0
cos 2𝑥
=
4. 02
+ 0
0 + 3.1
=
0
3
=0
Jawaban A
28. Nilai lim
𝑥→−
𝜋
3
sin(𝑥+
𝜋
3
)
(𝑥+
𝜋
3
)
= ⋯.
A. −
1
3
D. 1
B. −
1
2
E. 2
C. 0
Pembahasan
Misalkan 𝑦 = (𝑥 +
𝜋
3
)
Jika 𝑥 → −
𝜋
3
maka 𝑦 → 0
Jadi lim
𝑥→−
𝜋
3
sin(𝑥+
𝜋
3
)
(𝑥+
𝜋
3
)
= lim
𝑦→0
sin 𝑦
𝑦
= 1
Jawaban D
29. Jika lim
𝑥→0
sin 𝑥
𝑥
= 1, maka lim
𝑥→1
sin(𝜋𝑥−𝜋)
(𝑥−1)
= ⋯
A. 0 D.
1
𝜋
B. 1 E.
𝜋
2
C. 𝜋
Pembahasan
lim
𝑥→1
sin(𝜋𝑥 − 𝜋)
(𝑥 − 1)
= lim
𝑥→1
sinπ(𝑥 − 1)
(𝑥 − 1)
Misalkan (𝑥 − 1) = 𝑦
Jika 𝑥 → 1 maka 𝑦 → 0
lim
𝑥→1
sinπ(𝑥 − 1)
(𝑥 − 1)
= = lim
𝑦→0
sinπ 𝑦
𝑦
= 𝜋
Jawaban C
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
12
SMAN 12 MAKASSAR
30. Nilai lim
𝑥→
𝜋
4
cos3𝑥.sin(12𝑥−3𝜋)
tan(4𝑥−𝜋)
= ⋯
A.
3
2
√3 D. −
3
2
√2
B.
3
2
√2 E. −
3
2
√3
C. 0
Pembahasan
lim
𝑥→
𝜋
4
cos 3𝑥 . sin(12𝑥 − 3𝜋)
tan(4𝑥 − 𝜋)
= lim
𝑥→
𝜋
4
cos 3𝑥 . sin(12𝑥 − 3𝜋)
tan(4𝑥 − 𝜋)
= lim
𝑥→
𝜋
4
cos 3𝑥 lim
𝑥→
𝜋
4
sin(12𝑥 − 3𝜋)
tan(4𝑥 − 𝜋)
Untuk lim
𝑥→
𝜋
4
cos 3𝑥 = cos 3.
𝜋
4
= −
1
2
√2
Untuk lim
𝑥→
𝜋
4
sin(12𝑥−3𝜋)
tan(4𝑥−𝜋)
Misalkan 4𝑥 − 𝜋 = 𝑦
Jika 𝑥 →
𝜋
4
maka 𝑦 → 0 sehingga
lim
𝑥→
𝜋
4
sin(12𝑥 − 3𝜋)
tan(4𝑥 − 𝜋)
= lim
𝑦→0
sin 3𝑦
tan 𝑦
= 3
Jadi lim
𝑥→
𝜋
4
cos 3𝑥 lim
𝑥→
𝜋
4
sin(12𝑥−3𝜋)
tan(4𝑥−𝜋)
= −
1
2
√2. 3 = −
3
2
√2
Jawaban D
31. Nilai lim
𝑥→
𝜋
4
sin (
𝜋
4
− 𝑥) tan (
𝜋
4
+ 𝑥) adalah ….
A. 2 D. −1
B. 1 E. −2
C. 0
Pembahasan
lim
𝑥→
𝜋
4
sin (
𝜋
4
− 𝑥) tan (
𝜋
4
+ 𝑥) = lim
𝑥→
𝜋
4
sin (
𝜋
4
− 𝑥) cot (
𝜋
2
− (
𝜋
4
+ 𝑥))
= lim
𝑥→
𝜋
4
sin (
𝜋
4
− 𝑥) cot (
𝜋
4
− 𝑥)
= lim
𝑥→
𝜋
4
sin (
𝜋
4
− 𝑥)
cos (
𝜋
4
− 𝑥)
sin (
𝜋
4
− 𝑥)
= lim
𝑥→
𝜋
4
cos (
𝜋
4
− 𝑥)
= cos (
𝜋
4
−
𝜋
4
)
= cos 0
= 1
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
13
SMAN 12 MAKASSAR
32. Nilai lim
𝑥→0
𝑠𝑖𝑛22𝑥
𝑥2
= ⋯.
A. 1 D. 6
B. 2 E. 8
C. 4
Pembahasan
lim
𝑥→0
𝑠𝑖𝑛2
2𝑥
𝑥2
= lim
𝑥→0
sin 2𝑥
𝑥
. lim
𝑥→0
sin 2𝑥
𝑥
= 2.2 = 4
Atau dengan cara berikut
lim
𝑥→0
𝑠𝑖𝑛2
2𝑥
𝑥2
= (lim
𝑥→0
sin 2𝑥
𝑥
)
2
= 22
= 4
Jawaban C
33. Nilai lim
𝑥→0
sin32x
tan31
2
x
= ⋯.
A. 23
D. 26
B. 24
E. 25
C. 25
Pembahasan
lim
𝑥→0
sin3
2x
tan3 1
2
x
= (lim
𝑥→0
sin 2𝑥
tan
1
2
𝑥
)
3
= (
2
1
2
)
3
= (2.2)3
= (22)3
= 26
Jawaban D
34. Nilai dari lim
𝑥→0
4 sin22x
𝑥 tan 2𝑥
adalah ….
A. −8 D. 4
B. −4 E. 8
C. 0
Pembahasan
lim
𝑥→0
4 sin2
2x
𝑥 tan 2𝑥
= 4lim
𝑥→0
sin 2𝑥 sin 2𝑥
𝑥. tan 2𝑥
= 4 lim
𝑥→0
sin 2𝑥
𝑥
. lim
𝑥→0
sin 2𝑥
tan 2𝑥
= 4.2.
2
2
= 8
Jawaban E
35. Nilai lim
𝑥→0
2 𝑠𝑖𝑛21
2
𝑥
𝑥 tan 𝑥
= ⋯.
A. −2 D.
1
2
B. −1 E. 1
C. −
1
2
Pembahasan
lim
𝑥→0
2 𝑠𝑖𝑛2 1
2
𝑥
𝑥 tan 𝑥
= 2lim
𝑥→0
sin
1
2
𝑥
𝑥
. lim
𝑥→0
sin
1
2
𝑥
tan 𝑥
= 2.
1
2
.
1
2
=
1
2
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
14
SMAN 12 MAKASSAR
36. Nilai lim
𝑥→0
sin
1
2
𝑥 tan 4√ 𝑥
2𝑥√ 𝑥
= ⋯.
A.
1
8
D. 1
B.
1
4
E. 2
C.
1
2
Pembahasan
lim
𝑥→0
sin
1
2
𝑥 tan 4√ 𝑥
2𝑥√ 𝑥
=
1
2
lim
𝑥→0
sin
1
2
𝑥
𝑥√ 𝑥
. lim
𝑥→0
tan 4√ 𝑥
√ 𝑥
=
1
2
.
1
2
. 4
=
4
4
= 1
Jawaban D
37. Nilai lim
𝑥→0
√2𝑥2+1−1
√3 𝑠𝑖𝑛5 𝑥+𝑥4
= ….
A. 0 D.
1
2
B.
√2
√3
E. 1
C.
√3
√4
Pembahasan
lim
𝑥→0
√2𝑥2 + 1 − 1
√3 𝑠𝑖𝑛5 𝑥 + 𝑥4
= lim
𝑥→0
√2𝑥2 + 1 − 1
√3 𝑠𝑖𝑛5 𝑥 + 𝑥4
×
√2𝑥2 + 1 + 1
√2𝑥2 + 1 + 1
= lim
𝑥→0
(2𝑥2
+ 1) − 1
(√3 𝑠𝑖𝑛5 𝑥 + 𝑥4)(√2𝑥2 + 1 + 1)
= lim
𝑥→0
2𝑥2
(√3 𝑠𝑖𝑛5 𝑥 + 𝑥4)(√2𝑥2 + 1 + 1)
= lim
𝑥→0
2𝑥2
(√3 𝑠𝑖𝑛5 𝑥 + 𝑥4)
lim
𝑥→0
1
(√2𝑥2 + 1 + 1)
= lim
𝑥→0
2𝑥2
𝑥2
(
√3 𝑠𝑖𝑛5 𝑥 + 𝑥4
𝑥2 )
lim
𝑥→0
1
(√2𝑥2 + 1 + 1)
= lim
𝑥→0
2
(√3 𝑠𝑖𝑛5 𝑥
𝑥4 +
𝑥4
𝑥4)
lim
𝑥→0
1
(√2𝑥2 + 1 + 1)
= lim
𝑥→0
2
(√3 𝑠𝑖𝑛4 𝑥
𝑥4 . sin 𝑥 + 1)
lim
𝑥→0
1
(√2𝑥2 + 1 + 1)
=
2
(√lim
𝑥→0
3 𝑠𝑖𝑛4 𝑥
𝑥4 . lim
𝑥→0
sin 𝑥 + 1)
.
1
(√2. 02 + 1 + 1)
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
15
SMAN 12 MAKASSAR
=
2
(√3.0 + 1)
.
1
(√1 + 1)
=
2
1
.
1
2
= 1
Jawaban E
38. Jika lim
𝑥→0
𝑥 𝑎 𝑠𝑖𝑛4 𝑥
𝑠𝑖𝑛6 𝑥
= 1, nilai 𝑎 yang memenuhi adalah ….
A. 1 D. 4
B. 2 E. 5
C. 3
Pembahasan
lim
𝑥→0
𝑥 𝑎
𝑠𝑖𝑛4
𝑥
𝑠𝑖𝑛6 𝑥
= lim
𝑥→0
𝑥 𝑎
𝑠𝑖𝑛2 𝑥
. lim
𝑥→0
𝑠𝑖𝑛4
𝑥
𝑠𝑖𝑛4 𝑥
= lim
𝑥→0
𝑥 𝑎
𝑠𝑖𝑛2 𝑥
. 1 = lim
𝑥→0
𝑥 𝑎
𝑠𝑖𝑛2 𝑥
lim
𝑥→0
𝑥 𝑎
𝑠𝑖𝑛2 𝑥
= 1 hanya terjadi jika nilai 𝑎 sama dengan pangkat dari sin 𝑥, yaitu 𝑎 = 2
Jawaban B
39. Nilai lim
𝑥→0
1−𝑐𝑜𝑠3 𝑥
𝑥.tan 𝑥
=….
A.
1
2
D. 2
B. 1 E. 3
C.
3
2
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠3
𝑥
𝑥. tan 𝑥
= lim
𝑥→0
(1 − cos 𝑥)(1 + cos 𝑥 + 𝑐𝑜𝑠2
𝑥)
𝑥. tan 𝑥
= lim
𝑥→0
(1 − cos 𝑥)
𝑥. tan 𝑥
lim
𝑥→0
(1 + cos 𝑥 + 𝑐𝑜𝑠2
𝑥)
= lim
𝑥→0
2 . 𝑠𝑖𝑛2 1
2
𝑥
𝑥. tan 𝑥
lim
𝑥→0
(1 + cos 𝑥 + 𝑐𝑜𝑠2
𝑥)
= 2lim
𝑥→0
sin
1
2
𝑥
𝑥
lim
𝑥→0
sin
1
2
𝑥
tan 𝑥
. lim
𝑥→0
lim
𝑥→0
(1 + cos 𝑥 + 𝑐𝑜𝑠2
𝑥)
= 2.
1
2
.
1
2
. (1 + cos 0 + 𝑐𝑜𝑠2
0)
=
1
2
(1 + cos 0 + 𝑐𝑜𝑠2
0)
=
1
2
(1 + 1 + 12)
=
3
2
Jawaban C
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
16
SMAN 12 MAKASSAR
40. Nilai lim
𝑥→0
1−𝑐𝑜𝑠2 𝑥
𝑥 tan 𝑥
= ⋯.
A. 3 D. −1
B. 1 E. −3
C. 0
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠2
𝑥
𝑥 tan 𝑥
= lim
𝑥→0
𝑠𝑖𝑛2
𝑥
𝑥 tan 𝑥
= lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
sin 𝑥
tan 𝑥
= 1.1 = 1
Jawaban B
41. Nilai lim
𝑥→0
𝑥 .tan 2𝑥
1−𝑐𝑜𝑠2 𝑥
= ⋯.
A.
1
4
D. 2
B.
1
2
E. 4
C. 1
Pembahasan
lim
𝑥→0
𝑥 . tan 2𝑥
1 − 𝑐𝑜𝑠2 𝑥
= lim
𝑥→0
𝑥 . tan 2𝑥
𝑠𝑖𝑛2 𝑥
= lim
𝑥→0
𝑥
sin 𝑥
. lim
𝑥→0
tan 2𝑥
sin 𝑥
= 1.2 = 2
Jawaban C
42. Nilai lim
𝑥→0
1−𝑐𝑜𝑠2 𝑥
𝑥2 tan(𝑥+
𝜋
4
)
= ⋯.
A. −1 D.
1
2
√2
B. 0 E. √3
C. 1
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠2
𝑥
𝑥2 tan (𝑥 +
𝜋
4
)
= lim
𝑥→0
𝑠𝑖𝑛2
𝑥
𝑥2 tan (𝑥 +
𝜋
4
)
= lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
1
tan (𝑥 +
𝜋
4
)
= 1.1.
1
tan (0 +
𝜋
4
)
= 1.
1
1
= 1
Jawaban C
43. Nilai lim
𝑥→0
1−𝑐𝑜𝑠2 𝑥
𝑥2 cot(𝑥−
𝜋
3
)
= ⋯.
A. 1 D.−√2
B. 0 E.−√3
C. −
1
3
√3
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
17
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠2
𝑥
𝑥2 cot (𝑥 −
𝜋
3
)
= lim
𝑥→0
𝑠𝑖𝑛2
𝑥
𝑥2 cot (𝑥 −
𝜋
3
)
= lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
1
cot (𝑥 −
𝜋
3
)
= 1.1.
1
cot (0 −
𝜋
3
)
=
1
cot (−
𝜋
3
)
= − tan
𝜋
3
= −√3
Jawaban E
44. Nilai lim
𝑥→0
𝑐𝑜𝑠2 𝑥−1
2 sin 2𝑥 tan 𝑥
= ⋯.
A. −4 D.−
1
2
B. −2 E.−
1
4
C. −1
Pembahasan
lim
𝑥→0
𝑐𝑜𝑠2
𝑥 − 1
2 sin 2𝑥 tan 𝑥
= lim
𝑥→0
−𝑠𝑖𝑛2
𝑥
2 sin 2𝑥 tan 𝑥
= −
1
2
lim
𝑥→0
sin 𝑥
sin 2𝑥
. lim
𝑥→0
sin 𝑥
tan 𝑥
= −
1
2
.
1
2
. 1
Jawaban E
45. Nilai lim
𝑥→1
1−𝑐𝑜𝑠2(𝑥−1)
4𝑥2−8𝑥+4
= ⋯.
A. 0 D.1
B.
1
4
E. 2
C.
1
2
Pembahasan
lim
𝑥→1
1 − 𝑐𝑜𝑠2(𝑥 − 1)
4𝑥2 − 8𝑥 + 4
= lim
𝑥→1
𝑠𝑖𝑛2(𝑥 − 1)
4(𝑥2 − 2𝑥 + 1)
=
1
4
lim
𝑥→1
sin(𝑥 − 1)
(𝑥 − 1)
. lim
𝑥→1
sin(𝑥 − 1)
(𝑥 − 1)
=
1
4
. 1.1
=
1
4
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
18
SMAN 12 MAKASSAR
46. Nilai lim
x→2
x2−4x+4
1−cos2(x−2)
=….
A. −
1
4
D.
1
2
B. 0 E. 1
C.
1
4
Pembahasan
lim
x→2
x2
− 4x + 4
1 − cos2(x − 2)
= lim
x→2
(𝑥 − 2)2
sin2(x − 2)
= lim
x→2
(𝑥 − 2)
sin(x − 2)
. lim
x→2
(𝑥 − 2)
sin(x − 2)
= 1.1
= 1
Jawaban E
47. Nilai lim
𝑥→0
2𝑥 tan 3𝑥
1−𝑐𝑜𝑠2 𝑥
= ⋯.
A. 0 D.6
B. 2 E.12
C. 3
Pembahasan
lim
𝑥→0
2𝑥 . tan 3𝑥
1 − 𝑐𝑜𝑠2 𝑥
= lim
𝑥→0
2𝑥 . tan 3𝑥
𝑠𝑖𝑛2 𝑥
= lim
𝑥→0
2𝑥
sin 𝑥
. lim
𝑥→0
tan 3𝑥
sin 𝑥
= 2.3 = 6
Jawaban D
48. Nilai lim
𝑥→0
1−𝑐𝑜𝑠 𝑥
sin 𝑥
= ⋯.
A. 0 D.1
B.
1
4
E. 2
C.
1
2
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠 𝑥
sin 𝑥
= lim
𝑥→0
2 𝑠𝑖𝑛2 1
2
𝑥
sin 𝑥
= 2. lim
𝑥→0
sin
1
2
𝑥
sin 𝑥
. lim
𝑥→0
sin
1
2
𝑥 = 2.
1
2
. sin
1
2
. 0 = 0
Jawaban A
49. Nilai lim
𝑥→0
sin23x
1−cos 𝑥
=….
A. 3 D. 12
B. 6 E. 18
C. 9
Pembahasan
lim
𝑥→0
sin2
3x
1 − cos 𝑥
= lim
𝑥→0
sin2
3x
2 𝑠𝑖𝑛2 1
2
𝑥
=
1
2
lim
𝑥→0
sin 3𝑥
sin
1
2
𝑥
. lim
𝑥→0
sin 3𝑥
sin
1
2
𝑥
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
19
SMAN 12 MAKASSAR
=
1
2
.
3
1
2
.
3
1
2
=
9
1
2
= 18
Jawaban E
50. Nilai lim
𝜃→0
1−cos 𝜃
𝜃2 = ⋯.
A. −
1
4
D.
1
4
B. −
1
2
E.
1
2
C. 0
Pembahasan
lim
𝜃→0
1 − cos 𝜃
𝜃2
= lim
𝜃→0
2 𝑠𝑖𝑛2 1
2
𝜃
𝜃2
= 2 lim
𝜃→0
𝑠𝑖𝑛2 1
2
𝜃
𝜃2
= 2 lim
𝜃→0
𝑠𝑖𝑛
1
2
𝜃
𝜃
. lim
𝜃→0
𝑠𝑖𝑛
1
2
𝜃
𝜃
= 2.
1
2
.
1
2
=
1
2
Jawaban E
51. Nilai lim
𝑥→0
1−cos8𝑥
4𝑥2
=….
A. 0 D. 4
B. 1 E. 8
C. 2
Pembahasan
lim
𝑥→0
1 − cos 8𝑥
4𝑥2 = lim
𝑥→0
2 𝑠𝑖𝑛2
4𝑥
4𝑥2
=
2
4
lim
𝑥→0
𝑠𝑖𝑛2
4𝑥
𝑥2
=
1
2
lim
𝑥→0
sin 4𝑥
𝑥
. lim
𝑥→0
sin 4𝑥
𝑥
=
1
2
. 4.4
= 8
Jawaban E
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
20
SMAN 12 MAKASSAR
52. Nilai lim
𝑥→0
1−𝑐𝑜𝑠 2𝑥
1−cos4𝑥
=….
A. −
1
2
B. −
1
4
C. 0
D.
1
16
E.
1
4
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠 2𝑥
1 − cos 4𝑥
= lim
x→0
2 sin2
x
2 sin22x
= lim
x→0
sin2
x
sin22x
= lim
𝑥→0
sin 𝑥
sin 2𝑥
. lim
𝑥→0
sin 𝑥
sin 2𝑥
=
1
2
.
1
2
=
1
4
Jawaban E
53. Nilai lim
𝑥→0
1−𝑐𝑜𝑠 2𝑥
𝑥 𝑡𝑎𝑛𝑥
= ⋯.
A. −8 D.2
B. 0 E.4
C. 1
Pembahasan
lim
𝑥→0
1 − 𝑐𝑜𝑠 2𝑥
𝑥 𝑡𝑎𝑛𝑥
= lim
𝑥→0
2𝑠𝑖𝑛2
𝑥
𝑥 𝑡𝑎𝑛𝑥
= 2 lim
𝑥→0
sin 𝑥 sin 𝑥
𝑥 𝑡𝑎𝑛𝑥
= 2 lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
sin 𝑥
tan 𝑥
= 2.1.1
= 2
Jawaban D
54. Nilai lim
𝑥→0
(1−cos 4𝑥) sin 𝑥
𝑥2 tan 3𝑥
= ⋯.
A.
128
3
D.
8
3
B.
32
3
E.
4
3
C.
16
3
Pembahasan
lim
𝑥→0
(1 − cos 4𝑥) sin 𝑥
𝑥2 tan 3𝑥
= lim
𝑥→0
2. 𝑠𝑖𝑛2
2𝑥. sin 𝑥
𝑥2 tan 3𝑥
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
21
SMAN 12 MAKASSAR
= 2 lim
𝑥→0
𝑠𝑖𝑛2
2𝑥. sin 𝑥
𝑥2 tan 3𝑥
= 2 (lim
𝑥→0
sin 2𝑥
𝑥
)
2
. lim
𝑥→0
sin 𝑥
tan 3𝑥
= 2. 22
.
1
3
=
8
3
Jawaban D
55. Nilai lim
𝑥→0
cos 4𝑥 −1
𝑥 tan 2𝑥
A. 4 D.−2
B. 2 E. −4
C. −1
Pembahasan
lim
𝑥→0
cos 4𝑥 − 1
𝑥 tan 2𝑥
= lim
𝑥→0
−2𝑠𝑖𝑛2
2𝑥
𝑥 tan 2𝑥
= −2 lim
𝑥→0
𝑠𝑖𝑛2
2𝑥
𝑥 tan 2𝑥
= −2. lim
𝑥→0
sin 2𝑥
𝑥
. lim
𝑥→0
sin 2𝑥
tan 2𝑥
= −2.2.
2
2
= −4
Jawaban E
56. Nilai lim
𝑥→0
cos 6𝑥 −1
𝑥 sin
1
2
𝑥
A. 36 D.−9
B. 9 E. −36
C. 0
Pembahasan
lim
𝑥→0
cos 6𝑥 − 1
𝑥 sin
1
2
𝑥
= lim
𝑥→0
−2𝑠𝑖𝑛2
3𝑥
𝑥 sin
1
2
𝑥
= −2 lim
𝑥→0
𝑠𝑖𝑛2
3𝑥
𝑥 sin
1
2
𝑥
= −2. lim
𝑥→0
sin 3𝑥
𝑥
. lim
𝑥→0
sin 3𝑥
sin
1
2
𝑥
= −2.3.
3
1
2
= −36
Jawaban E
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
22
SMAN 12 MAKASSAR
57. Nilai lim
𝑥→0
4x cos6𝑥 −4𝑥
(2𝑥)2.sin5𝑥
=
A. −
18
5
D. 2
B. −
5
18
E.
18
5
C.
5
18
Pembahasan
lim
𝑥→0
4x cos 6𝑥 − 4𝑥
(2𝑥)2. sin 5𝑥
= lim
𝑥→0
4𝑥(cos 6𝑥 − 1)
(2𝑥)2. sin 5𝑥
= lim
𝑥→0
4𝑥(−2 𝑠𝑖𝑛2
3𝑥)
(2𝑥)2. sin 5𝑥
= lim
𝑥→0
−8𝑥. sin 3𝑥 sin 3𝑥
(2𝑥)2. sin 5𝑥
= lim
𝑥→0
−8𝑥
sin 5𝑥
. lim
𝑥→0
sin 3𝑥
2𝑥
. lim
𝑥→0
sin 3𝑥
2𝑥
=
−8
5
.
3
2
.
3
2
= −
18
5
Jawaban A
58. Jika diketahui 𝑚 = lim
𝑥→0
cos 𝑥−1
cos2𝑥−1
dan 𝑛 = lim
𝑥→2
[
1
𝑥−2
−
4
𝑥2−4
], maka 𝑚 + 𝑛 =….
A. −1 D.
1
2
B. −
1
2
C. 1
C. 0
Pembahasan
𝑚 = lim
𝑥→0
cos 𝑥 − 1
cos 2𝑥 − 1
𝑚 = lim
𝑥→0
−2 𝑠𝑖𝑛2 1
2
𝑥
−2 𝑠𝑖𝑛2 𝑥
𝑚 = lim
𝑥→0
𝑠𝑖𝑛2 1
2
𝑥
𝑠𝑖𝑛2 𝑥
𝑚 = (lim
𝑥→0
𝑠𝑖𝑛
1
2
𝑥
𝑠𝑖𝑛𝑥
)
2
𝑚 = (
1
2
)
2
𝑚 =
1
4
𝑛 = lim
𝑥→2
[
1
𝑥 − 2
−
4
𝑥2 − 4
]
𝑛 = lim
𝑥→2
[
𝑥 + 2
𝑥2 − 4
−
4
𝑥2 − 4
]
𝑛 = lim
𝑥→2
[
𝑥 + 2 − 4
𝑥2 − 4
]
𝑛 = lim
𝑥→2
[
𝑥 − 2
𝑥2 − 4
]
𝑛 = lim
𝑥→2
𝑥 − 2
(𝑥 − 2)(𝑥 + 2)
𝑛 = lim
𝑥→2
1
(𝑥 + 2)
𝑛 =
1
2 + 2
𝑛 =
1
4
Nilai 𝑚 + 𝑛 =
1
4
+
1
4
=
1
2
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
23
SMAN 12 MAKASSAR
59. Nilai dari lim
𝑥→−2
(𝑥2−4) tan(𝑥+2)
sin2(x+2)
=….
A. −4 D. 4
B. −3 E. 5
C. 0
Pembahasan
lim
𝑥→−2
(𝑥2
− 4) tan(𝑥 + 2)
sin2(x + 2)
= lim
𝑥→−2
(𝑥 − 2)(𝑥 + 2) tan(𝑥 + 2)
sin2(x + 2)
= lim
𝑥→−2
(𝑥 − 2) lim
𝑥→−2
(𝑥 + 2)
sin(x + 2)
. lim
𝑥→−2
tan(𝑥 + 2)
sin(x + 2)
= (−2 − 2).1.1
= −4
Jawaban A
60. Nilai lim
𝑥→3
𝑥 tan(2𝑥−6)
sin(𝑥−3)
= ⋯.
A. 6 D. 1
B. 3 E.0
C. 2
Pembahasan
lim
𝑥→3
𝑥 tan(2𝑥 − 6)
sin(𝑥 − 3)
= lim
𝑥→3
𝑥. lim
𝑥→3
tan(2𝑥 − 6)
sin(𝑥 − 3)
= lim
𝑥→3
𝑥. lim
𝑥→3
tan 2(𝑥 − 3)
sin(𝑥 − 3)
= 3.2
=6
Jawaban A
61. Nilai lim
𝑥→0
cos 𝑥−cos5𝑥
1−cos 4𝑥
= ⋯.
A.
1
3
D.2
B.
1
2
E.3
C.
3
2
Pembahasan
lim
𝑥→0
cos 𝑥 − cos 5𝑥
1 − cos 4𝑥
= lim
𝑥→0
−2 sin 3𝑥 . sin(−2𝑥)
2 𝑠𝑖𝑛22𝑥
=
2
2
lim
𝑥→0
sin 3𝑥 . sin 2𝑥
𝑠𝑖𝑛22𝑥
= lim
𝑥→0
sin 3𝑥 . sin 2𝑥
𝑠𝑖𝑛22𝑥
= lim
𝑥→0
sin 3𝑥 . sin 2𝑥
sin 2𝑥 . sin 2𝑥
= lim
𝑥→0
sin 3𝑥
sin 2𝑥
Rumus
cos 𝐴 − cos 𝐵 = −2𝑠𝑖𝑛
1
2
(𝐴 + 𝐵) sin
1
2
(𝐴 − 𝐵)
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
24
SMAN 12 MAKASSAR
=
3
2
Jawaban C
62. lim
𝑥→0
𝑥.tan 5𝑥
cos2𝑥−cos 7𝑥
= ⋯.
A.
2
9
D. −
1
9
B.
1
9
E. −
2
9
C. 0
Pembahasan
lim
𝑥→0
𝑥. tan 5𝑥
cos 2𝑥 − cos 7𝑥
= lim
𝑥→0
𝑥. tan 5𝑥
−2 sin
9
2
𝑥 sin (−
5
2
) 𝑥
=
1
2
lim
𝑥→0
𝑥. tan 5𝑥
sin
9
2
𝑥 sin
5
2
𝑥
=
1
2
lim
𝑥→0
𝑥
sin
9
2
𝑥
. lim
𝑥→0
tan 5𝑥
sin
5
2
𝑥
=
1
2
.
1
9
2
.
5
5
2
=
2
9
Jawaban A
63. Nilai lim
𝑥→0
1−cos 8𝑥
sin 2𝑥 tan 2𝑥
= ⋯.
A. 16 D. 4
B. 12 E. 2
C. 8
Pembahasan
lim
𝑥→0
1 − cos 8𝑥
sin 2𝑥 tan 2𝑥
= lim
𝑥→0
2 𝑠𝑖𝑛2
4𝑥
sin 2𝑥 tan 2𝑥
= lim
𝑥→0
sin 4𝑥 . sin 4𝑥
sin 2𝑥 tan 2𝑥
= lim
𝑥→0
sin 4𝑥
sin 2𝑥
. lim
𝑥→0
sin 4𝑥
tan 2𝑥
=
4
2
.
4
2
= 4
Jawaban D
64. Nilai lim
𝑥→0
1−2𝑠𝑖𝑛2 𝑥−𝑐𝑜𝑠32𝑥
5𝑥2 = ⋯.
A.
4
25
D.
4
5
B.
2
5
E.1
C.
3
5
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
25
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→0
1 − 2𝑠𝑖𝑛2
𝑥 − 𝑐𝑜𝑠3
2𝑥
5𝑥2
= lim
x→0
cos 2x − cos3
2x
5x2
= lim
x→0
cos 2x (1 − cos2
2x)
5x2
= lim
x→0
cos 2x sin2
2x
5x2
=
1
5
lim
x→0
cos 2𝑥. (lim
x→0
sin 2𝑥
𝑥
)
2
=
1
5
. cos 2.0 . (2)2
=
1
5
. 1.4
=
4
5
karena 𝟏 − 𝟐𝒔𝒊𝒏 𝟐
𝒙 =
𝐜𝐨𝐬 𝟐𝒙
Jawaban D
65. Nilai lim
𝑥→0
1−cos2x−cos x sin2x
𝑥4 = ⋯.
A. −1 D.
1
2
B. 0 E. 1
C.
1
4
Pembahasan
lim
𝑥→0
1 − cos2
x − cos x sin2
x
𝑥4
= lim
𝑥→0
sin2
x − cos x sin2
x
𝑥4
= lim
𝑥→0
sin2
x(1 − cos x)
𝑥4
= lim
𝑥→0
sin2
x. 2 𝑠𝑖𝑛2 1
2
x
𝑥4
= 2 lim
𝑥→0
sin2
x. 𝑠𝑖𝑛2 1
2
x
𝑥4
= 2 lim
𝑥→0
sin2
x
𝑥2
. lim
𝑥→0
sin2 1
2
x
𝑥2
= 2 (lim
𝑥→0
sin 𝑥
𝑥
)
2
. (lim
𝑥→0
sin
1
2
𝑥
𝑥
)
2
= 2. 12
. (
1
2
)
2
=2.
1
4
=
2
4
=
1
2
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
26
SMAN 12 MAKASSAR
66. Nilai lim
𝑥→0
5𝑥2−2𝑥
sin 5𝑥−tan 2𝑥
= ⋯.
A. −
2
7
D.−
5
3
B. −
2
3
E.−
5
2
C. −1
Pembahasan
lim
𝑥→0
5𝑥2
− 2𝑥
sin 5𝑥 − tan 2𝑥 = lim
𝑥→0
5𝑥2
𝑥
−
2𝑥
𝑥
sin 5𝑥
𝑥
−
tan 2𝑥
𝑥
= lim
𝑥→0
5𝑥 − 2
sin 5𝑥
𝑥
−
tan 2𝑥
𝑥
=
lim
𝑥→0
5𝑥 − lim
𝑥→0
2
lim
𝑥→0
sin 5𝑥
𝑥
−
tan 2𝑥
𝑥
=
0 − 2
5 − 2
= −
2
3
Jawaban B
67. Nilai lim
𝑥→0
𝑥2+𝑠𝑖𝑛23𝑥
2𝑡𝑎𝑛2 𝑥2
= ⋯.
A. 5 D.
1
2
B. 2 E.
2
5
C. 1
Pembahasan
lim
𝑥→0
𝑥2
+ 𝑠𝑖𝑛2
3𝑥
2𝑡𝑎𝑛2 𝑥2
=
1
2
lim
𝑥→0
𝑥2
+ 𝑠𝑖𝑛2
3𝑥
𝑡𝑎𝑛2 𝑥2
=
1
2
.
lim
𝑥→0
1 + lim
𝑥→0
𝑠𝑖𝑛2
3𝑥
𝑥2
lim
𝑥→0
𝑡𝑎𝑛2 𝑥2
𝑥2
=
1
2
.
1 + 9
1
=
10
2
=5
Jawaban A
68. Nilai lim
𝑥→0
2𝑥2+𝑥
sin 𝑥
= ⋯.
A. −1 D. 2
B. 0 E. 3
C. 1
Pembahasan
lim
𝑥→0
2𝑥2
+ 𝑥
sin 𝑥
= lim
𝑥→0
𝑥(2𝑥 + 1)
sin 𝑥
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
27
SMAN 12 MAKASSAR
= lim
𝑥→0
𝑥
sin 𝑥
. lim
𝑥→0
(2𝑥 + 1)
= 1. (2.0 + 1)
= 1.1
=1
Jawaban C
69. Nilai lim
𝑥→0
𝑥2+2𝑥
tan 𝑥
= ⋯.
A. 2 D.
1
4
B. 1 E.0
C.
1
2
Pembahasan
lim
𝑥→0
𝑥2
+ 2𝑥
tan 𝑥
= lim
𝑥→0
𝑥(𝑥 + 2)
tan 𝑥
= lim
𝑥→0
𝑥
tan 𝑥
. lim
𝑥→0
(𝑥 + 2)
= 1. (0 + 2)
= 1.2
=2
Jawaban A
70. Nilai lim
𝑥→0
√1+tan 𝑥−√1+sin 𝑥
𝑥3
= ⋯.
A. −1 D.
1
4
B. −
1
4
E.1
C. 0
Pembahasan
lim
𝑥→0
√1 + tan 𝑥 − √1 + sin 𝑥
𝑥3
= lim
𝑥→0
√1 + tan 𝑥 − √1 + sin 𝑥
𝑥3
×
√1 + tan 𝑥 + √1 + sin 𝑥
√1 + tan 𝑥 + √1 + sin 𝑥
= lim
𝑥→0
(1 + tan 𝑥) − (1 + sin 𝑥)
𝑥3
(√1 + tan 𝑥 + √1 + sin 𝑥)
= lim
𝑥→0
tan 𝑥 − sin 𝑥
𝑥3
(√1 + tan 𝑥 + √1 + sin 𝑥)
= lim
𝑥→0
sin 𝑥
cos 𝑥
− sin 𝑥
𝑥3
(√1 + tan 𝑥 + √1 + sin 𝑥)
= lim
𝑥→0
sin 𝑥 − sin 𝑥 . cos 𝑥
cos 𝑥
𝑥3
(√1 + tan 𝑥 + √1 + sin 𝑥)
= lim
𝑥→0
sin 𝑥 (1 − cos 𝑥)
𝑥3
cos 𝑥 (√1 + tan 𝑥 + √1 + sin 𝑥)
= lim
𝑥→0
sin 𝑥 (2. 𝑠𝑖𝑛2 1
2
𝑥)
𝑥3
cos 𝑥 (√1 + tan 𝑥 + √1 + sin 𝑥)
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
28
SMAN 12 MAKASSAR
= 2lim
𝑥→0
sin 𝑥
𝑥
. (lim
𝑥→0
sin
1
2
𝑥
𝑥
)
2
. lim
𝑥→0
1
cos 𝑥 (√1 + tan 𝑥 + √1 + sin 𝑥)
= 2.1. (
1
2
)
2
.
1
cos 0 (√1 + tan 0 + √1 + sin 0)
= 2.
1
4
.
1
1(√1 + √1)
=
2
8
=
1
4
Jawaban D
71. Nilai lim
𝑥→0
√1+sin 𝑥−√1−sin 𝑥
𝑥
= ⋯.
A. −1 D. √2
B. −
1
4
E. 1
C.
1
4
√2
Pembahasan
lim
𝑥→0
√1 + sin 𝑥 − √1 − sin 𝑥
𝑥
= lim
𝑥→0
√1 + sin 𝑥 − √1 − sin 𝑥
𝑥
×
√1 + sin 𝑥 + √1 − sin 𝑥
√1 + sin 𝑥 + √1 − sin 𝑥
= lim
𝑥→0
(1 + sin 𝑥) − (1 − sin 𝑥)
𝑥(√1 + sin 𝑥 + √1 − sin 𝑥)
= lim
𝑥→0
2 sin 𝑥
𝑥(√1 + sin 𝑥 + √1 − sin 𝑥)
= lim
𝑥→0
2 sin 𝑥
𝑥
. lim
𝑥→0
1
(√1 + sin 𝑥 + √1 − sin 𝑥)
= 2.
1
(√1 + sin 0 + √1 − sin 0)
= 2.
1
(1 + 1)
=
2
2
= 1
Jawaban E
72. Nilai lim
𝑥→0
(1−√cos 𝑥) cot 𝑥
𝑥
= ⋯.
A. −
1
2
D.
1
4
B. −
1
4
E.
1
2
C. 0
Pembahasan
lim
𝑥→0
(1 − √cos 𝑥) cot 𝑥
𝑥
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
29
SMAN 12 MAKASSAR
= lim
𝑥→0
(1 − √cos 𝑥) cot 𝑥
𝑥
×
(1 + √cos 𝑥)
(1 + √cos 𝑥)
= lim
𝑥→0
(1 − cos 𝑥) cot 𝑥
𝑥(1 + √cos 𝑥)
= lim
𝑥→0
2 sin 2 1
2
x
𝑥(1 + √cos 𝑥) tan 𝑥
= lim
𝑥→0
2 sin
1
2
𝑥
𝑥
. lim
𝑥→0
sin
1
2
𝑥
tan 𝑥
. lim
𝑥→0
1
(1 + √cos 𝑥)
= 2.
1
2
.
1
2
.
1
1 + √cos 0
=
1
2
.
1
2
=
1
4
Jawaban D
73. Nilai lim
𝑥→3
𝑥2−9
sin(𝑥−3)
= ⋯.
A. 9 D.3
B. 7 E.1
C. 6
Pembahasan
lim
𝑥→3
𝑥2
− 9
sin(𝑥 − 3)
= lim
𝑥→3
(𝑥 − 3)(𝑥 + 3)
sin(𝑥 − 3)
= lim
𝑥→3
(𝑥 − 3)
sin(𝑥 − 3)
. lim
𝑥→3
(𝑥 + 3)
= 1. (3 + 3)
= 6
Jawaban C
74. Nilai lim
𝑥→0
(𝑥2−1) sin 6𝑥
𝑥3+3𝑥2+2𝑥
= ⋯.
A. −3 D. 1
B. −1 E. 6
C. 0
Pembahasan
lim
𝑥→0
(𝑥2
− 1) sin 6𝑥
𝑥3 + 3𝑥2 + 2𝑥
= lim
𝑥→0
(𝑥2
− 1) sin 6𝑥
𝑥(𝑥2 + 3𝑥 + 2)
= lim
𝑥→1
(𝑥2
− 1)
(𝑥2 + 3𝑥 + 2)
. lim
𝑥→1
sin 6𝑥
𝑥
=
(02
− 1)
(02 + 3.0 + 2)
. 6
=
−1
2
. 6
= −3
Jawaban A
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
30
SMAN 12 MAKASSAR
75. Nilai lim
𝑥→1
𝑥3−(𝑎+1)𝑥2+𝑎𝑥
(𝑥2−𝑎)tan(𝑥−1)
= ⋯.
A. 1 D. 0
B. 1 − 𝑎 E. 2 − 𝑎
C. 𝑎
Pembahasan
lim
𝑥→1
𝑥3
− (𝑎 + 1)𝑥2
+ 𝑎𝑥
(𝑥2 − 𝑎) tan(𝑥 − 1)
= lim
𝑥→1
𝑥(𝑥2
− (𝑎 + 1)𝑥 + 𝑎)
(𝑥2 − 𝑎) tan(𝑥 − 1)
= lim
𝑥→1
𝑥(𝑥 − 𝑎)(𝑥 − 1)
(𝑥2 − 𝑎) tan(𝑥 − 1)
= lim
𝑥→1
𝑥(𝑥 − 𝑎)
(𝑥2 − 𝑎)
. lim
𝑥→1
(𝑥 − 1)
tan(𝑥 − 1)
=
1(1 − 𝑎)
(12 − 𝑎)
. 1
=
1 − 𝑎
1 − 𝑎
= 1
Jawaban A
76. Nilai lim
𝑥→1
(𝑥2−1) sin 2(𝑥−1)
−2 𝑠𝑖𝑛2(𝑥−1)
= ⋯.
A. −2 D.−
1
4
B. −1 E.0
C. −
1
2
Pembahasan
lim
𝑥→1
(𝑥2
− 1) sin 2(𝑥 − 1)
−2 𝑠𝑖𝑛2(𝑥 − 1)
= lim
𝑥→1
(𝑥 − 1)(𝑥 + 1) sin 2(𝑥 − 1)
−2 𝑠𝑖𝑛2(𝑥 − 1)
= −
1
2
lim
𝑥→1
(𝑥 − 1)(𝑥 + 1) sin 2(𝑥 − 1)
sin(𝑥 − 1) . sin(𝑥 − 1)
= −
1
2
lim
𝑥→1
(𝑥 − 1)
sin(𝑥 − 1)
. lim
𝑥→1
sin2(𝑥 − 1)
sin(𝑥 − 1)
. lim
𝑥→1
(𝑥 + 1)
=−
1
2
. 1.2. (1 + 1)
= −2
Jawaban A
77. Nilai lim
𝑥→0
2 𝑠𝑖𝑛2 𝑥
2
𝑥 sin 𝑥
= ⋯.
A. 0 D. 2
B.
1
4
E. 4
C.
1
2
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
31
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→0
2 𝑠𝑖𝑛2 𝑥
2
𝑥 sin 𝑥
= 2 lim
𝑥→0
sin
𝑥
2
. sin
𝑥
2
𝑥 sin 𝑥
= 2 lim
𝑥→0
sin
𝑥
2
𝑥
. lim
𝑥→0
sin
𝑥
2
sin 𝑥
= 2.
1
2
.
1
2
=
1
2
Jawaban C
78. Nilai lim
𝑥→0
sin 4𝑥
1−√1−𝑥
= ⋯.
A. 8 D. −6
B. 6 E.−8
C. 4
Pembahasan
lim
𝑥→0
sin 4𝑥
1 − √1 − 𝑥
= lim
𝑥→0
sin 4𝑥
1 − √1 − 𝑥
.
1 + √1 − 𝑥
1 + √1 − 𝑥
= lim
𝑥→0
sin 4𝑥(1 + √1 − 𝑥)
1 − (1 − 𝑥)
= lim
𝑥→0
sin 4𝑥(1 + √1 − 𝑥)
𝑥
= lim
𝑥→0
sin 4𝑥
𝑥
. lim
𝑥→0
(1 + √1 − 𝑥)
= 4. (1 + √1 − 0)
= 4(1 + 1)
=8
Jawaban A
79. Nilai lim
𝑥→
𝜋
3
tan(3𝑥−𝜋)cos 2𝑥
sin(3𝑥−𝜋)
= ⋯.
A. −
1
2
D.
1
2
√3
B.
1
2
E.
3
2
C.
1
2
√2
Pembahasan
lim
𝑥→
𝜋
3
tan(3𝑥 − 𝜋) cos 2𝑥
sin(3𝑥 − 𝜋)
= lim
𝑥→
𝜋
3
tan(3𝑥 − 𝜋)
sin(3𝑥 − 𝜋)
. lim
𝑥→
𝜋
3
cos 2𝑥
= 1. cos (2.
𝜋
3
)
= cos (
2𝜋
3
)
= −
1
2
Jawaban A
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
32
SMAN 12 MAKASSAR
80. Nilai dari lim
𝑥→2
(𝑥−2) cos(𝜋𝑥−2𝜋)
tan(2𝜋𝑥−4𝜋)
=….
A. 2𝜋 D.
1
𝜋
B. 𝜋 E.
1
2𝜋
C. 0
Pembahasan
lim
𝑥→2
(𝑥 − 2) cos(𝜋𝑥 − 2𝜋)
tan(2𝜋𝑥 − 4𝜋)
= lim
𝑥→2
(𝑥 − 2) cos 𝜋(𝑥 − 2)
tan2𝜋(𝑥 − 2)
= lim
𝑥→2
(𝑥 − 2)
tan2𝜋(𝑥 − 2)
. lim
𝑥→2
cos 𝜋(𝑥 − 2)
=
1
2𝜋
. cos 𝜋(2 − 2)
=
1
2𝜋
. cos 0
=
1
2𝜋
. 1
=
1
2𝜋
Jawaban E
81. Nilai lim
𝑥→−3
𝑥2+6𝑥+9
2−2 cos(2𝑥+6)
= ⋯.
A. 3 D.
1
3
B. 1 E.
1
4
C.
1
2
Pembahasan
lim
𝑥→−3
𝑥2
+ 6𝑥 + 9
2 − 2 cos(2𝑥 + 6)
= lim
𝑥→−3
(𝑥 + 3)2
2(1 − cos(2𝑥 + 6))
=
1
2
lim
𝑥→−3
(𝑥 + 3)2
(1 − cos 2(𝑥 + 3))
=
1
2
lim
𝑥→−3
(𝑥 + 3)2
2 sin2(𝑥 + 3)
=
1
4
lim
𝑥→−3
(𝑥 + 3)2
sin2(𝑥 + 3)
=
1
4
{ lim
𝑥→−3
(𝑥 + 3)
sin(𝑥 + 3)
}
2
=
1
4
. 12
=
1
4
Jawaban E
82. Nilai lim
𝑥→−2
2−2 cos(𝑥+2)
𝑥2+4𝑥+4
=….
A. 4 D. 1
B. 2 E.
1
2
C.
1
4
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
33
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→−2
2 − 2 cos(𝑥 + 2)
𝑥2 + 4𝑥 + 4
= lim
𝑥→−2
2(1 − cos(𝑥 + 2))
(𝑥 + 2)2
= 2 lim
𝑥→−2
2. 𝑠𝑖𝑛2 1
2
(𝑥 + 2)
(𝑥 + 2)2
= 4 . { lim
𝑥→−2
sin
1
2
(𝑥 + 2)
(𝑥 + 2)
}
2
= 4 . {
1
2
}
2
= 4.
1
4
= 1
Jawaban D
83. Nilai lim
𝑥→1
tan(𝑥−1) sin(1−√ 𝑥)
𝑥2−2𝑥+1
= ⋯.
A. −1 D.
1
2
B. −
1
2
E. 1
C. 0
Pembahasan
lim
𝑥→1
tan(𝑥 − 1) sin(1 − √ 𝑥)
𝑥2 − 2𝑥 + 1
= lim
𝑥→1
tan(𝑥 − 1) sin(1 − √ 𝑥)
(𝑥 − 1)(𝑥 − 1)
= lim
𝑥→1
tan(𝑥 − 1) sin(1 − √ 𝑥)
(𝑥 − 1)(√ 𝑥 − 1)(√ 𝑥 + 1)
= lim
𝑥→1
tan(𝑥 − 1)
(𝑥 − 1)
. lim
𝑥→1
sin(1 − √ 𝑥)
(√ 𝑥 − 1)
. lim
𝑥→1
1
(√ 𝑥 + 1)
= 1. (−1).
1
(√1 + 1)
=
−1
2
Jawaban B
84. lim
𝑥→1
(𝑥2+𝑥−2)sin(𝑥−1)
𝑥2−2𝑥+1
= ⋯.
A. 4 D. −
1
4
B. 3 E. −
1
2
C. 0
Pembahasan
lim
𝑥→1
(𝑥2
+ 𝑥 − 2)sin(𝑥 − 1)
𝑥2 − 2𝑥 + 1
= lim
𝑥→1
(𝑥 + 2)(𝑥 − 1) sin(𝑥 − 1)
(𝑥 − 1)(𝑥 − 1)
= lim
𝑥→1
(𝑥 + 2) . = lim
𝑥→1
sin(𝑥 − 1)
(𝑥 − 1)
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
34
SMAN 12 MAKASSAR
= (1 + 2). 1
= 3
Jawaban B
85. Nilai lim
𝑥→4
(𝑥+2)tan(𝑥−4)
2𝑥2−7𝑥−4
= ⋯.
A. 0 D.
3
2
B.
2
3
E. 2
C. 1
Pembahasan
lim
𝑥→4
(𝑥 + 2) tan(𝑥 − 4)
2𝑥2 − 7𝑥 − 4
= lim
𝑥→4
(𝑥 + 2) tan(𝑥 − 4)
(2𝑥 + 1)(𝑥 − 4)
= lim
𝑥→4
(𝑥 + 2)
(2𝑥 + 1)
. lim
𝑥→4
tan(𝑥 − 4)
(𝑥 − 4)
=
(4 + 2)
(2.4 + 1)
.1
=
6
9
=
2
3
Jawaban B
86. Nilai dari ekspresi lim
𝑥→2
(2𝑥+1)tan(𝑥−2)
(𝑥2−4)
sama dengan ….
A. 1,25 D. 2,50
B. 1,50 E. 5,00
C. 2,00
Pembahasan
lim
𝑥→2
(2𝑥 + 1) tan(𝑥 − 2)
(𝑥2 − 4)
= lim
𝑥→2
(2𝑥 + 1) tan(𝑥 − 2)
(𝑥 + 2)(𝑥 − 2)
= lim
𝑥→2
(2𝑥 + 1)
(𝑥 + 2)
. lim
𝑥→2
tan(𝑥 − 2)
(𝑥 − 2)
=
(2.2 + 1)
(2 + 2)
=
5
4
=1,25
Jawaban A
87. Nilai lim
𝑥→1
(3𝑥+1)sin(𝑥−1)
𝑥2+2𝑥−3
= ⋯.
A. 4 D. 1
B. 3 E. 0
C. 2
Pembahasan
lim
𝑥→1
(3𝑥 + 1) sin(𝑥 − 1)
𝑥2 + 2𝑥 − 3
= lim
𝑥→1
(3𝑥 + 1) sin(𝑥 − 1)
(𝑥 + 3)(𝑥 − 1)
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
35
SMAN 12 MAKASSAR
= lim
𝑥→1
(3𝑥 + 1)
(𝑥 + 3)
. lim
𝑥→1
sin(𝑥 − 1)
(𝑥 − 1)
=
(3.1 + 1)
(1 + 3)
. 1
=
4
4
= 1
Jawaban D
88. Nilai lim
𝑡→2
(𝑡2−5𝑡+6) sin(𝑡−2)
(𝑡2−𝑡−2)2
= ⋯.
A.
1
3
D.−
1
9
B.
1
9
E.−
1
3
C. 0
Pembahasan
lim
𝑡→2
(𝑡2
− 5𝑡 + 6) sin(𝑡 − 2)
(𝑡2 − 𝑡 − 2)2
= lim
𝑡→2
(𝑡 − 2)(𝑡 − 3) sin(𝑡 − 2)
((𝑡 − 2)(𝑡 + 1))
2
= lim
𝑡→2
(𝑡 − 2)(𝑡 − 3) sin(𝑡 − 2)
(𝑡 − 2)2(𝑡 + 1)2
= lim
𝑡→2
(𝑡 − 3) sin(𝑡 − 2)
(𝑡 + 1)2(𝑡 − 2)
= lim
𝑡→2
(𝑡 − 3)
(𝑡 + 1)2
. lim
𝑡→2
sin(𝑡 − 2)
(𝑡 − 2)
=
(2 − 3)
(2 + 1)2
. 1
= −
1
9
Jawaban D
89. Nilai lim
𝑥→1
1−
1
𝑥
sin 𝜋(𝑥−1)
=….
A.
2
𝜋
D. −
1
𝜋
B.
1
𝜋
E. −
2
𝜋
C. 0
Pembahasan
lim
𝑥→1
1 −
1
𝑥
sin 𝜋(𝑥 − 1)
= lim
𝑥→1
𝑥 − 1
𝑥
sin 𝜋(𝑥 − 1)
= lim
𝑥→1
(𝑥 − 1)
x. sin 𝜋(𝑥 − 1)
= lim
𝑥→1
1
𝑥
. lim
𝑥→1
(𝑥 − 1)
sin 𝜋(𝑥 − 1)
=
1
1
.
1
𝜋
=
1
𝜋
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
36
SMAN 12 MAKASSAR
90. Nilai lim
𝑥→ 𝜋
sin(𝑥−𝜋)
2(𝑥−𝜋)+tan(𝑥−𝜋)
= ⋯.
A. −
1
2
D.
1
3
B. −
1
4
E.
2
5
C.
1
4
Pembahasan
Misalkan 𝑥 − 𝜋 = 𝑦
Jika 𝑥 → 𝜋 maka 𝑦 → 𝜋 − 𝜋 = 0
lim
𝑥→ 𝜋
sin(𝑥 − 𝜋)
2(𝑥 − 𝜋) + tan(𝑥 − 𝜋)
= lim
𝑦→ 0
sin 𝑦
2𝑦 + tan 𝑦
= lim
𝑦→ 0
sin 𝑦
𝑦
2𝑦
𝑦
+
tan 𝑦
𝑦
=
lim
𝑦→ 0
sin 𝑦
𝑦
lim
𝑦→ 0
2 + lim
𝑦→ 0
tan 𝑦
𝑦
=
1
2 + 1
=
1
3
Jawaban D
91. Nilai lim
𝑥→
𝜋
3
sin(𝑥−
𝜋
3
)+sin 5(𝑥−
𝜋
3
)
6(𝑥−
𝜋
3
)
= ⋯.
A. 1 D.3
B. 2 E.
7
2
C.
5
2
Pembahasan
Misalkan 𝑥 −
𝜋
3
= 𝑦
Jika 𝑥 →
𝜋
3
maka 𝑦 →
𝜋
3
−
𝜋
3
= 0
lim
𝑥→
𝜋
3
sin (𝑥 −
𝜋
3
) + sin 5 (𝑥 −
𝜋
3
)
6 (𝑥 −
𝜋
3
)
= lim
𝑦→0
sin 𝑦 + sin 5𝑦
6𝑦
= lim
𝑦→0
sin 𝑦
6𝑦
+ lim
𝑦→0
sin 5𝑦
6𝑦
=
1
6
+
5
6
= 1
Jawaban A
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
37
SMAN 12 MAKASSAR
92. Nilai lim
𝑥→𝑎
𝑥−𝑎
sin(𝑥−𝑎)−2𝑥+2𝑎
= ⋯.
A. 6 D. −1
B. 3 E. −3
C. 1
Pembahasan
Misalkan 𝑥 − 𝑎 = 𝑦
Jika 𝑥 → 𝑎 maka 𝑦 → 𝑎 − 𝑎 = 0
lim
𝑥→𝑎
𝑥 − 𝑎
sin(𝑥 − 𝑎) − 2𝑥 + 2𝑎
= lim
𝑥→𝑎
𝑥 − 𝑎
sin(𝑥 − 𝑎) − 2(𝑥 − 𝑎)
= lim
𝑦→0
𝑦
sin 𝑦 − 2𝑦
= lim
𝑦→0
𝑦
𝑦
sin 𝑦
𝑦
−
2𝑦
𝑦
=
lim
𝑦→0
1
lim
𝑦→0
sin 𝑦
𝑦
− lim
𝑦→0
2
=
1
1 − 2
= −1
Jawaban D
93. Jika diketahui lim
𝑥→0
tan 𝑥
𝑥
= 1, maka lim
𝑥→𝑎
𝑥−𝑎
tan(𝑥−𝑎)+3𝑥−3𝑎
=….
A. 0 D.
1
2
B.
1
4
E. 1
C.
1
3
Pembahasan
Misalkan 𝑥 − 𝑎 = 𝑦
Jika 𝑥 → 𝑎 maka 𝑦 → 𝑎 − 𝑎 = 0
lim
𝑥→𝑎
𝑥 − 𝑎
tan(𝑥 − 𝑎) + 3𝑥 − 3𝑎
= lim
𝑥→𝑎
𝑥 − 𝑎
tan(𝑥 − 𝑎) + 3(𝑥 − 𝑎)
= lim
𝑦→0
𝑦
tan 𝑦 + 3𝑦
= lim
𝑦→0
𝑦
𝑦
tan 𝑦
𝑦
+
3𝑦
𝑦
=
lim
𝑦→0
1
lim
𝑦→0
tan 𝑦
𝑦
+ lim
𝑦→0
3
=
1
1 + 3
=
1
4
Jawaban B
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
38
SMAN 12 MAKASSAR
94. Nilai lim
𝑥→0
1−cos 𝑥
cos 3𝑥−cos 𝑥
= ⋯.
A. −
1
8
D.
1
4
B. −
1
4
E.
1
8
C. −
1
2
Pembahasan
lim
𝑥→0
1 − cos 𝑥
cos 3𝑥 − cos 𝑥 = lim
𝑥→0
2 𝑠𝑖𝑛2 1
2
𝑥
−2 sin 2𝑥 . 𝑠𝑖𝑛𝑥
= lim
𝑥→0
sin
1
2
𝑥 . sin
1
2
𝑥
− sin 2𝑥 . 𝑠𝑖𝑛𝑥
= lim
𝑥→0
sin
1
2
𝑥
− sin 2𝑥
. lim
𝑥→0
sin
1
2
𝑥
sin 𝑥
= −
1
2
2
.
1
2
= −
1
8
Jawaban A
95. Nilai lim
𝑥→0
cos 𝑥−cos 5𝑥
12𝑥 tan 2𝑥
= ⋯.
A.
1
6
D.−
1
6
B.
1
2
E. −
1
12
C. −
1
2
Pembahasan
lim
𝑥→0
cos 𝑥 − cos 5𝑥
12𝑥 tan 2𝑥
= lim
𝑥→0
−2 sin 3𝑥 sin(−2𝑥)
12𝑥 tan 2𝑥
=
2
12
lim
𝑥→0
sin 3𝑥 sin 2𝑥
𝑥 tan 2𝑥
=
1
6
lim
𝑥→0
sin 3𝑥
𝑥
. lim
𝑥→0
sin 2𝑥
tan 2𝑥
=
1
6
. 3.
2
2
=
1
2
Jawaban B
96. Jika diketahui lim
𝑥→0
sin 𝑥
𝑥
= 1, maka lim
𝑥→0
cos 𝑥−cos 2𝑥
𝑥2
=….
A.
1
2
D.
3
2
B.
2
3
E. 2
C. 1
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
39
SMAN 12 MAKASSAR
Pembahasan
lim
𝑥→0
cos 𝑥 − cos 2𝑥
𝑥2
= lim
𝑥→0
2 sin
3
2
𝑥 sin
1
2
𝑥
𝑥2
= 2. lim
𝑥→0
sin
3
2
𝑥
𝑥
. lim
𝑥→0
sin
1
2
𝑥
𝑥
= 2.
3
2
.
1
2
=
3
2
Jawaban D
97. lim
𝑎→0
cos 𝑚𝛼−cos 𝑛𝛼
𝛼2
=….
A.
𝑚−𝑛
2
D.
𝑚+𝑛
2
B.
𝑚2−𝑛2
2
E.
𝑛2−𝑚2
2
C.
𝑚2+𝑛2
2
Pembahasan
lim
𝑎→0
cos 𝑚𝛼 − cos 𝑛𝛼
𝛼2
= lim
𝑎→0
−2 sin
(𝑚𝛼 + 𝑛𝛼)
2
. sin
(𝑚𝛼 − 𝑛𝛼)
2
𝛼2
= lim
𝑎→0
−2 sin
(𝑚𝛼 + 𝑛𝛼)
2
𝛼
. lim
𝑎→0
sin
(𝑚𝛼 − 𝑛𝛼)
2
𝛼
= lim
𝑎→0
−2 sin
𝛼(𝑚 + 𝑛)
2
𝛼
. lim
𝑎→0
sin
𝛼(𝑚 − 𝑛)
2
𝛼
= −2.
(𝑚+𝑛)
2
.
(𝑚−𝑛)
2
=
(𝑚 + 𝑛)(𝑚 − 𝑛)
2
=
𝑚2
− 𝑛2
2
Jawaban B
98. Nilai dari 

 xx
xx
x cos
sin5sin
0
lim
…
A. 0
B. 1
C. 3
D. 4
E. 5
Pembahasan
lim
𝑥→0
sin 5𝑥 − sin 𝑥
𝑥 cos 𝑥
= lim
𝑥→0
2 cos 3𝑥 sin 2𝑥
𝑥 cos 𝑥
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
40
SMAN 12 MAKASSAR
= lim
𝑥→0
2 cos 3𝑥
cos 𝑥
. lim
𝑥→0
sin 2𝑥
𝑥
=
2 cos 3.0
cos 0
. 2
=
2.1
1
. 2
= 4
Jawaban D
99. Nilai lim
𝑥→0
sin 3𝑥−sin3𝑥 cos2𝑥
2𝑥3
= ⋯.
A. 4 D.1
B. 3 E.
1
3
C. 2
Pembahasan
lim
𝑥→0
sin 3𝑥 − sin 3𝑥 cos 2𝑥
2𝑥3 = lim
𝑥→0
sin 3𝑥(1 − cos 2𝑥)
2𝑥3
= lim
𝑥→0
sin 3𝑥. 2 𝑠𝑖𝑛2
𝑥
2𝑥3
= lim
𝑥→0
sin 3𝑥. 𝑠𝑖𝑛2
𝑥
𝑥3
= lim
𝑥→0
sin 3𝑥
𝑥
. lim
𝑥→0
sin 𝑥
𝑥
. lim
𝑥→0
sin 𝑥
𝑥
= 3.1.1
= 3
Jawaban B
100. Nilai lim
𝜃→0
tan 𝜃−sin 𝜃
𝜃3
=….
A.
1
4
D. 2
B.
1
2
E. 3
C. 1
Pembahasan
lim
𝜃→0
tan 𝜃 − sin 𝜃
𝜃3
= lim
𝜃→0
sin 𝜃
cos 𝜃
− sin 𝜃
𝜃3
= lim
𝜃→0
sin 𝜃 (
1
cos 𝜃
− 1)
𝜃3
= lim
𝜃→0
sin 𝜃 (
1 − cos 𝜃
cos 𝜃
)
𝜃3
= lim
𝜃→0
sin 𝜃 (2 𝑠𝑖𝑛2 1
2
𝜃)
cos 𝜃 . 𝜃3
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
41
SMAN 12 MAKASSAR
= 2lim
𝜃→0
tan 𝜃 ( 𝑠𝑖𝑛2 1
2
𝜃)
𝜃3
= 2lim
𝜃→0
tan 𝜃
𝜃
. (lim
𝜃→0
sin
1
2
𝜃
𝜃
)
2
= 2.1. (
1
2
)
2
=2.
1
4
=
1
2
Jawaban B
101. Jika lim
𝑥→0
𝑥3
tan 𝑥−sin 𝑥
= 𝐴 − 2, maka nilai dari (𝐴 + 2) adalah ….
A. −2 D.4
B. 0 E. 6
C. 2
Pembahasan
lim
𝑥→0
𝑥3
tan 𝑥 − sin 𝑥
= lim
𝑥→0
𝑥3
tan 𝑥 (1 − 𝑐𝑜𝑠𝑥)
= lim
𝑥→0
𝑥3
tan 𝑥 . 2 𝑠𝑖𝑛2 1
2
𝑥
=
1
2
lim
𝑥→0
𝑥
tan 𝑥
. lim
𝑥→0
𝑥2
𝑠𝑖𝑛2 1
2
𝑥
=
1
2
lim
𝑥→0
𝑥
tan 𝑥
. (lim
𝑥→0
𝑥
𝑠𝑖𝑛
1
2
𝑥
)
2
=
1
2
. 1.
1
1
4
= 2
Nilai dari 𝐴 − 2 = 2 sehingga A = 4
Jadi A+2 = 4 + 2 = 6
Jawaban E
102.Nilai lim
𝑥→2
1−𝑐𝑜𝑠2(𝑥−2)
3𝑥2−12𝑥+12
= ⋯.
A.
1
3
D.1
B.
1
2
E.2
C. 0
Pembahasan
lim
𝑥→2
1 − 𝑐𝑜𝑠2(𝑥 − 2)
3𝑥2 − 12𝑥 + 12
= lim
𝑥→2
sin2(𝑥 − 2)
3(𝑥2 − 4𝑥 + 4)
= lim
𝑥→2
sin2(𝑥 − 2)
3(𝑥 − 2)2
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
42
SMAN 12 MAKASSAR
= lim
𝑥→2
sin(𝑥 − 2)
3(𝑥 − 2)
. lim
𝑥→2
sin(𝑥 − 2)
(𝑥 − 2)
=
1
3
. 1
=
1
3
Jawaban A
103. Nilai lim
𝑥→
𝜋
4
(𝑥−
𝜋
4
) sin(3𝑥−
3𝜋
4
)
2(1−sin 2𝑥)
= ⋯.
A.
3
4
D.−
3
4
B.
1
4
E. −
3
2
C. 0
Pembahasan
Misalkan 𝑥 −
𝜋
4
= 𝑦 ⇔ 𝑥 = 𝑦 +
𝜋
4
sehingga 2𝑥 = 2𝑦 +
𝜋
2
Jika 𝑥 →
𝜋
4
maka 𝑦 → 0
lim
𝑥→
𝜋
4
(𝑥 −
𝜋
4
) sin (3𝑥 −
3𝜋
4
)
2(1 − sin 2𝑥)
= lim
𝑥→
𝜋
4
(𝑥 −
𝜋
4
) sin 3 (𝑥 −
𝜋
4
)
2(1 − sin 2𝑥)
= lim
𝑦→0
𝑦 sin 3𝑦
2 (1 − sin (2𝑦 +
𝜋
2
))
= lim
𝑦→0
𝑦 sin 3𝑦
2. (1 − 𝑐𝑜𝑠2𝑦)
=
1
2
lim
𝑦→0
𝑦 sin 3𝑦
2. sin2y
=
1
4
. lim
𝑦→0
𝑦
sin 𝑦
. lim
𝑦→0
sin 3𝑦
sin 𝑦
=
1
4
. 1.3
=
3
4
Jawaban A
104. Nilai lim
𝑥→
𝜋
2
4(𝑥−𝜋)cos2x
𝜋(𝜋−2𝑥) tan(𝑥−
𝜋
2
)
= ⋯.
A. −2 D. 1
B. −1 E. 2
C. 0
Pembahasan
Misalkan 𝑦 = 𝑥 −
𝜋
2
maka 𝑥 =
𝜋
2
+ 𝑦
lim
𝑥→
𝜋
2
4(𝑥 − 𝜋)cos2
x
𝜋(𝜋 − 2𝑥) tan (𝑥 −
𝜋
2
) = lim
𝑦→0
4 (
𝜋
2
+ 𝑦 − 𝜋) cos2
(
𝜋
2
+ 𝑦)
𝜋 (𝜋 − 2. (
𝜋
2
+ 𝑦)) tan 𝑦
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
43
SMAN 12 MAKASSAR
= lim
𝑦→0
4 (𝑦 −
𝜋
2
) cos2
(
𝜋
2
+ 𝑦)
𝜋(−𝑦) tan 𝑦
= lim
𝑦→0
(4𝑦 − 2𝜋)(− sin 𝑦)2
𝜋(−𝑦) tan 𝑦
= lim
𝑦→0
(4𝑦 − 2𝜋)
−𝜋
. lim
𝑦→0
sin 𝑦
𝑦
. lim
𝑦→0
sin 𝑦
tan 𝑦
=
(4.0 − 2𝜋)
−𝜋
. 1.
1
1
=
−2𝜋
−𝜋
= 2
Jawaban E
105. Nilai lim
𝑥→𝑦
tan 𝑥−tan 𝑦
(1−
𝑥
𝑦
)(1+tan 𝑥 tan 𝑦)
= ⋯.
A. y D. −1
B. 1 E. – 𝑦
C. 0
Pembahasan
lim
𝑥→𝑦
tan 𝑥 − tan 𝑦
(1 −
𝑥
𝑦
) (1 + tan 𝑥 tan 𝑦)
= lim
𝑥→𝑦
tan(𝑥 − 𝑦)
(1 −
𝑥
𝑦
)
= lim
𝑥→𝑦
tan(𝑥 − 𝑦)
(
𝑦 − 𝑥
𝑦
)
= lim
𝑥→𝑦
tan(𝑥 − 𝑦)
1
𝑦
(𝑦 − 𝑥)
= 𝑦lim
𝑥→𝑦
tan(𝑥 − 𝑦)
(𝑦 − 𝑥)
= 𝑦lim
𝑥→𝑦
tan(𝑥 − 𝑦)
−(𝑥 − 𝑦)
= −𝑦lim
𝑥→𝑦
tan(𝑥 − 𝑦)
(𝑥 − 𝑦)
= −𝑦. 1
= −𝑦
Jawaban: E
106. Nilai lim
𝑎→𝑏
tan 𝑎−tan 𝑏
1+(1−
𝑎
𝑏
) tan 𝑎 tan 𝑏−
𝑎
𝑏
= ⋯.
A. b D. −1
B. 1 E. – 𝑏
C. 0
Pembahasan
lim
𝑎→𝑏
tan 𝑎 − tan 𝑏
1 + (1 −
𝑎
𝑏
) tan 𝑎 tan 𝑏 −
𝑎
𝑏
= lim
𝑎→𝑏
tan 𝑎 − tan 𝑏
(1 −
𝑎
𝑏
) + (1 −
𝑎
𝑏
) tan 𝑎 tan 𝑏
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
44
SMAN 12 MAKASSAR
= lim
𝑎→𝑏
tan 𝑎 − tan 𝑏
(1 −
𝑎
𝑏
) (1 + tan 𝑎 tan 𝑏)
= lim
𝑎→𝑏
tan(𝑎 − 𝑏)
(1 −
𝑎
𝑏
)
= lim
𝑎→𝑏
tan(𝑎 − 𝑏)
(
𝑏 − 𝑎
𝑏
)
= lim
𝑎→𝑏
tan(𝑎 − 𝑏)
1
𝑏
(𝑏 − 𝑎)
= 𝑏lim
𝑎→𝑏
tan(𝑎 − 𝑏)
(𝑏 − 𝑎)
= 𝑏lim
𝑎→𝑏
tan(𝑎 − 𝑏)
−(𝑎 − 𝑏)
= −𝑏lim
𝑎→𝑏
tan(𝑎 − 𝑏)
(𝑎 − 𝑏)
= −𝑏. 1
= −𝑏
Jawaban E
107. Nilai lim
𝑥→
𝜋
2
2𝑥− 𝜋
cos 𝑥
= ⋯.
A. 4 D. −2
B. 2 E. −4
C. 0
Pembahasan
Misalkan 𝑦 = 2𝑥 − 𝜋 sehingga 𝑥 =
𝜋
2
+
𝑦
2
Jika 𝑥 →
𝜋
2
maka 𝑦 → 0
lim
𝑥→
𝜋
2
2𝑥 − 𝜋
cos 𝑥
= lim
𝑦→0
𝑦
cos (
𝜋
2
+
𝑦
2
)
= lim
𝑦→0
𝑦
−sin
𝑦
2
=
1
−
1
2
= −2
Jawaban D
108. Nilai lim
𝑥→1
sin 𝜋𝑥
𝑥−1
= ⋯.
A. −𝜋 D. 1
B. −1 E. 𝜋
C. 0
Pembahasan
Misalkan 𝑦 = 𝑥 − 1 sehingga 𝑥 = 𝑦 + 1
Jika 𝑥 → 1 maka 𝑦 → 0
lim
𝑥→1
sin 𝜋𝑥
𝑥 − 1
= lim
𝑦→0
sin 𝜋(𝑦 + 1)
𝑦
= lim
𝑦→0
sin(𝜋𝑦 + 𝜋)
𝑦
= lim
𝑦→0
−sin 𝜋𝑦
𝑦
= −𝜋
Jawaban A
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
45
SMAN 12 MAKASSAR
109. Nilai lim
𝑥→−2
tan 𝜋𝑥
𝑥+2
= ⋯.
A. −𝜋 D. 1
B. −1 E. 𝜋
C. 0
Pembahasan
Sifat yang digunkan: tan(2𝜋 − 𝑎) = − tan 𝑎
Misalkan 𝑦 = 𝑥 + 2, sehingga 𝑥 = 𝑦 − 2
Jika 𝑥 → −2 maka 𝑦 → −2 + 2 = 0
lim
𝑥→−2
tan 𝜋𝑥
𝑥 + 2
= lim
𝑦→0
tan 𝜋(𝑦 − 2)
𝑦
= lim
𝑦→0
tan(𝜋𝑦 − 2𝜋)
𝑦
= lim
𝑦→0
tan 𝜋𝑦
𝑦
= 𝜋
Jawaban E
110. Nilai dari lim
𝑥→𝜋
1+cos 𝑥
(𝑥−𝜋)2
=….
A. −0,50 D. 0,25
B. −0,25 E. 0,50
C. 0
Pembahasan
Misalkan 𝑦 = 𝑥 − 𝜋, sehingga 𝑥 = 𝜋 + 𝑦
Jika 𝑥 → 𝜋 maka 𝑦 → 𝜋 − 𝜋 = 0
lim
𝑥→𝜋
1 + cos 𝑥
(𝑥 − 𝜋)2
= lim
𝑦→0
1 + cos(𝜋 + 𝑦)
𝑦2
= lim
𝑦→0
1 − cos 𝑦
𝑦2
= lim
𝑦→0
2 𝑠𝑖𝑛2 1
2
𝑦
𝑦2
= 2 (lim
𝑦→0
sin
1
2
𝑦
𝑦
)
2
= 2.
1
2
2
=
2
4
= 0,50
Jawaban E
111. Nilai lim
𝑥→
𝜋
2
sin 2𝑥
𝑥−
𝜋
2
=...
A. −2 D. 1
B. −1 E. 2
C. 0
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
46
SMAN 12 MAKASSAR
Pembahasan
Misalkan 𝑥 −
𝜋
2
= 𝑦 atau 𝑥 =
𝜋
2
+ 𝑦
sin 2𝑥 = sin 2 (
𝜋
2
+ 𝑦) = sin(𝜋 + 𝑦) = − sin 𝑦
lim
𝑥→
𝜋
2
sin 2𝑥
𝑥 −
𝜋
2
= lim
𝑦→0
− sin 𝑦
𝑦
= − lim
𝑦→0
sin 𝑦
𝑦
= −1
Jawaban B
112. Nilai lim
𝑥→𝜋
𝑥−𝜋
sin 𝑥
=....
A. −2 D. 1
B. −1 E. 2
C. 0
Pembahasan
Misalkan 𝑥 − 𝜋 = 𝑦 atau 𝑥 = 𝜋 + 𝑦
sin 𝑥 = sin(𝜋 + 𝑦) = − sin 𝑦
Jika 𝑥 → 𝜋 maka 𝑦 → 0
lim
𝑥→𝜋
𝑥 − 𝜋
sin 𝑥
= lim
𝑦→0
𝑦
−sin 𝑦
= − lim
𝑦→0
𝑦
sin 𝑦
= −1
Jawaban B
113. Nilai lim
𝑥→
𝜋
2
1−sin 𝑥
(𝜋−2𝑥)2 =....
A. 8 D.
1
2
B. 4 E.
1
8
C. 2
Pembahasan
Misalkan 𝜋 − 2𝑥 = 𝑦 sehingga 𝑥 =
𝜋
2
−
𝑦
2
sin 𝑥 = sin (
𝜋
2
−
𝑦
2
) = cos
𝑦
2
Jika 𝑥 →
𝜋
2
maka 𝑦 → 0
lim
𝑥→
𝜋
2
1 − sin 𝑥
(𝜋 − 2𝑥)2 = lim
𝑦→0
1 − cos
𝑦
2
𝑦2
= lim
𝑦→0
2 𝑠𝑖𝑛2 𝑦
4
𝑦2
= 2lim
𝑦→0
sin
𝑦
4
𝑦
. lim
𝑦→0
sin
𝑦
4
𝑦
= 2.
1
4
.
1
4
=
1
8
Jawaban E
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
47
SMAN 12 MAKASSAR
114. Nilai lim
𝑥→1
(1 − 𝑥) tan (
𝜋𝑥
2
)=….
A.
𝜋
2
D. 𝜋
B.
2
𝜋
E. 0
C.
3
𝜋
Pembahasan
Misalkan (1 − 𝑥) = 𝑦
lim
𝑥→1
(1 − 𝑥) tan (
𝜋𝑥
2
) = lim
𝑦→0
𝑦 tan (
𝜋(1 − 𝑦)
2
)
= lim
𝑦→0
𝑦 tan (
𝜋
2
−
𝜋
2
𝑦)
= lim
𝑦→0
𝑦 cot (
𝜋
2
𝑦)
= lim
𝑦→0
𝑦
tan (
𝜋
2
𝑦)
=
1
𝜋
2
=
2
𝜋
Jawaban B
115. Nilai lim
𝑥→𝜋
1+cos 𝑥
𝑡𝑎𝑛2 𝑥
=….
A. −1 D.
1
2
B. −
1
2
E. 1
C. 0
Pembahasan
Misalkan 𝑥 − 𝜋 = 𝑡 → 𝑥 = 𝜋 + 𝑡
Jika 𝑥 → 𝜋 maka 𝑡 → 0
lim
𝑥→𝜋
1 + cos 𝑥
𝑡𝑎𝑛2 𝑥
= lim
𝑡→0
1 + cos(𝜋 + 𝑡)
𝑡𝑎𝑛2(𝜋 + 𝑡)
= lim
𝑡→0
1 − cos 𝑡
𝑡𝑎𝑛2 𝑡
= lim
𝑡→0
2 𝑠𝑖𝑛2 1
2
𝑡
𝑡𝑎𝑛2 𝑡
= 2 lim
𝑡→0
sin
1
2
𝑡
tan 𝑡
. lim
𝑡→0
sin
1
2
𝑡
tan 𝑡
= 2.
1
2
.
1
2
=
1
2
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
48
SMAN 12 MAKASSAR
116. lim
𝑥→1
tan(𝑥2−1)
(𝑥−1)
=….
A. 2 D. −2
B.
1
2
E. −
1
2
C. 0
Pembahasan
lim
𝑥→1
tan(𝑥2
− 1)
(𝑥 − 1)
= lim
𝑥→1
tan(𝑥2
− 1)
(𝑥 − 1)
= lim
𝑥→1
tan(𝑥2
− 1)
(𝑥 − 1)
.
(𝑥 + 1)
(𝑥 + 1)
= lim
𝑥→1
tan(𝑥2
− 1)
(𝑥2 − 1)
. lim
𝑥→1
(𝑥 + 1)
= 1. (1 + 1)
= 2
Jawaban A
117. Nilai lim
𝑥→0
√1−cos 𝑥
𝑥
adalah ….
A. −√2 D.
1
2
√2
B. −
1
2
√2 E. √2
C. 0
Pembahasan
lim
𝑥→0
√1 − cos 𝑥
𝑥
= lim
𝑥→0
√1 − cos 𝑥
√𝑥2
= lim
𝑥→0
√
1 − cos 𝑥
𝑥2
= √lim
𝑥→0
1 − cos 𝑥
𝑥2
=
√
lim
𝑥→0
2 𝑠𝑖𝑛2 1
2
𝑥
𝑥2
=
√
2lim
𝑥→0
sin
1
2
𝑥
𝑥
. lim
𝑥→0
sin
1
2
𝑥
𝑥
= √2.
1
2
.
1
2
=
1
2
√2
Jawaban D
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
49
SMAN 12 MAKASSAR
118. Jika diketahui lim
𝑥→0
𝑎𝑥 sin 𝑥+𝑏
cos 𝑥−1
= 1, maka nilai 𝑎 dan 𝑏 yang memenuhi adalah ….
A. 𝑎 = −
1
2
, 𝑏 = 0 D. 𝑎 = 1, 𝑏 = −1
B. 𝑎 = 1, 𝑏 = 1 E. . 𝑎 = 1, 𝑏 = 0
C. 𝑎 =
1
2
, 𝑏 = 0
Pembahasan
Karena cos 𝑥 − 1 bernilai 0 untuk 𝑥 = 0 dan nilai limit 1, maka bagian pembilang
harus bernilai 0
𝑎. 0. sin 0 + 𝑏 = 0 sehingga 𝑏 = 0
lim
𝑥→0
𝑎𝑥 sin 𝑥 + 𝑏
cos 𝑥 − 1
= 1
⇔ lim
𝑥→0
𝑎𝑥 sin 𝑥
cos 𝑥 − 1
= 1
⇔ lim
𝑥→0
𝑎𝑥 sin 𝑥
−2 𝑠𝑖𝑛2 1
2
𝑥
= 1
⇔ lim
𝑥→0
𝑎𝑥
sin
1
2
𝑥
. lim
𝑥→0
sin 𝑥
sin
1
2
𝑥
= −2
⇔
𝑎
1
2
.
1
1
2
= −2
⇔ 𝑎 = −2 ×
1
4
= −
1
2
Jawaban A
119. Misalkan 𝛼 dan 𝛽 adalah akar-akar persamaan 𝑎𝑥2
+ 𝑏𝑥 + 𝑐 = 0, maka
lim
𝑥→𝛼
1−cos(𝑎𝑥2+𝑏𝑥+𝑐)
(𝑥−𝛼)2 sama dengan ….
A. 0 D.
𝛼2
2
(𝛼 + 𝛽)2
B.
1
2
(𝛼 − 𝛽)2
E.
𝛽2
2
(𝛼 − 𝛽)2
C.
𝛼2
2
(𝛼 − 𝛽)2
Pembahasan
lim
𝑥→𝛼
1 − cos(𝑎𝑥2
+ 𝑏𝑥 + 𝑐)
(𝑥 − 𝛼)2 = lim
𝑥→𝛼
2 sin2 1
2
(𝑎𝑥2
+ 𝑏𝑥 + 𝑐)
(𝑥 − 𝛼)2
= lim
𝑥→𝛼
2 sin2 1
2
(𝑥 − 𝛼)(𝑥 − 𝛽)
(𝑥 − 𝛼)2
= 2 (lim
𝑥→𝛼
sin
1
2
(𝑥 − 𝛼)(𝑥 − 𝛽)
(𝑥 − 𝛼)
)
2
= 2 (lim
𝑥→𝛼
sin
1
2
(𝑥 − 𝛼)(𝑥 − 𝛽)
(𝑥 − 𝛼)
.
(𝑥 − 𝛽)
(𝑥 − 𝛽)
)
2
= 2 (lim
𝑥→𝛼
(𝑥 − 𝛽)sin
1
2
(𝑥 − 𝛼)(𝑥 − 𝛽)
(𝑥 − 𝛼)(𝑥 − 𝛽)
)
2
Muhammad Arif,S.Pd,M.Pd.
120 Limit Fungsi Trigonometri
50
SMAN 12 MAKASSAR
= 2 (lim
𝑥→𝛼
(𝑥 − 𝛽)lim
𝑥→𝛼
sin
1
2
(𝑥 − 𝛼)(𝑥 − 𝛽)
(𝑥 − 𝛼)(𝑥 − 𝛽)
)
2
= 2 ((𝛼 − 𝛽).
1
2
)
2
= 2.
1
4
(𝛼 − 𝛽)2
=
1
2
(𝛼 − 𝛽)2
Jawaban B
120. Jika 𝑓(𝑥) = cos 2𝑥 maka lim
ℎ→0
𝑓(𝑥+2ℎ)−2𝑓(𝑥)+𝑓(𝑥−2ℎ)
(2ℎ)2
= ⋯.
A. 2 cos 2𝑥 D. −4 cos 2𝑥
B. −2 sin 2𝑥 E. 2 cos 4𝑥
C. 4 sin 2𝑥
Pembahasan
o 𝑓(𝑥) = cos 2𝑥
o 𝑓(𝑥 + 2ℎ) = cos 2(𝑥 + 2ℎ) = cos(2𝑥 + 4ℎ)
o 𝑓(𝑥 − 2ℎ) = cos 2(𝑥 − 2ℎ) = cos(2𝑥 − 4ℎ)
o 𝑓(𝑥 + 2ℎ) − 𝑓(𝑥 − 2ℎ) = cos(2𝑥 + 4ℎ) − cos(2𝑥 − 4ℎ)
𝑓(𝑥 + 2ℎ) − 𝑓(𝑥 − 2ℎ) = 2 cos
1
2
(2𝑥 + 4ℎ + 2𝑥 − 4ℎ) cos
1
2
(2𝑥 + 4ℎ − 2𝑥 + 4ℎ)
𝑓(𝑥 + 2ℎ) − 𝑓(𝑥 − 2ℎ) = 2 cos 2𝑥 cos 4ℎ
Sehingga
lim
ℎ→0
𝑓(𝑥 + 2ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 − 2ℎ)
(2ℎ)2
= lim
ℎ→0
2 cos 2𝑥 cos 4ℎ − 2 cos 2𝑥
(2ℎ)2
= lim
ℎ→0
2 cos 2𝑥 (cos 4ℎ − 1)
4ℎ2
= lim
ℎ→0
2 cos 2𝑥 (−2. 𝑠𝑖𝑛2
2ℎ)
4. ℎ2
= lim
ℎ→0
− cos 2𝑥 . sin 2
2ℎ
ℎ2
= lim
ℎ→0
− cos 2𝑥 lim
ℎ→0
sin 2
2ℎ
ℎ2
= − cos 2𝑥 lim
ℎ→0
sin 2ℎ
ℎ
. lim
ℎ→0
sin 2ℎ
ℎ
= − cos 2𝑥 . 2.2
= −4 cos 2𝑥
Jawaban D
Kritik dan saran: arifsman12@gmail.com

120 soal dan pembahasan limit fungsi trigonometri

  • 1.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 1 SMAN 12 MAKASSAR SOAL DAN PEMBAHASAN LIMIT FUNGSI TRIGONOMETRI 1. Nilai lim 𝑥→ 𝜋 3 2 tan 𝑥−sin 𝑥 cos 𝑥 = ⋯. A. 3√3 D. 3 4 √3 B. 5 2 √3 E. 1 4 √3 C. 3 2 √3 Pembahasan lim 𝑥→ 𝜋 3 2 tan 𝑥 − sin 𝑥 cos 𝑥 = 2 tan 𝜋 3 − sin 𝜋 3 cos 𝜋 3 = 2. √3 − 1 2 √3 1 2 = 4√3 − √3 2 1 2 = 4√3 − √3 1 = 3√3 Jawaban A 2. Nilai lim 𝑥→ 𝜋 4 sin 2𝑥 sin 𝑥+ cos 𝑥 = ⋯. A. √2 D. 0 B. 1 2 √2 E. −1 C. 1 Pembahasan lim 𝑥→ 𝜋 4 sin 2𝑥 sin 𝑥 + cos 𝑥 = sin 2. 𝜋 4 sin 𝜋 4 + cos 𝜋 4 = sin 𝜋 2 sin 𝜋 4 + cos 𝜋 4 = 1 1 2 √2 + 1 2 √2 = 1 √2 = 1 2 √2 Jawaban B
  • 2.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 2 SMAN 12 MAKASSAR 3. Nilai lim 𝑥→ 𝜋 4 1−2 𝑠𝑖𝑛2 𝑥 cos 𝑥−sin 𝑥 = ⋯. A. 0 D. √2 B. 1 2 √2 E. ∞ C. 1 Pembahasan lim 𝑥→ 𝜋 4 1 − 2 𝑠𝑖𝑛2 𝑥 cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 𝑐𝑜𝑠2 𝑥 + 𝑠𝑖𝑛2 𝑥 − 2 𝑠𝑖𝑛2 𝑥 cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 𝑐𝑜𝑠2 𝑥 − 𝑠𝑖𝑛2 𝑥 cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 (cos 𝑥 − sin 𝑥)(cos 𝑥 + sin 𝑥) cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 (cos 𝑥 + sin 𝑥) = cos 𝜋 4 + sin 𝜋 4 = 1 2 √2 + 1 2 √2 = √2 Jawaban D 4. Nilai lim 𝑥→ 𝜋 4 cos 2𝑥 cos 𝑥−sin 𝑥 = ⋯. A. −√2 D. 1 2 √2 B. − 1 2 √2 E. √2 C. 0 Pembahasan lim 𝑥→ 𝜋 4 cos 2𝑥 cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 𝑐𝑜𝑠2 𝑥 − 𝑠𝑖𝑛2 𝑥 cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 (cos 𝑥 − sin 𝑥)(cos 𝑥 + sin 𝑥) cos 𝑥 − sin 𝑥 = lim 𝑥→ 𝜋 4 (cos 𝑥 + sin 𝑥) = cos 𝜋 4 + sin 𝜋 4 = 1 2 √2 + 1 2 √2 = √2 Jawaban E
  • 3.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 3 SMAN 12 MAKASSAR 5. Nilai lim 𝑥→ 𝜋 4 1−2 sin 𝑥.cos 𝑥 sin 𝑥−cos 𝑥 = ⋯. A. 1 D. 0 B. 1 2 √2 E. −1 C. 1 2 Pembahasan lim 𝑥→ 𝜋 4 1 − 2 sin 𝑥 . cos 𝑥 sin 𝑥 − cos 𝑥 = lim 𝑥→ 𝜋 4 sin2x+cos2x−2 sin 𝑥.cos 𝑥 sin 𝑥−cos 𝑥 ;karena sin2 x + cos2 x = 1 = lim 𝑥→ 𝜋 4 (sin 𝑥 − cos 𝑥)2 sin 𝑥 − cos 𝑥 = lim 𝑥→ 𝜋 4 (sin 𝑥 − cos 𝑥) = sin 𝜋 4 − cos 𝜋 4 = 1 2 √2 − 1 2 √2 =0 Jawaban D 6. Nilai dari lim 𝑥→ 𝜋 8 𝑠𝑖𝑛22𝑥−𝑐𝑜𝑠22𝑥 sin 2𝑥−cos 2𝑥 = …. A. 0 D. 1 2 √2 B. 1 2 E. 1 C. √2 Pembahasan lim 𝑥→ 𝜋 8 𝑠𝑖𝑛2 2𝑥 − 𝑐𝑜𝑠2 2𝑥 sin 2𝑥 − cos 2𝑥 = lim 𝑥→ 𝜋 8 (sin 2𝑥 − cos 2𝑥)(𝑠𝑖𝑛 2𝑥 + cos 2𝑥) sin 2𝑥 − cos 2𝑥 = lim 𝑥→ 𝜋 8 (𝑠𝑖𝑛 2𝑥 + cos 2𝑥) = (𝑠𝑖𝑛 2. 𝜋 8 + cos 2. 𝜋 8 ) = sin 𝜋 4 + cos 𝜋 4 = 1 2 √2 + 1 2 √2 = √2 Jawaban C 7. Nilai dari lim 𝑥→ 𝜋 2 𝑥 𝑐𝑜𝑡2 𝑥 1−sin 𝑥 = …. A. −2𝜋 D. 𝜋 B. – 𝜋 E. 2𝜋 C. 0
  • 4.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 4 SMAN 12 MAKASSAR Pembahasan lim 𝑥→ 𝜋 2 𝑥 𝑐𝑜𝑡2 𝑥 1 − sin 𝑥 = lim 𝑥→ 𝜋 2 𝑥 𝑠𝑖𝑛2 𝑥 𝑐𝑜𝑠2 𝑥(1 − sin 𝑥) . (1 + sin 𝑥) (1 + sin 𝑥) = lim 𝑥→ 𝜋 2 𝑥 𝑐𝑜𝑠2 𝑥. (1 + sin 𝑥) 𝑠𝑖𝑛2 𝑥(1 − 𝑠𝑖𝑛2 𝑥) = lim 𝑥→ 𝜋 2 𝑥 𝑐𝑜𝑠2 𝑥. (1 + sin 𝑥) 𝑠𝑖𝑛2 𝑥. 𝑐𝑜𝑠2 𝑥 = lim 𝑥→ 𝜋 2 𝑥 (1 + sin 𝑥) 𝑠𝑖𝑛2 𝑥 = 𝜋 2 (1 + sin 𝜋 2 ) 𝑠𝑖𝑛2 𝜋 2 = 𝜋 2 (1 + 1) 12 = 𝜋 2 . 2 1 = 𝜋 ;𝑐𝑜𝑡2 𝑥 = 𝑠𝑖𝑛2 𝑥 𝑐𝑜𝑠2 𝑥 ;1 − 𝑠𝑖𝑛2 𝑥 = 𝑐𝑜𝑠2 𝑥 Jawaban D 8. Nilai lim 𝑥→ 𝜋 4 sin 𝑥 −cos 𝑥 1−tan 𝑥 = ⋯. A. −√2 D. 1 2 √2 B. − 1 2 √2 E. √2 C. 0 Pembahasan lim 𝑥→ 𝜋 4 sin 𝑥 − cos 𝑥 1 − tan 𝑥 = lim 𝑥→ 𝜋 4 sin 𝑥 −cos 𝑥 1− sin 𝑥 cos 𝑥 ; karena tan 𝑥 = sin 𝑥 cos 𝑥 = lim 𝑥→ 𝜋 4 sin 𝑥 − cos 𝑥 cos x − sin 𝑥 cos 𝑥 = lim 𝑥→ 𝜋 4 cos 𝑥 (sin 𝑥 − cos 𝑥) cos x − sin 𝑥 = lim 𝑥→ 𝜋 4 − cos 𝑥 = − cos 𝜋 4 = − 1 2 √2 Jawaban B
  • 5.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 5 SMAN 12 MAKASSAR 9. Nilai lim 𝑥→ 0 sin 2𝑥 −2 sin 𝑥 𝑥3 = ⋯. A. 3 2 D. −1 B. 1 2 E. −2 C. − 1 2 Pembahasan lim 𝑥→ 0 sin 2𝑥 − 2 sin 𝑥 𝑥3 = lim 𝑥→ 0 2 sin 𝑥 cos 𝑥 − 2 sin 𝑥 𝑥3 = lim 𝑥→ 0 2 sin 𝑥 (cos 𝑥 − 1) 𝑥3 = lim 𝑥→ 0 2 sin 𝑥 (−2𝑠𝑖𝑛2 1 2 𝑥) 𝑥3 = −4 lim 𝑥→ 0 sin 𝑥 . sin 1 2 𝑥 . sin 1 2 𝑥 𝑥3 = −4 lim 𝑥→ 0 sin 𝑥 𝑥 lim 𝑥→ 0 sin 1 2 𝑥 𝑥 . lim 𝑥→ 0 sin 1 2 𝑥 𝑥 = −4. 1 2 . 1 2 =−1 Jawaban D 10. Nilai lim 𝑥→ 𝜋 4 2−𝑐𝑠𝑐2 𝑥 1−cot 𝑥 adalah …. A. – 2 D. 1 B. – 1 E. 2 C. 0 Pembahasan lim 𝑥→ 𝜋 4 2 − 𝑐𝑠𝑐2 𝑥 1 − cot 𝑥 = lim 𝑥→ 𝜋 4 2 − (1 + 𝑐𝑜𝑡2 𝑥) 1 − cot 𝑥 = lim 𝑥→ 𝜋 4 1 − 𝑐𝑜𝑡2 𝑥 1 − cot 𝑥 = lim 𝑥→ 𝜋 4 (1 − cot 𝑥)(1 + cot 𝑥) 1 − cot 𝑥 = lim 𝑥→ 𝜋 4 (1 + cot 𝑥) = (1 + cot 𝜋 4 ) = 1 + 1 =2 Jawaban E
  • 6.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 6 SMAN 12 MAKASSAR 11. Nilai        x xx x 5 sin.4cos 0 lim … A. 3 5 B. 1 C. 5 3 D. 5 1 E. 0 Pembahasan lim 𝑥→ 0 cos 4𝑥. sin 𝑥 5𝑥 = lim 𝑥→ 0 cos 4𝑥 . lim 𝑥→ 0 sin 𝑥 5𝑥 = cos 4.0 . 1 5 = 1. 1 5 = 1 5 Jawaban D 12. Nilai lim 𝑥→0 sin 3𝑥 2𝑥 = ⋯. A. 3 D. 2 3 B. 2 E. 1 2 C. 1 1 2 Pembahasan lim 𝑥→0 sin 3𝑥 2𝑥 = 3 2 = 1 1 2 Jawaban C 13. lim 𝑥→0 sin 8𝑥 tan 2𝑥 A. 4 D. 2 3 B. 3 E. 1 2 C. 2 Pembahasan lim 𝑥→0 sin 8𝑥 tan 2𝑥 = lim 𝑥→0 sin 8𝑥 tan 2𝑥 . 8𝑥 8𝑥 . 2𝑥 2𝑥 = lim 𝑥→0 sin 8𝑥 8𝑥 . lim 𝑥→0 2𝑥 tan 2𝑥 . 8𝑥 2𝑥 = 1.1. 8 2 = 4 Jawaban A
  • 7.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 7 SMAN 12 MAKASSAR 14. Nilai lim 𝜃→0 2𝜃 sin4𝜃 = ⋯. A. 1 4 D. 2 B. 1 2 E. 4 C. 0 Pembahasan lim 𝜃→0 2𝜃 sin 4𝜃 = 2 4 = 1 2 Jawaban B 15. Nilai lim 𝑥→0 sin 2𝑥 sin 6𝑥 =…. A. 1 6 D. 3 B. 1 3 E. 6 C. 2 Pembahasan lim 𝑥→0 sin 2𝑥 sin 6𝑥 = 2 6 = 1 3 Jawaban B 16. Nilai lim 𝜃→0 tan 5𝜃 sin 2𝜃 = ⋯. A. 5 2 D. 2 3 B. 3 2 E. 2 5 C. 2 Pembahasan lim 𝜃→0 tan 5𝜃 sin 2𝜃 = 5 2 Jawaban A 17. Nilai lim 𝑥→0 𝑥 cos2𝑥 sin 𝑥 = ⋯. A. −2 D.1 B. −1 E.2 C. 0 Pembahasan lim 𝑥→0 𝑥 cos 2𝑥 sin 𝑥 = lim 𝑥→0 𝑥 sin 𝑥 . lim 𝑥→0 cos 2𝑥 = 1. cos 2.0 = 1.1 = 1 Jawaban D
  • 8.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 8 SMAN 12 MAKASSAR 18. Nilai lim 𝑥→0 2𝑥 tan 𝑥 𝑡𝑎𝑛2 𝑥 6 = ⋯. A. 1 3 D. 36 B. 3 E. 72 C. 12 Pembahasan lim 𝑥→0 2𝑥 tan 𝑥 𝑡𝑎𝑛2 𝑥 6 = lim 𝑥→0 2𝑥 tan 𝑥 6 . lim 𝑥→0 𝑡𝑎𝑛 𝑥 tan 𝑥 6 = 2 1 6 . 1 1 6 = 12.6 = 72 Jawaban E 19. Nilai lim 𝑥→0 tan 2𝑥.tan 3𝑥 3𝑥2 = ⋯. A. 0 D. 2 B. 2 3 E. 6 C. 3 2 Pembahasan lim 𝑥→0 tan 2𝑥 . tan 3𝑥 3𝑥2 = lim 𝑥→0 tan 2𝑥 3𝑥 . lim 𝑥→0 tan 3𝑥 𝑥 = 2 3 . 3 = 2 Jawaban D 20. Nilai lim 𝑥→0 sin 4𝑥−sin2𝑥 6𝑥 = ⋯. A. 1 6 D. 2 3 B. 1 3 E.1 C. 1 2 Pembahasan lim 𝑥→0 sin 4𝑥 − sin 2𝑥 6𝑥 = lim 𝑥→0 2 cos 1 2 (4𝑥 + 2𝑥) . sin 1 2 (4𝑥 − 2𝑥) 6𝑥 = lim 𝑥→0 2 cos 3𝑥 . sin 𝑥 6𝑥 = 2 6 lim 𝑥→0 cos 3𝑥 . lim 𝑥→0 sin 𝑥 𝑥 = 2 6 . cos 0.1 = 1 3 . 1.1 = 1 3 Jawaban B
  • 9.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 9 SMAN 12 MAKASSAR 21. Nilai lim 𝑥→0 sin 5𝑥+sin 𝑥 6𝑥 = ⋯. A. −2 D. 1 2 B. −1 E.1 C. 1 3 Pembahasan lim 𝑥→0 sin 5𝑥 + sin 𝑥 6𝑥 = lim 𝑥→0 sin 5𝑥 6𝑥 + lim 𝑥→0 sin 𝑥 6𝑥 = 5 6 + 1 6 = 6 6 = 1 Jawaban E 22. Nilai lim 𝑥→0 sin 7𝑥 +tan3𝑥−sin5𝑥 tan 9𝑥−tan 3𝑥 −sin 𝑥 = ⋯ A. 9 D. 3 B. 7 E. 1 C. 5 Pembahasan lim 𝑥→0 sin 7𝑥 + tan 3𝑥 − sin 5𝑥 tan 9𝑥 − tan 3𝑥 − sin 𝑥 = 7 + 3 − 5 9 − 3 − 1 = 5 5 = 1 Jawaban E 23. Nilai lim 𝑥→0 sin 4𝑥+sin2𝑥 3𝑥 cos 𝑥 = ⋯. A. 0,25 D. 1,50 B. 0,50 E. 2,00 C. 1,00 Pembahasan lim 𝑥→0 sin 4𝑥 + sin 2𝑥 3𝑥 cos 𝑥 = lim 𝑥→0 sin 4𝑥 + sin 2𝑥 3𝑥 . lim 𝑥→0 1 cos 𝑥 = 4 + 2 3 . 1 cos 0 = 6 3 . 1 1 = 6 3 = 2 Jawaban E 24. Nilai lim 𝑥→0 4𝑥 cos 𝑥 sin 𝑥+ sin3𝑥 = ⋯. A. 4 D. 1 B. 3 E. 3 4 C. 4 3 Pembahasan lim 𝑥→0 4𝑥 cos 𝑥 sin 𝑥 + sin 3𝑥 = lim 𝑥→0 4𝑥 sin 𝑥 + sin 3𝑥 . lim 𝑥→0 cos 𝑥 = 4 1 + 3 . cos 0 = 4 4 . 1 = 1 Jawaban D
  • 10.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 10 SMAN 12 MAKASSAR 25. Nilai lim 𝑥→0 𝑥−sin 2𝑥 𝑥+sin 3𝑥 = ⋯. A. − 2 3 D. 2 3 B. − 1 4 E. 3 4 C. 1 4 Pembahasan lim 𝑥→0 𝑥 − sin 2𝑥 𝑥 + sin 3𝑥 = lim 𝑥→0 𝑥 𝑥 − sin 2𝑥 𝑥 𝑥 𝑥 + sin 3𝑥 𝑥 = lim 𝑥→0 1 − sin 2𝑥 𝑥 1 + sin 3𝑥 𝑥 = lim 𝑥→0 1 − lim 𝑥→0 sin 2𝑥 𝑥 lim 𝑥→0 1 + lim 𝑥→0 sin 3𝑥 𝑥 = 1 − 2 1 + 3 = −1 4 Jawaban B 26. Nilai lim 𝑥→0 sin 𝑥+tan 2𝑥 3𝑥−sin 4𝑥 = ⋯. A. −3 D. 3 B. 0 E. ∞ C. 1 Pembahasan lim 𝑥→0 sin 𝑥 + tan 2𝑥 3𝑥 − sin 4𝑥 = lim 𝑥→0 sin 𝑥 𝑥 + tan 2𝑥 𝑥 3𝑥 𝑥 − sin 4𝑥 𝑥 = lim 𝑥→0 sin 𝑥 𝑥 + lim 𝑥→0 tan 2𝑥 𝑥 lim 𝑥→0 3 − lim 𝑥→0 sin 4𝑥 𝑥 = 1 + 2 3 − 4 = 3 −1 = −3 Jawaban A 27. Nilai lim 𝑥→0 sin 4𝑥.𝑡𝑎𝑛23𝑥+6𝑥2 2𝑥2+sin3𝑥.𝑐𝑜𝑠2𝑥 =…. A. 0 D. 5 B. 3 E. 7 C. 4
  • 11.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 11 SMAN 12 MAKASSAR Pembahasan lim 𝑥→0 sin 4𝑥 . 𝑡𝑎𝑛2 3𝑥 + 6𝑥2 2𝑥2 + sin 3𝑥 . 𝑐𝑜𝑠2𝑥 = lim 𝑥→0 sin 4𝑥 . 𝑡𝑎𝑛2 3𝑥 𝑥 + 6𝑥2 𝑥 2𝑥2 𝑥 + sin 3𝑥 . 𝑐𝑜𝑠2𝑥 𝑥 = lim 𝑥→0 sin 4𝑥 . 𝑡𝑎𝑛2 3𝑥 𝑥 + lim 𝑥→0 6𝑥 lim 𝑥→0 2𝑥 + lim 𝑥→0 sin 3𝑥 . 𝑐𝑜𝑠2𝑥 𝑥 = lim 𝑥→0 𝑠𝑖𝑛4𝑥 𝑥 . lim 𝑥→0 𝑡𝑎𝑛2 3𝑥 + lim 𝑥→0 6𝑥 lim 𝑥→0 2𝑥 + lim 𝑥→0 sin 3𝑥 𝑥 . lim 𝑥→0 cos 2𝑥 = 4. 02 + 0 0 + 3.1 = 0 3 =0 Jawaban A 28. Nilai lim 𝑥→− 𝜋 3 sin(𝑥+ 𝜋 3 ) (𝑥+ 𝜋 3 ) = ⋯. A. − 1 3 D. 1 B. − 1 2 E. 2 C. 0 Pembahasan Misalkan 𝑦 = (𝑥 + 𝜋 3 ) Jika 𝑥 → − 𝜋 3 maka 𝑦 → 0 Jadi lim 𝑥→− 𝜋 3 sin(𝑥+ 𝜋 3 ) (𝑥+ 𝜋 3 ) = lim 𝑦→0 sin 𝑦 𝑦 = 1 Jawaban D 29. Jika lim 𝑥→0 sin 𝑥 𝑥 = 1, maka lim 𝑥→1 sin(𝜋𝑥−𝜋) (𝑥−1) = ⋯ A. 0 D. 1 𝜋 B. 1 E. 𝜋 2 C. 𝜋 Pembahasan lim 𝑥→1 sin(𝜋𝑥 − 𝜋) (𝑥 − 1) = lim 𝑥→1 sinπ(𝑥 − 1) (𝑥 − 1) Misalkan (𝑥 − 1) = 𝑦 Jika 𝑥 → 1 maka 𝑦 → 0 lim 𝑥→1 sinπ(𝑥 − 1) (𝑥 − 1) = = lim 𝑦→0 sinπ 𝑦 𝑦 = 𝜋 Jawaban C
  • 12.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 12 SMAN 12 MAKASSAR 30. Nilai lim 𝑥→ 𝜋 4 cos3𝑥.sin(12𝑥−3𝜋) tan(4𝑥−𝜋) = ⋯ A. 3 2 √3 D. − 3 2 √2 B. 3 2 √2 E. − 3 2 √3 C. 0 Pembahasan lim 𝑥→ 𝜋 4 cos 3𝑥 . sin(12𝑥 − 3𝜋) tan(4𝑥 − 𝜋) = lim 𝑥→ 𝜋 4 cos 3𝑥 . sin(12𝑥 − 3𝜋) tan(4𝑥 − 𝜋) = lim 𝑥→ 𝜋 4 cos 3𝑥 lim 𝑥→ 𝜋 4 sin(12𝑥 − 3𝜋) tan(4𝑥 − 𝜋) Untuk lim 𝑥→ 𝜋 4 cos 3𝑥 = cos 3. 𝜋 4 = − 1 2 √2 Untuk lim 𝑥→ 𝜋 4 sin(12𝑥−3𝜋) tan(4𝑥−𝜋) Misalkan 4𝑥 − 𝜋 = 𝑦 Jika 𝑥 → 𝜋 4 maka 𝑦 → 0 sehingga lim 𝑥→ 𝜋 4 sin(12𝑥 − 3𝜋) tan(4𝑥 − 𝜋) = lim 𝑦→0 sin 3𝑦 tan 𝑦 = 3 Jadi lim 𝑥→ 𝜋 4 cos 3𝑥 lim 𝑥→ 𝜋 4 sin(12𝑥−3𝜋) tan(4𝑥−𝜋) = − 1 2 √2. 3 = − 3 2 √2 Jawaban D 31. Nilai lim 𝑥→ 𝜋 4 sin ( 𝜋 4 − 𝑥) tan ( 𝜋 4 + 𝑥) adalah …. A. 2 D. −1 B. 1 E. −2 C. 0 Pembahasan lim 𝑥→ 𝜋 4 sin ( 𝜋 4 − 𝑥) tan ( 𝜋 4 + 𝑥) = lim 𝑥→ 𝜋 4 sin ( 𝜋 4 − 𝑥) cot ( 𝜋 2 − ( 𝜋 4 + 𝑥)) = lim 𝑥→ 𝜋 4 sin ( 𝜋 4 − 𝑥) cot ( 𝜋 4 − 𝑥) = lim 𝑥→ 𝜋 4 sin ( 𝜋 4 − 𝑥) cos ( 𝜋 4 − 𝑥) sin ( 𝜋 4 − 𝑥) = lim 𝑥→ 𝜋 4 cos ( 𝜋 4 − 𝑥) = cos ( 𝜋 4 − 𝜋 4 ) = cos 0 = 1 Jawaban B
  • 13.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 13 SMAN 12 MAKASSAR 32. Nilai lim 𝑥→0 𝑠𝑖𝑛22𝑥 𝑥2 = ⋯. A. 1 D. 6 B. 2 E. 8 C. 4 Pembahasan lim 𝑥→0 𝑠𝑖𝑛2 2𝑥 𝑥2 = lim 𝑥→0 sin 2𝑥 𝑥 . lim 𝑥→0 sin 2𝑥 𝑥 = 2.2 = 4 Atau dengan cara berikut lim 𝑥→0 𝑠𝑖𝑛2 2𝑥 𝑥2 = (lim 𝑥→0 sin 2𝑥 𝑥 ) 2 = 22 = 4 Jawaban C 33. Nilai lim 𝑥→0 sin32x tan31 2 x = ⋯. A. 23 D. 26 B. 24 E. 25 C. 25 Pembahasan lim 𝑥→0 sin3 2x tan3 1 2 x = (lim 𝑥→0 sin 2𝑥 tan 1 2 𝑥 ) 3 = ( 2 1 2 ) 3 = (2.2)3 = (22)3 = 26 Jawaban D 34. Nilai dari lim 𝑥→0 4 sin22x 𝑥 tan 2𝑥 adalah …. A. −8 D. 4 B. −4 E. 8 C. 0 Pembahasan lim 𝑥→0 4 sin2 2x 𝑥 tan 2𝑥 = 4lim 𝑥→0 sin 2𝑥 sin 2𝑥 𝑥. tan 2𝑥 = 4 lim 𝑥→0 sin 2𝑥 𝑥 . lim 𝑥→0 sin 2𝑥 tan 2𝑥 = 4.2. 2 2 = 8 Jawaban E 35. Nilai lim 𝑥→0 2 𝑠𝑖𝑛21 2 𝑥 𝑥 tan 𝑥 = ⋯. A. −2 D. 1 2 B. −1 E. 1 C. − 1 2 Pembahasan lim 𝑥→0 2 𝑠𝑖𝑛2 1 2 𝑥 𝑥 tan 𝑥 = 2lim 𝑥→0 sin 1 2 𝑥 𝑥 . lim 𝑥→0 sin 1 2 𝑥 tan 𝑥 = 2. 1 2 . 1 2 = 1 2 Jawaban D
  • 14.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 14 SMAN 12 MAKASSAR 36. Nilai lim 𝑥→0 sin 1 2 𝑥 tan 4√ 𝑥 2𝑥√ 𝑥 = ⋯. A. 1 8 D. 1 B. 1 4 E. 2 C. 1 2 Pembahasan lim 𝑥→0 sin 1 2 𝑥 tan 4√ 𝑥 2𝑥√ 𝑥 = 1 2 lim 𝑥→0 sin 1 2 𝑥 𝑥√ 𝑥 . lim 𝑥→0 tan 4√ 𝑥 √ 𝑥 = 1 2 . 1 2 . 4 = 4 4 = 1 Jawaban D 37. Nilai lim 𝑥→0 √2𝑥2+1−1 √3 𝑠𝑖𝑛5 𝑥+𝑥4 = …. A. 0 D. 1 2 B. √2 √3 E. 1 C. √3 √4 Pembahasan lim 𝑥→0 √2𝑥2 + 1 − 1 √3 𝑠𝑖𝑛5 𝑥 + 𝑥4 = lim 𝑥→0 √2𝑥2 + 1 − 1 √3 𝑠𝑖𝑛5 𝑥 + 𝑥4 × √2𝑥2 + 1 + 1 √2𝑥2 + 1 + 1 = lim 𝑥→0 (2𝑥2 + 1) − 1 (√3 𝑠𝑖𝑛5 𝑥 + 𝑥4)(√2𝑥2 + 1 + 1) = lim 𝑥→0 2𝑥2 (√3 𝑠𝑖𝑛5 𝑥 + 𝑥4)(√2𝑥2 + 1 + 1) = lim 𝑥→0 2𝑥2 (√3 𝑠𝑖𝑛5 𝑥 + 𝑥4) lim 𝑥→0 1 (√2𝑥2 + 1 + 1) = lim 𝑥→0 2𝑥2 𝑥2 ( √3 𝑠𝑖𝑛5 𝑥 + 𝑥4 𝑥2 ) lim 𝑥→0 1 (√2𝑥2 + 1 + 1) = lim 𝑥→0 2 (√3 𝑠𝑖𝑛5 𝑥 𝑥4 + 𝑥4 𝑥4) lim 𝑥→0 1 (√2𝑥2 + 1 + 1) = lim 𝑥→0 2 (√3 𝑠𝑖𝑛4 𝑥 𝑥4 . sin 𝑥 + 1) lim 𝑥→0 1 (√2𝑥2 + 1 + 1) = 2 (√lim 𝑥→0 3 𝑠𝑖𝑛4 𝑥 𝑥4 . lim 𝑥→0 sin 𝑥 + 1) . 1 (√2. 02 + 1 + 1)
  • 15.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 15 SMAN 12 MAKASSAR = 2 (√3.0 + 1) . 1 (√1 + 1) = 2 1 . 1 2 = 1 Jawaban E 38. Jika lim 𝑥→0 𝑥 𝑎 𝑠𝑖𝑛4 𝑥 𝑠𝑖𝑛6 𝑥 = 1, nilai 𝑎 yang memenuhi adalah …. A. 1 D. 4 B. 2 E. 5 C. 3 Pembahasan lim 𝑥→0 𝑥 𝑎 𝑠𝑖𝑛4 𝑥 𝑠𝑖𝑛6 𝑥 = lim 𝑥→0 𝑥 𝑎 𝑠𝑖𝑛2 𝑥 . lim 𝑥→0 𝑠𝑖𝑛4 𝑥 𝑠𝑖𝑛4 𝑥 = lim 𝑥→0 𝑥 𝑎 𝑠𝑖𝑛2 𝑥 . 1 = lim 𝑥→0 𝑥 𝑎 𝑠𝑖𝑛2 𝑥 lim 𝑥→0 𝑥 𝑎 𝑠𝑖𝑛2 𝑥 = 1 hanya terjadi jika nilai 𝑎 sama dengan pangkat dari sin 𝑥, yaitu 𝑎 = 2 Jawaban B 39. Nilai lim 𝑥→0 1−𝑐𝑜𝑠3 𝑥 𝑥.tan 𝑥 =…. A. 1 2 D. 2 B. 1 E. 3 C. 3 2 Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠3 𝑥 𝑥. tan 𝑥 = lim 𝑥→0 (1 − cos 𝑥)(1 + cos 𝑥 + 𝑐𝑜𝑠2 𝑥) 𝑥. tan 𝑥 = lim 𝑥→0 (1 − cos 𝑥) 𝑥. tan 𝑥 lim 𝑥→0 (1 + cos 𝑥 + 𝑐𝑜𝑠2 𝑥) = lim 𝑥→0 2 . 𝑠𝑖𝑛2 1 2 𝑥 𝑥. tan 𝑥 lim 𝑥→0 (1 + cos 𝑥 + 𝑐𝑜𝑠2 𝑥) = 2lim 𝑥→0 sin 1 2 𝑥 𝑥 lim 𝑥→0 sin 1 2 𝑥 tan 𝑥 . lim 𝑥→0 lim 𝑥→0 (1 + cos 𝑥 + 𝑐𝑜𝑠2 𝑥) = 2. 1 2 . 1 2 . (1 + cos 0 + 𝑐𝑜𝑠2 0) = 1 2 (1 + cos 0 + 𝑐𝑜𝑠2 0) = 1 2 (1 + 1 + 12) = 3 2 Jawaban C
  • 16.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 16 SMAN 12 MAKASSAR 40. Nilai lim 𝑥→0 1−𝑐𝑜𝑠2 𝑥 𝑥 tan 𝑥 = ⋯. A. 3 D. −1 B. 1 E. −3 C. 0 Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠2 𝑥 𝑥 tan 𝑥 = lim 𝑥→0 𝑠𝑖𝑛2 𝑥 𝑥 tan 𝑥 = lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 sin 𝑥 tan 𝑥 = 1.1 = 1 Jawaban B 41. Nilai lim 𝑥→0 𝑥 .tan 2𝑥 1−𝑐𝑜𝑠2 𝑥 = ⋯. A. 1 4 D. 2 B. 1 2 E. 4 C. 1 Pembahasan lim 𝑥→0 𝑥 . tan 2𝑥 1 − 𝑐𝑜𝑠2 𝑥 = lim 𝑥→0 𝑥 . tan 2𝑥 𝑠𝑖𝑛2 𝑥 = lim 𝑥→0 𝑥 sin 𝑥 . lim 𝑥→0 tan 2𝑥 sin 𝑥 = 1.2 = 2 Jawaban C 42. Nilai lim 𝑥→0 1−𝑐𝑜𝑠2 𝑥 𝑥2 tan(𝑥+ 𝜋 4 ) = ⋯. A. −1 D. 1 2 √2 B. 0 E. √3 C. 1 Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠2 𝑥 𝑥2 tan (𝑥 + 𝜋 4 ) = lim 𝑥→0 𝑠𝑖𝑛2 𝑥 𝑥2 tan (𝑥 + 𝜋 4 ) = lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 1 tan (𝑥 + 𝜋 4 ) = 1.1. 1 tan (0 + 𝜋 4 ) = 1. 1 1 = 1 Jawaban C 43. Nilai lim 𝑥→0 1−𝑐𝑜𝑠2 𝑥 𝑥2 cot(𝑥− 𝜋 3 ) = ⋯. A. 1 D.−√2 B. 0 E.−√3 C. − 1 3 √3
  • 17.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 17 SMAN 12 MAKASSAR Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠2 𝑥 𝑥2 cot (𝑥 − 𝜋 3 ) = lim 𝑥→0 𝑠𝑖𝑛2 𝑥 𝑥2 cot (𝑥 − 𝜋 3 ) = lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 1 cot (𝑥 − 𝜋 3 ) = 1.1. 1 cot (0 − 𝜋 3 ) = 1 cot (− 𝜋 3 ) = − tan 𝜋 3 = −√3 Jawaban E 44. Nilai lim 𝑥→0 𝑐𝑜𝑠2 𝑥−1 2 sin 2𝑥 tan 𝑥 = ⋯. A. −4 D.− 1 2 B. −2 E.− 1 4 C. −1 Pembahasan lim 𝑥→0 𝑐𝑜𝑠2 𝑥 − 1 2 sin 2𝑥 tan 𝑥 = lim 𝑥→0 −𝑠𝑖𝑛2 𝑥 2 sin 2𝑥 tan 𝑥 = − 1 2 lim 𝑥→0 sin 𝑥 sin 2𝑥 . lim 𝑥→0 sin 𝑥 tan 𝑥 = − 1 2 . 1 2 . 1 Jawaban E 45. Nilai lim 𝑥→1 1−𝑐𝑜𝑠2(𝑥−1) 4𝑥2−8𝑥+4 = ⋯. A. 0 D.1 B. 1 4 E. 2 C. 1 2 Pembahasan lim 𝑥→1 1 − 𝑐𝑜𝑠2(𝑥 − 1) 4𝑥2 − 8𝑥 + 4 = lim 𝑥→1 𝑠𝑖𝑛2(𝑥 − 1) 4(𝑥2 − 2𝑥 + 1) = 1 4 lim 𝑥→1 sin(𝑥 − 1) (𝑥 − 1) . lim 𝑥→1 sin(𝑥 − 1) (𝑥 − 1) = 1 4 . 1.1 = 1 4 Jawaban B
  • 18.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 18 SMAN 12 MAKASSAR 46. Nilai lim x→2 x2−4x+4 1−cos2(x−2) =…. A. − 1 4 D. 1 2 B. 0 E. 1 C. 1 4 Pembahasan lim x→2 x2 − 4x + 4 1 − cos2(x − 2) = lim x→2 (𝑥 − 2)2 sin2(x − 2) = lim x→2 (𝑥 − 2) sin(x − 2) . lim x→2 (𝑥 − 2) sin(x − 2) = 1.1 = 1 Jawaban E 47. Nilai lim 𝑥→0 2𝑥 tan 3𝑥 1−𝑐𝑜𝑠2 𝑥 = ⋯. A. 0 D.6 B. 2 E.12 C. 3 Pembahasan lim 𝑥→0 2𝑥 . tan 3𝑥 1 − 𝑐𝑜𝑠2 𝑥 = lim 𝑥→0 2𝑥 . tan 3𝑥 𝑠𝑖𝑛2 𝑥 = lim 𝑥→0 2𝑥 sin 𝑥 . lim 𝑥→0 tan 3𝑥 sin 𝑥 = 2.3 = 6 Jawaban D 48. Nilai lim 𝑥→0 1−𝑐𝑜𝑠 𝑥 sin 𝑥 = ⋯. A. 0 D.1 B. 1 4 E. 2 C. 1 2 Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠 𝑥 sin 𝑥 = lim 𝑥→0 2 𝑠𝑖𝑛2 1 2 𝑥 sin 𝑥 = 2. lim 𝑥→0 sin 1 2 𝑥 sin 𝑥 . lim 𝑥→0 sin 1 2 𝑥 = 2. 1 2 . sin 1 2 . 0 = 0 Jawaban A 49. Nilai lim 𝑥→0 sin23x 1−cos 𝑥 =…. A. 3 D. 12 B. 6 E. 18 C. 9 Pembahasan lim 𝑥→0 sin2 3x 1 − cos 𝑥 = lim 𝑥→0 sin2 3x 2 𝑠𝑖𝑛2 1 2 𝑥 = 1 2 lim 𝑥→0 sin 3𝑥 sin 1 2 𝑥 . lim 𝑥→0 sin 3𝑥 sin 1 2 𝑥
  • 19.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 19 SMAN 12 MAKASSAR = 1 2 . 3 1 2 . 3 1 2 = 9 1 2 = 18 Jawaban E 50. Nilai lim 𝜃→0 1−cos 𝜃 𝜃2 = ⋯. A. − 1 4 D. 1 4 B. − 1 2 E. 1 2 C. 0 Pembahasan lim 𝜃→0 1 − cos 𝜃 𝜃2 = lim 𝜃→0 2 𝑠𝑖𝑛2 1 2 𝜃 𝜃2 = 2 lim 𝜃→0 𝑠𝑖𝑛2 1 2 𝜃 𝜃2 = 2 lim 𝜃→0 𝑠𝑖𝑛 1 2 𝜃 𝜃 . lim 𝜃→0 𝑠𝑖𝑛 1 2 𝜃 𝜃 = 2. 1 2 . 1 2 = 1 2 Jawaban E 51. Nilai lim 𝑥→0 1−cos8𝑥 4𝑥2 =…. A. 0 D. 4 B. 1 E. 8 C. 2 Pembahasan lim 𝑥→0 1 − cos 8𝑥 4𝑥2 = lim 𝑥→0 2 𝑠𝑖𝑛2 4𝑥 4𝑥2 = 2 4 lim 𝑥→0 𝑠𝑖𝑛2 4𝑥 𝑥2 = 1 2 lim 𝑥→0 sin 4𝑥 𝑥 . lim 𝑥→0 sin 4𝑥 𝑥 = 1 2 . 4.4 = 8 Jawaban E
  • 20.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 20 SMAN 12 MAKASSAR 52. Nilai lim 𝑥→0 1−𝑐𝑜𝑠 2𝑥 1−cos4𝑥 =…. A. − 1 2 B. − 1 4 C. 0 D. 1 16 E. 1 4 Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠 2𝑥 1 − cos 4𝑥 = lim x→0 2 sin2 x 2 sin22x = lim x→0 sin2 x sin22x = lim 𝑥→0 sin 𝑥 sin 2𝑥 . lim 𝑥→0 sin 𝑥 sin 2𝑥 = 1 2 . 1 2 = 1 4 Jawaban E 53. Nilai lim 𝑥→0 1−𝑐𝑜𝑠 2𝑥 𝑥 𝑡𝑎𝑛𝑥 = ⋯. A. −8 D.2 B. 0 E.4 C. 1 Pembahasan lim 𝑥→0 1 − 𝑐𝑜𝑠 2𝑥 𝑥 𝑡𝑎𝑛𝑥 = lim 𝑥→0 2𝑠𝑖𝑛2 𝑥 𝑥 𝑡𝑎𝑛𝑥 = 2 lim 𝑥→0 sin 𝑥 sin 𝑥 𝑥 𝑡𝑎𝑛𝑥 = 2 lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 sin 𝑥 tan 𝑥 = 2.1.1 = 2 Jawaban D 54. Nilai lim 𝑥→0 (1−cos 4𝑥) sin 𝑥 𝑥2 tan 3𝑥 = ⋯. A. 128 3 D. 8 3 B. 32 3 E. 4 3 C. 16 3 Pembahasan lim 𝑥→0 (1 − cos 4𝑥) sin 𝑥 𝑥2 tan 3𝑥 = lim 𝑥→0 2. 𝑠𝑖𝑛2 2𝑥. sin 𝑥 𝑥2 tan 3𝑥
  • 21.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 21 SMAN 12 MAKASSAR = 2 lim 𝑥→0 𝑠𝑖𝑛2 2𝑥. sin 𝑥 𝑥2 tan 3𝑥 = 2 (lim 𝑥→0 sin 2𝑥 𝑥 ) 2 . lim 𝑥→0 sin 𝑥 tan 3𝑥 = 2. 22 . 1 3 = 8 3 Jawaban D 55. Nilai lim 𝑥→0 cos 4𝑥 −1 𝑥 tan 2𝑥 A. 4 D.−2 B. 2 E. −4 C. −1 Pembahasan lim 𝑥→0 cos 4𝑥 − 1 𝑥 tan 2𝑥 = lim 𝑥→0 −2𝑠𝑖𝑛2 2𝑥 𝑥 tan 2𝑥 = −2 lim 𝑥→0 𝑠𝑖𝑛2 2𝑥 𝑥 tan 2𝑥 = −2. lim 𝑥→0 sin 2𝑥 𝑥 . lim 𝑥→0 sin 2𝑥 tan 2𝑥 = −2.2. 2 2 = −4 Jawaban E 56. Nilai lim 𝑥→0 cos 6𝑥 −1 𝑥 sin 1 2 𝑥 A. 36 D.−9 B. 9 E. −36 C. 0 Pembahasan lim 𝑥→0 cos 6𝑥 − 1 𝑥 sin 1 2 𝑥 = lim 𝑥→0 −2𝑠𝑖𝑛2 3𝑥 𝑥 sin 1 2 𝑥 = −2 lim 𝑥→0 𝑠𝑖𝑛2 3𝑥 𝑥 sin 1 2 𝑥 = −2. lim 𝑥→0 sin 3𝑥 𝑥 . lim 𝑥→0 sin 3𝑥 sin 1 2 𝑥 = −2.3. 3 1 2 = −36 Jawaban E
  • 22.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 22 SMAN 12 MAKASSAR 57. Nilai lim 𝑥→0 4x cos6𝑥 −4𝑥 (2𝑥)2.sin5𝑥 = A. − 18 5 D. 2 B. − 5 18 E. 18 5 C. 5 18 Pembahasan lim 𝑥→0 4x cos 6𝑥 − 4𝑥 (2𝑥)2. sin 5𝑥 = lim 𝑥→0 4𝑥(cos 6𝑥 − 1) (2𝑥)2. sin 5𝑥 = lim 𝑥→0 4𝑥(−2 𝑠𝑖𝑛2 3𝑥) (2𝑥)2. sin 5𝑥 = lim 𝑥→0 −8𝑥. sin 3𝑥 sin 3𝑥 (2𝑥)2. sin 5𝑥 = lim 𝑥→0 −8𝑥 sin 5𝑥 . lim 𝑥→0 sin 3𝑥 2𝑥 . lim 𝑥→0 sin 3𝑥 2𝑥 = −8 5 . 3 2 . 3 2 = − 18 5 Jawaban A 58. Jika diketahui 𝑚 = lim 𝑥→0 cos 𝑥−1 cos2𝑥−1 dan 𝑛 = lim 𝑥→2 [ 1 𝑥−2 − 4 𝑥2−4 ], maka 𝑚 + 𝑛 =…. A. −1 D. 1 2 B. − 1 2 C. 1 C. 0 Pembahasan 𝑚 = lim 𝑥→0 cos 𝑥 − 1 cos 2𝑥 − 1 𝑚 = lim 𝑥→0 −2 𝑠𝑖𝑛2 1 2 𝑥 −2 𝑠𝑖𝑛2 𝑥 𝑚 = lim 𝑥→0 𝑠𝑖𝑛2 1 2 𝑥 𝑠𝑖𝑛2 𝑥 𝑚 = (lim 𝑥→0 𝑠𝑖𝑛 1 2 𝑥 𝑠𝑖𝑛𝑥 ) 2 𝑚 = ( 1 2 ) 2 𝑚 = 1 4 𝑛 = lim 𝑥→2 [ 1 𝑥 − 2 − 4 𝑥2 − 4 ] 𝑛 = lim 𝑥→2 [ 𝑥 + 2 𝑥2 − 4 − 4 𝑥2 − 4 ] 𝑛 = lim 𝑥→2 [ 𝑥 + 2 − 4 𝑥2 − 4 ] 𝑛 = lim 𝑥→2 [ 𝑥 − 2 𝑥2 − 4 ] 𝑛 = lim 𝑥→2 𝑥 − 2 (𝑥 − 2)(𝑥 + 2) 𝑛 = lim 𝑥→2 1 (𝑥 + 2) 𝑛 = 1 2 + 2 𝑛 = 1 4 Nilai 𝑚 + 𝑛 = 1 4 + 1 4 = 1 2 Jawaban D
  • 23.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 23 SMAN 12 MAKASSAR 59. Nilai dari lim 𝑥→−2 (𝑥2−4) tan(𝑥+2) sin2(x+2) =…. A. −4 D. 4 B. −3 E. 5 C. 0 Pembahasan lim 𝑥→−2 (𝑥2 − 4) tan(𝑥 + 2) sin2(x + 2) = lim 𝑥→−2 (𝑥 − 2)(𝑥 + 2) tan(𝑥 + 2) sin2(x + 2) = lim 𝑥→−2 (𝑥 − 2) lim 𝑥→−2 (𝑥 + 2) sin(x + 2) . lim 𝑥→−2 tan(𝑥 + 2) sin(x + 2) = (−2 − 2).1.1 = −4 Jawaban A 60. Nilai lim 𝑥→3 𝑥 tan(2𝑥−6) sin(𝑥−3) = ⋯. A. 6 D. 1 B. 3 E.0 C. 2 Pembahasan lim 𝑥→3 𝑥 tan(2𝑥 − 6) sin(𝑥 − 3) = lim 𝑥→3 𝑥. lim 𝑥→3 tan(2𝑥 − 6) sin(𝑥 − 3) = lim 𝑥→3 𝑥. lim 𝑥→3 tan 2(𝑥 − 3) sin(𝑥 − 3) = 3.2 =6 Jawaban A 61. Nilai lim 𝑥→0 cos 𝑥−cos5𝑥 1−cos 4𝑥 = ⋯. A. 1 3 D.2 B. 1 2 E.3 C. 3 2 Pembahasan lim 𝑥→0 cos 𝑥 − cos 5𝑥 1 − cos 4𝑥 = lim 𝑥→0 −2 sin 3𝑥 . sin(−2𝑥) 2 𝑠𝑖𝑛22𝑥 = 2 2 lim 𝑥→0 sin 3𝑥 . sin 2𝑥 𝑠𝑖𝑛22𝑥 = lim 𝑥→0 sin 3𝑥 . sin 2𝑥 𝑠𝑖𝑛22𝑥 = lim 𝑥→0 sin 3𝑥 . sin 2𝑥 sin 2𝑥 . sin 2𝑥 = lim 𝑥→0 sin 3𝑥 sin 2𝑥 Rumus cos 𝐴 − cos 𝐵 = −2𝑠𝑖𝑛 1 2 (𝐴 + 𝐵) sin 1 2 (𝐴 − 𝐵)
  • 24.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 24 SMAN 12 MAKASSAR = 3 2 Jawaban C 62. lim 𝑥→0 𝑥.tan 5𝑥 cos2𝑥−cos 7𝑥 = ⋯. A. 2 9 D. − 1 9 B. 1 9 E. − 2 9 C. 0 Pembahasan lim 𝑥→0 𝑥. tan 5𝑥 cos 2𝑥 − cos 7𝑥 = lim 𝑥→0 𝑥. tan 5𝑥 −2 sin 9 2 𝑥 sin (− 5 2 ) 𝑥 = 1 2 lim 𝑥→0 𝑥. tan 5𝑥 sin 9 2 𝑥 sin 5 2 𝑥 = 1 2 lim 𝑥→0 𝑥 sin 9 2 𝑥 . lim 𝑥→0 tan 5𝑥 sin 5 2 𝑥 = 1 2 . 1 9 2 . 5 5 2 = 2 9 Jawaban A 63. Nilai lim 𝑥→0 1−cos 8𝑥 sin 2𝑥 tan 2𝑥 = ⋯. A. 16 D. 4 B. 12 E. 2 C. 8 Pembahasan lim 𝑥→0 1 − cos 8𝑥 sin 2𝑥 tan 2𝑥 = lim 𝑥→0 2 𝑠𝑖𝑛2 4𝑥 sin 2𝑥 tan 2𝑥 = lim 𝑥→0 sin 4𝑥 . sin 4𝑥 sin 2𝑥 tan 2𝑥 = lim 𝑥→0 sin 4𝑥 sin 2𝑥 . lim 𝑥→0 sin 4𝑥 tan 2𝑥 = 4 2 . 4 2 = 4 Jawaban D 64. Nilai lim 𝑥→0 1−2𝑠𝑖𝑛2 𝑥−𝑐𝑜𝑠32𝑥 5𝑥2 = ⋯. A. 4 25 D. 4 5 B. 2 5 E.1 C. 3 5
  • 25.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 25 SMAN 12 MAKASSAR Pembahasan lim 𝑥→0 1 − 2𝑠𝑖𝑛2 𝑥 − 𝑐𝑜𝑠3 2𝑥 5𝑥2 = lim x→0 cos 2x − cos3 2x 5x2 = lim x→0 cos 2x (1 − cos2 2x) 5x2 = lim x→0 cos 2x sin2 2x 5x2 = 1 5 lim x→0 cos 2𝑥. (lim x→0 sin 2𝑥 𝑥 ) 2 = 1 5 . cos 2.0 . (2)2 = 1 5 . 1.4 = 4 5 karena 𝟏 − 𝟐𝒔𝒊𝒏 𝟐 𝒙 = 𝐜𝐨𝐬 𝟐𝒙 Jawaban D 65. Nilai lim 𝑥→0 1−cos2x−cos x sin2x 𝑥4 = ⋯. A. −1 D. 1 2 B. 0 E. 1 C. 1 4 Pembahasan lim 𝑥→0 1 − cos2 x − cos x sin2 x 𝑥4 = lim 𝑥→0 sin2 x − cos x sin2 x 𝑥4 = lim 𝑥→0 sin2 x(1 − cos x) 𝑥4 = lim 𝑥→0 sin2 x. 2 𝑠𝑖𝑛2 1 2 x 𝑥4 = 2 lim 𝑥→0 sin2 x. 𝑠𝑖𝑛2 1 2 x 𝑥4 = 2 lim 𝑥→0 sin2 x 𝑥2 . lim 𝑥→0 sin2 1 2 x 𝑥2 = 2 (lim 𝑥→0 sin 𝑥 𝑥 ) 2 . (lim 𝑥→0 sin 1 2 𝑥 𝑥 ) 2 = 2. 12 . ( 1 2 ) 2 =2. 1 4 = 2 4 = 1 2 Jawaban D
  • 26.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 26 SMAN 12 MAKASSAR 66. Nilai lim 𝑥→0 5𝑥2−2𝑥 sin 5𝑥−tan 2𝑥 = ⋯. A. − 2 7 D.− 5 3 B. − 2 3 E.− 5 2 C. −1 Pembahasan lim 𝑥→0 5𝑥2 − 2𝑥 sin 5𝑥 − tan 2𝑥 = lim 𝑥→0 5𝑥2 𝑥 − 2𝑥 𝑥 sin 5𝑥 𝑥 − tan 2𝑥 𝑥 = lim 𝑥→0 5𝑥 − 2 sin 5𝑥 𝑥 − tan 2𝑥 𝑥 = lim 𝑥→0 5𝑥 − lim 𝑥→0 2 lim 𝑥→0 sin 5𝑥 𝑥 − tan 2𝑥 𝑥 = 0 − 2 5 − 2 = − 2 3 Jawaban B 67. Nilai lim 𝑥→0 𝑥2+𝑠𝑖𝑛23𝑥 2𝑡𝑎𝑛2 𝑥2 = ⋯. A. 5 D. 1 2 B. 2 E. 2 5 C. 1 Pembahasan lim 𝑥→0 𝑥2 + 𝑠𝑖𝑛2 3𝑥 2𝑡𝑎𝑛2 𝑥2 = 1 2 lim 𝑥→0 𝑥2 + 𝑠𝑖𝑛2 3𝑥 𝑡𝑎𝑛2 𝑥2 = 1 2 . lim 𝑥→0 1 + lim 𝑥→0 𝑠𝑖𝑛2 3𝑥 𝑥2 lim 𝑥→0 𝑡𝑎𝑛2 𝑥2 𝑥2 = 1 2 . 1 + 9 1 = 10 2 =5 Jawaban A 68. Nilai lim 𝑥→0 2𝑥2+𝑥 sin 𝑥 = ⋯. A. −1 D. 2 B. 0 E. 3 C. 1 Pembahasan lim 𝑥→0 2𝑥2 + 𝑥 sin 𝑥 = lim 𝑥→0 𝑥(2𝑥 + 1) sin 𝑥
  • 27.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 27 SMAN 12 MAKASSAR = lim 𝑥→0 𝑥 sin 𝑥 . lim 𝑥→0 (2𝑥 + 1) = 1. (2.0 + 1) = 1.1 =1 Jawaban C 69. Nilai lim 𝑥→0 𝑥2+2𝑥 tan 𝑥 = ⋯. A. 2 D. 1 4 B. 1 E.0 C. 1 2 Pembahasan lim 𝑥→0 𝑥2 + 2𝑥 tan 𝑥 = lim 𝑥→0 𝑥(𝑥 + 2) tan 𝑥 = lim 𝑥→0 𝑥 tan 𝑥 . lim 𝑥→0 (𝑥 + 2) = 1. (0 + 2) = 1.2 =2 Jawaban A 70. Nilai lim 𝑥→0 √1+tan 𝑥−√1+sin 𝑥 𝑥3 = ⋯. A. −1 D. 1 4 B. − 1 4 E.1 C. 0 Pembahasan lim 𝑥→0 √1 + tan 𝑥 − √1 + sin 𝑥 𝑥3 = lim 𝑥→0 √1 + tan 𝑥 − √1 + sin 𝑥 𝑥3 × √1 + tan 𝑥 + √1 + sin 𝑥 √1 + tan 𝑥 + √1 + sin 𝑥 = lim 𝑥→0 (1 + tan 𝑥) − (1 + sin 𝑥) 𝑥3 (√1 + tan 𝑥 + √1 + sin 𝑥) = lim 𝑥→0 tan 𝑥 − sin 𝑥 𝑥3 (√1 + tan 𝑥 + √1 + sin 𝑥) = lim 𝑥→0 sin 𝑥 cos 𝑥 − sin 𝑥 𝑥3 (√1 + tan 𝑥 + √1 + sin 𝑥) = lim 𝑥→0 sin 𝑥 − sin 𝑥 . cos 𝑥 cos 𝑥 𝑥3 (√1 + tan 𝑥 + √1 + sin 𝑥) = lim 𝑥→0 sin 𝑥 (1 − cos 𝑥) 𝑥3 cos 𝑥 (√1 + tan 𝑥 + √1 + sin 𝑥) = lim 𝑥→0 sin 𝑥 (2. 𝑠𝑖𝑛2 1 2 𝑥) 𝑥3 cos 𝑥 (√1 + tan 𝑥 + √1 + sin 𝑥)
  • 28.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 28 SMAN 12 MAKASSAR = 2lim 𝑥→0 sin 𝑥 𝑥 . (lim 𝑥→0 sin 1 2 𝑥 𝑥 ) 2 . lim 𝑥→0 1 cos 𝑥 (√1 + tan 𝑥 + √1 + sin 𝑥) = 2.1. ( 1 2 ) 2 . 1 cos 0 (√1 + tan 0 + √1 + sin 0) = 2. 1 4 . 1 1(√1 + √1) = 2 8 = 1 4 Jawaban D 71. Nilai lim 𝑥→0 √1+sin 𝑥−√1−sin 𝑥 𝑥 = ⋯. A. −1 D. √2 B. − 1 4 E. 1 C. 1 4 √2 Pembahasan lim 𝑥→0 √1 + sin 𝑥 − √1 − sin 𝑥 𝑥 = lim 𝑥→0 √1 + sin 𝑥 − √1 − sin 𝑥 𝑥 × √1 + sin 𝑥 + √1 − sin 𝑥 √1 + sin 𝑥 + √1 − sin 𝑥 = lim 𝑥→0 (1 + sin 𝑥) − (1 − sin 𝑥) 𝑥(√1 + sin 𝑥 + √1 − sin 𝑥) = lim 𝑥→0 2 sin 𝑥 𝑥(√1 + sin 𝑥 + √1 − sin 𝑥) = lim 𝑥→0 2 sin 𝑥 𝑥 . lim 𝑥→0 1 (√1 + sin 𝑥 + √1 − sin 𝑥) = 2. 1 (√1 + sin 0 + √1 − sin 0) = 2. 1 (1 + 1) = 2 2 = 1 Jawaban E 72. Nilai lim 𝑥→0 (1−√cos 𝑥) cot 𝑥 𝑥 = ⋯. A. − 1 2 D. 1 4 B. − 1 4 E. 1 2 C. 0 Pembahasan lim 𝑥→0 (1 − √cos 𝑥) cot 𝑥 𝑥
  • 29.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 29 SMAN 12 MAKASSAR = lim 𝑥→0 (1 − √cos 𝑥) cot 𝑥 𝑥 × (1 + √cos 𝑥) (1 + √cos 𝑥) = lim 𝑥→0 (1 − cos 𝑥) cot 𝑥 𝑥(1 + √cos 𝑥) = lim 𝑥→0 2 sin 2 1 2 x 𝑥(1 + √cos 𝑥) tan 𝑥 = lim 𝑥→0 2 sin 1 2 𝑥 𝑥 . lim 𝑥→0 sin 1 2 𝑥 tan 𝑥 . lim 𝑥→0 1 (1 + √cos 𝑥) = 2. 1 2 . 1 2 . 1 1 + √cos 0 = 1 2 . 1 2 = 1 4 Jawaban D 73. Nilai lim 𝑥→3 𝑥2−9 sin(𝑥−3) = ⋯. A. 9 D.3 B. 7 E.1 C. 6 Pembahasan lim 𝑥→3 𝑥2 − 9 sin(𝑥 − 3) = lim 𝑥→3 (𝑥 − 3)(𝑥 + 3) sin(𝑥 − 3) = lim 𝑥→3 (𝑥 − 3) sin(𝑥 − 3) . lim 𝑥→3 (𝑥 + 3) = 1. (3 + 3) = 6 Jawaban C 74. Nilai lim 𝑥→0 (𝑥2−1) sin 6𝑥 𝑥3+3𝑥2+2𝑥 = ⋯. A. −3 D. 1 B. −1 E. 6 C. 0 Pembahasan lim 𝑥→0 (𝑥2 − 1) sin 6𝑥 𝑥3 + 3𝑥2 + 2𝑥 = lim 𝑥→0 (𝑥2 − 1) sin 6𝑥 𝑥(𝑥2 + 3𝑥 + 2) = lim 𝑥→1 (𝑥2 − 1) (𝑥2 + 3𝑥 + 2) . lim 𝑥→1 sin 6𝑥 𝑥 = (02 − 1) (02 + 3.0 + 2) . 6 = −1 2 . 6 = −3 Jawaban A
  • 30.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 30 SMAN 12 MAKASSAR 75. Nilai lim 𝑥→1 𝑥3−(𝑎+1)𝑥2+𝑎𝑥 (𝑥2−𝑎)tan(𝑥−1) = ⋯. A. 1 D. 0 B. 1 − 𝑎 E. 2 − 𝑎 C. 𝑎 Pembahasan lim 𝑥→1 𝑥3 − (𝑎 + 1)𝑥2 + 𝑎𝑥 (𝑥2 − 𝑎) tan(𝑥 − 1) = lim 𝑥→1 𝑥(𝑥2 − (𝑎 + 1)𝑥 + 𝑎) (𝑥2 − 𝑎) tan(𝑥 − 1) = lim 𝑥→1 𝑥(𝑥 − 𝑎)(𝑥 − 1) (𝑥2 − 𝑎) tan(𝑥 − 1) = lim 𝑥→1 𝑥(𝑥 − 𝑎) (𝑥2 − 𝑎) . lim 𝑥→1 (𝑥 − 1) tan(𝑥 − 1) = 1(1 − 𝑎) (12 − 𝑎) . 1 = 1 − 𝑎 1 − 𝑎 = 1 Jawaban A 76. Nilai lim 𝑥→1 (𝑥2−1) sin 2(𝑥−1) −2 𝑠𝑖𝑛2(𝑥−1) = ⋯. A. −2 D.− 1 4 B. −1 E.0 C. − 1 2 Pembahasan lim 𝑥→1 (𝑥2 − 1) sin 2(𝑥 − 1) −2 𝑠𝑖𝑛2(𝑥 − 1) = lim 𝑥→1 (𝑥 − 1)(𝑥 + 1) sin 2(𝑥 − 1) −2 𝑠𝑖𝑛2(𝑥 − 1) = − 1 2 lim 𝑥→1 (𝑥 − 1)(𝑥 + 1) sin 2(𝑥 − 1) sin(𝑥 − 1) . sin(𝑥 − 1) = − 1 2 lim 𝑥→1 (𝑥 − 1) sin(𝑥 − 1) . lim 𝑥→1 sin2(𝑥 − 1) sin(𝑥 − 1) . lim 𝑥→1 (𝑥 + 1) =− 1 2 . 1.2. (1 + 1) = −2 Jawaban A 77. Nilai lim 𝑥→0 2 𝑠𝑖𝑛2 𝑥 2 𝑥 sin 𝑥 = ⋯. A. 0 D. 2 B. 1 4 E. 4 C. 1 2
  • 31.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 31 SMAN 12 MAKASSAR Pembahasan lim 𝑥→0 2 𝑠𝑖𝑛2 𝑥 2 𝑥 sin 𝑥 = 2 lim 𝑥→0 sin 𝑥 2 . sin 𝑥 2 𝑥 sin 𝑥 = 2 lim 𝑥→0 sin 𝑥 2 𝑥 . lim 𝑥→0 sin 𝑥 2 sin 𝑥 = 2. 1 2 . 1 2 = 1 2 Jawaban C 78. Nilai lim 𝑥→0 sin 4𝑥 1−√1−𝑥 = ⋯. A. 8 D. −6 B. 6 E.−8 C. 4 Pembahasan lim 𝑥→0 sin 4𝑥 1 − √1 − 𝑥 = lim 𝑥→0 sin 4𝑥 1 − √1 − 𝑥 . 1 + √1 − 𝑥 1 + √1 − 𝑥 = lim 𝑥→0 sin 4𝑥(1 + √1 − 𝑥) 1 − (1 − 𝑥) = lim 𝑥→0 sin 4𝑥(1 + √1 − 𝑥) 𝑥 = lim 𝑥→0 sin 4𝑥 𝑥 . lim 𝑥→0 (1 + √1 − 𝑥) = 4. (1 + √1 − 0) = 4(1 + 1) =8 Jawaban A 79. Nilai lim 𝑥→ 𝜋 3 tan(3𝑥−𝜋)cos 2𝑥 sin(3𝑥−𝜋) = ⋯. A. − 1 2 D. 1 2 √3 B. 1 2 E. 3 2 C. 1 2 √2 Pembahasan lim 𝑥→ 𝜋 3 tan(3𝑥 − 𝜋) cos 2𝑥 sin(3𝑥 − 𝜋) = lim 𝑥→ 𝜋 3 tan(3𝑥 − 𝜋) sin(3𝑥 − 𝜋) . lim 𝑥→ 𝜋 3 cos 2𝑥 = 1. cos (2. 𝜋 3 ) = cos ( 2𝜋 3 ) = − 1 2 Jawaban A
  • 32.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 32 SMAN 12 MAKASSAR 80. Nilai dari lim 𝑥→2 (𝑥−2) cos(𝜋𝑥−2𝜋) tan(2𝜋𝑥−4𝜋) =…. A. 2𝜋 D. 1 𝜋 B. 𝜋 E. 1 2𝜋 C. 0 Pembahasan lim 𝑥→2 (𝑥 − 2) cos(𝜋𝑥 − 2𝜋) tan(2𝜋𝑥 − 4𝜋) = lim 𝑥→2 (𝑥 − 2) cos 𝜋(𝑥 − 2) tan2𝜋(𝑥 − 2) = lim 𝑥→2 (𝑥 − 2) tan2𝜋(𝑥 − 2) . lim 𝑥→2 cos 𝜋(𝑥 − 2) = 1 2𝜋 . cos 𝜋(2 − 2) = 1 2𝜋 . cos 0 = 1 2𝜋 . 1 = 1 2𝜋 Jawaban E 81. Nilai lim 𝑥→−3 𝑥2+6𝑥+9 2−2 cos(2𝑥+6) = ⋯. A. 3 D. 1 3 B. 1 E. 1 4 C. 1 2 Pembahasan lim 𝑥→−3 𝑥2 + 6𝑥 + 9 2 − 2 cos(2𝑥 + 6) = lim 𝑥→−3 (𝑥 + 3)2 2(1 − cos(2𝑥 + 6)) = 1 2 lim 𝑥→−3 (𝑥 + 3)2 (1 − cos 2(𝑥 + 3)) = 1 2 lim 𝑥→−3 (𝑥 + 3)2 2 sin2(𝑥 + 3) = 1 4 lim 𝑥→−3 (𝑥 + 3)2 sin2(𝑥 + 3) = 1 4 { lim 𝑥→−3 (𝑥 + 3) sin(𝑥 + 3) } 2 = 1 4 . 12 = 1 4 Jawaban E 82. Nilai lim 𝑥→−2 2−2 cos(𝑥+2) 𝑥2+4𝑥+4 =…. A. 4 D. 1 B. 2 E. 1 2 C. 1 4
  • 33.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 33 SMAN 12 MAKASSAR Pembahasan lim 𝑥→−2 2 − 2 cos(𝑥 + 2) 𝑥2 + 4𝑥 + 4 = lim 𝑥→−2 2(1 − cos(𝑥 + 2)) (𝑥 + 2)2 = 2 lim 𝑥→−2 2. 𝑠𝑖𝑛2 1 2 (𝑥 + 2) (𝑥 + 2)2 = 4 . { lim 𝑥→−2 sin 1 2 (𝑥 + 2) (𝑥 + 2) } 2 = 4 . { 1 2 } 2 = 4. 1 4 = 1 Jawaban D 83. Nilai lim 𝑥→1 tan(𝑥−1) sin(1−√ 𝑥) 𝑥2−2𝑥+1 = ⋯. A. −1 D. 1 2 B. − 1 2 E. 1 C. 0 Pembahasan lim 𝑥→1 tan(𝑥 − 1) sin(1 − √ 𝑥) 𝑥2 − 2𝑥 + 1 = lim 𝑥→1 tan(𝑥 − 1) sin(1 − √ 𝑥) (𝑥 − 1)(𝑥 − 1) = lim 𝑥→1 tan(𝑥 − 1) sin(1 − √ 𝑥) (𝑥 − 1)(√ 𝑥 − 1)(√ 𝑥 + 1) = lim 𝑥→1 tan(𝑥 − 1) (𝑥 − 1) . lim 𝑥→1 sin(1 − √ 𝑥) (√ 𝑥 − 1) . lim 𝑥→1 1 (√ 𝑥 + 1) = 1. (−1). 1 (√1 + 1) = −1 2 Jawaban B 84. lim 𝑥→1 (𝑥2+𝑥−2)sin(𝑥−1) 𝑥2−2𝑥+1 = ⋯. A. 4 D. − 1 4 B. 3 E. − 1 2 C. 0 Pembahasan lim 𝑥→1 (𝑥2 + 𝑥 − 2)sin(𝑥 − 1) 𝑥2 − 2𝑥 + 1 = lim 𝑥→1 (𝑥 + 2)(𝑥 − 1) sin(𝑥 − 1) (𝑥 − 1)(𝑥 − 1) = lim 𝑥→1 (𝑥 + 2) . = lim 𝑥→1 sin(𝑥 − 1) (𝑥 − 1)
  • 34.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 34 SMAN 12 MAKASSAR = (1 + 2). 1 = 3 Jawaban B 85. Nilai lim 𝑥→4 (𝑥+2)tan(𝑥−4) 2𝑥2−7𝑥−4 = ⋯. A. 0 D. 3 2 B. 2 3 E. 2 C. 1 Pembahasan lim 𝑥→4 (𝑥 + 2) tan(𝑥 − 4) 2𝑥2 − 7𝑥 − 4 = lim 𝑥→4 (𝑥 + 2) tan(𝑥 − 4) (2𝑥 + 1)(𝑥 − 4) = lim 𝑥→4 (𝑥 + 2) (2𝑥 + 1) . lim 𝑥→4 tan(𝑥 − 4) (𝑥 − 4) = (4 + 2) (2.4 + 1) .1 = 6 9 = 2 3 Jawaban B 86. Nilai dari ekspresi lim 𝑥→2 (2𝑥+1)tan(𝑥−2) (𝑥2−4) sama dengan …. A. 1,25 D. 2,50 B. 1,50 E. 5,00 C. 2,00 Pembahasan lim 𝑥→2 (2𝑥 + 1) tan(𝑥 − 2) (𝑥2 − 4) = lim 𝑥→2 (2𝑥 + 1) tan(𝑥 − 2) (𝑥 + 2)(𝑥 − 2) = lim 𝑥→2 (2𝑥 + 1) (𝑥 + 2) . lim 𝑥→2 tan(𝑥 − 2) (𝑥 − 2) = (2.2 + 1) (2 + 2) = 5 4 =1,25 Jawaban A 87. Nilai lim 𝑥→1 (3𝑥+1)sin(𝑥−1) 𝑥2+2𝑥−3 = ⋯. A. 4 D. 1 B. 3 E. 0 C. 2 Pembahasan lim 𝑥→1 (3𝑥 + 1) sin(𝑥 − 1) 𝑥2 + 2𝑥 − 3 = lim 𝑥→1 (3𝑥 + 1) sin(𝑥 − 1) (𝑥 + 3)(𝑥 − 1)
  • 35.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 35 SMAN 12 MAKASSAR = lim 𝑥→1 (3𝑥 + 1) (𝑥 + 3) . lim 𝑥→1 sin(𝑥 − 1) (𝑥 − 1) = (3.1 + 1) (1 + 3) . 1 = 4 4 = 1 Jawaban D 88. Nilai lim 𝑡→2 (𝑡2−5𝑡+6) sin(𝑡−2) (𝑡2−𝑡−2)2 = ⋯. A. 1 3 D.− 1 9 B. 1 9 E.− 1 3 C. 0 Pembahasan lim 𝑡→2 (𝑡2 − 5𝑡 + 6) sin(𝑡 − 2) (𝑡2 − 𝑡 − 2)2 = lim 𝑡→2 (𝑡 − 2)(𝑡 − 3) sin(𝑡 − 2) ((𝑡 − 2)(𝑡 + 1)) 2 = lim 𝑡→2 (𝑡 − 2)(𝑡 − 3) sin(𝑡 − 2) (𝑡 − 2)2(𝑡 + 1)2 = lim 𝑡→2 (𝑡 − 3) sin(𝑡 − 2) (𝑡 + 1)2(𝑡 − 2) = lim 𝑡→2 (𝑡 − 3) (𝑡 + 1)2 . lim 𝑡→2 sin(𝑡 − 2) (𝑡 − 2) = (2 − 3) (2 + 1)2 . 1 = − 1 9 Jawaban D 89. Nilai lim 𝑥→1 1− 1 𝑥 sin 𝜋(𝑥−1) =…. A. 2 𝜋 D. − 1 𝜋 B. 1 𝜋 E. − 2 𝜋 C. 0 Pembahasan lim 𝑥→1 1 − 1 𝑥 sin 𝜋(𝑥 − 1) = lim 𝑥→1 𝑥 − 1 𝑥 sin 𝜋(𝑥 − 1) = lim 𝑥→1 (𝑥 − 1) x. sin 𝜋(𝑥 − 1) = lim 𝑥→1 1 𝑥 . lim 𝑥→1 (𝑥 − 1) sin 𝜋(𝑥 − 1) = 1 1 . 1 𝜋 = 1 𝜋 Jawaban B
  • 36.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 36 SMAN 12 MAKASSAR 90. Nilai lim 𝑥→ 𝜋 sin(𝑥−𝜋) 2(𝑥−𝜋)+tan(𝑥−𝜋) = ⋯. A. − 1 2 D. 1 3 B. − 1 4 E. 2 5 C. 1 4 Pembahasan Misalkan 𝑥 − 𝜋 = 𝑦 Jika 𝑥 → 𝜋 maka 𝑦 → 𝜋 − 𝜋 = 0 lim 𝑥→ 𝜋 sin(𝑥 − 𝜋) 2(𝑥 − 𝜋) + tan(𝑥 − 𝜋) = lim 𝑦→ 0 sin 𝑦 2𝑦 + tan 𝑦 = lim 𝑦→ 0 sin 𝑦 𝑦 2𝑦 𝑦 + tan 𝑦 𝑦 = lim 𝑦→ 0 sin 𝑦 𝑦 lim 𝑦→ 0 2 + lim 𝑦→ 0 tan 𝑦 𝑦 = 1 2 + 1 = 1 3 Jawaban D 91. Nilai lim 𝑥→ 𝜋 3 sin(𝑥− 𝜋 3 )+sin 5(𝑥− 𝜋 3 ) 6(𝑥− 𝜋 3 ) = ⋯. A. 1 D.3 B. 2 E. 7 2 C. 5 2 Pembahasan Misalkan 𝑥 − 𝜋 3 = 𝑦 Jika 𝑥 → 𝜋 3 maka 𝑦 → 𝜋 3 − 𝜋 3 = 0 lim 𝑥→ 𝜋 3 sin (𝑥 − 𝜋 3 ) + sin 5 (𝑥 − 𝜋 3 ) 6 (𝑥 − 𝜋 3 ) = lim 𝑦→0 sin 𝑦 + sin 5𝑦 6𝑦 = lim 𝑦→0 sin 𝑦 6𝑦 + lim 𝑦→0 sin 5𝑦 6𝑦 = 1 6 + 5 6 = 1 Jawaban A
  • 37.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 37 SMAN 12 MAKASSAR 92. Nilai lim 𝑥→𝑎 𝑥−𝑎 sin(𝑥−𝑎)−2𝑥+2𝑎 = ⋯. A. 6 D. −1 B. 3 E. −3 C. 1 Pembahasan Misalkan 𝑥 − 𝑎 = 𝑦 Jika 𝑥 → 𝑎 maka 𝑦 → 𝑎 − 𝑎 = 0 lim 𝑥→𝑎 𝑥 − 𝑎 sin(𝑥 − 𝑎) − 2𝑥 + 2𝑎 = lim 𝑥→𝑎 𝑥 − 𝑎 sin(𝑥 − 𝑎) − 2(𝑥 − 𝑎) = lim 𝑦→0 𝑦 sin 𝑦 − 2𝑦 = lim 𝑦→0 𝑦 𝑦 sin 𝑦 𝑦 − 2𝑦 𝑦 = lim 𝑦→0 1 lim 𝑦→0 sin 𝑦 𝑦 − lim 𝑦→0 2 = 1 1 − 2 = −1 Jawaban D 93. Jika diketahui lim 𝑥→0 tan 𝑥 𝑥 = 1, maka lim 𝑥→𝑎 𝑥−𝑎 tan(𝑥−𝑎)+3𝑥−3𝑎 =…. A. 0 D. 1 2 B. 1 4 E. 1 C. 1 3 Pembahasan Misalkan 𝑥 − 𝑎 = 𝑦 Jika 𝑥 → 𝑎 maka 𝑦 → 𝑎 − 𝑎 = 0 lim 𝑥→𝑎 𝑥 − 𝑎 tan(𝑥 − 𝑎) + 3𝑥 − 3𝑎 = lim 𝑥→𝑎 𝑥 − 𝑎 tan(𝑥 − 𝑎) + 3(𝑥 − 𝑎) = lim 𝑦→0 𝑦 tan 𝑦 + 3𝑦 = lim 𝑦→0 𝑦 𝑦 tan 𝑦 𝑦 + 3𝑦 𝑦 = lim 𝑦→0 1 lim 𝑦→0 tan 𝑦 𝑦 + lim 𝑦→0 3 = 1 1 + 3 = 1 4 Jawaban B
  • 38.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 38 SMAN 12 MAKASSAR 94. Nilai lim 𝑥→0 1−cos 𝑥 cos 3𝑥−cos 𝑥 = ⋯. A. − 1 8 D. 1 4 B. − 1 4 E. 1 8 C. − 1 2 Pembahasan lim 𝑥→0 1 − cos 𝑥 cos 3𝑥 − cos 𝑥 = lim 𝑥→0 2 𝑠𝑖𝑛2 1 2 𝑥 −2 sin 2𝑥 . 𝑠𝑖𝑛𝑥 = lim 𝑥→0 sin 1 2 𝑥 . sin 1 2 𝑥 − sin 2𝑥 . 𝑠𝑖𝑛𝑥 = lim 𝑥→0 sin 1 2 𝑥 − sin 2𝑥 . lim 𝑥→0 sin 1 2 𝑥 sin 𝑥 = − 1 2 2 . 1 2 = − 1 8 Jawaban A 95. Nilai lim 𝑥→0 cos 𝑥−cos 5𝑥 12𝑥 tan 2𝑥 = ⋯. A. 1 6 D.− 1 6 B. 1 2 E. − 1 12 C. − 1 2 Pembahasan lim 𝑥→0 cos 𝑥 − cos 5𝑥 12𝑥 tan 2𝑥 = lim 𝑥→0 −2 sin 3𝑥 sin(−2𝑥) 12𝑥 tan 2𝑥 = 2 12 lim 𝑥→0 sin 3𝑥 sin 2𝑥 𝑥 tan 2𝑥 = 1 6 lim 𝑥→0 sin 3𝑥 𝑥 . lim 𝑥→0 sin 2𝑥 tan 2𝑥 = 1 6 . 3. 2 2 = 1 2 Jawaban B 96. Jika diketahui lim 𝑥→0 sin 𝑥 𝑥 = 1, maka lim 𝑥→0 cos 𝑥−cos 2𝑥 𝑥2 =…. A. 1 2 D. 3 2 B. 2 3 E. 2 C. 1
  • 39.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 39 SMAN 12 MAKASSAR Pembahasan lim 𝑥→0 cos 𝑥 − cos 2𝑥 𝑥2 = lim 𝑥→0 2 sin 3 2 𝑥 sin 1 2 𝑥 𝑥2 = 2. lim 𝑥→0 sin 3 2 𝑥 𝑥 . lim 𝑥→0 sin 1 2 𝑥 𝑥 = 2. 3 2 . 1 2 = 3 2 Jawaban D 97. lim 𝑎→0 cos 𝑚𝛼−cos 𝑛𝛼 𝛼2 =…. A. 𝑚−𝑛 2 D. 𝑚+𝑛 2 B. 𝑚2−𝑛2 2 E. 𝑛2−𝑚2 2 C. 𝑚2+𝑛2 2 Pembahasan lim 𝑎→0 cos 𝑚𝛼 − cos 𝑛𝛼 𝛼2 = lim 𝑎→0 −2 sin (𝑚𝛼 + 𝑛𝛼) 2 . sin (𝑚𝛼 − 𝑛𝛼) 2 𝛼2 = lim 𝑎→0 −2 sin (𝑚𝛼 + 𝑛𝛼) 2 𝛼 . lim 𝑎→0 sin (𝑚𝛼 − 𝑛𝛼) 2 𝛼 = lim 𝑎→0 −2 sin 𝛼(𝑚 + 𝑛) 2 𝛼 . lim 𝑎→0 sin 𝛼(𝑚 − 𝑛) 2 𝛼 = −2. (𝑚+𝑛) 2 . (𝑚−𝑛) 2 = (𝑚 + 𝑛)(𝑚 − 𝑛) 2 = 𝑚2 − 𝑛2 2 Jawaban B 98. Nilai dari    xx xx x cos sin5sin 0 lim … A. 0 B. 1 C. 3 D. 4 E. 5 Pembahasan lim 𝑥→0 sin 5𝑥 − sin 𝑥 𝑥 cos 𝑥 = lim 𝑥→0 2 cos 3𝑥 sin 2𝑥 𝑥 cos 𝑥
  • 40.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 40 SMAN 12 MAKASSAR = lim 𝑥→0 2 cos 3𝑥 cos 𝑥 . lim 𝑥→0 sin 2𝑥 𝑥 = 2 cos 3.0 cos 0 . 2 = 2.1 1 . 2 = 4 Jawaban D 99. Nilai lim 𝑥→0 sin 3𝑥−sin3𝑥 cos2𝑥 2𝑥3 = ⋯. A. 4 D.1 B. 3 E. 1 3 C. 2 Pembahasan lim 𝑥→0 sin 3𝑥 − sin 3𝑥 cos 2𝑥 2𝑥3 = lim 𝑥→0 sin 3𝑥(1 − cos 2𝑥) 2𝑥3 = lim 𝑥→0 sin 3𝑥. 2 𝑠𝑖𝑛2 𝑥 2𝑥3 = lim 𝑥→0 sin 3𝑥. 𝑠𝑖𝑛2 𝑥 𝑥3 = lim 𝑥→0 sin 3𝑥 𝑥 . lim 𝑥→0 sin 𝑥 𝑥 . lim 𝑥→0 sin 𝑥 𝑥 = 3.1.1 = 3 Jawaban B 100. Nilai lim 𝜃→0 tan 𝜃−sin 𝜃 𝜃3 =…. A. 1 4 D. 2 B. 1 2 E. 3 C. 1 Pembahasan lim 𝜃→0 tan 𝜃 − sin 𝜃 𝜃3 = lim 𝜃→0 sin 𝜃 cos 𝜃 − sin 𝜃 𝜃3 = lim 𝜃→0 sin 𝜃 ( 1 cos 𝜃 − 1) 𝜃3 = lim 𝜃→0 sin 𝜃 ( 1 − cos 𝜃 cos 𝜃 ) 𝜃3 = lim 𝜃→0 sin 𝜃 (2 𝑠𝑖𝑛2 1 2 𝜃) cos 𝜃 . 𝜃3
  • 41.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 41 SMAN 12 MAKASSAR = 2lim 𝜃→0 tan 𝜃 ( 𝑠𝑖𝑛2 1 2 𝜃) 𝜃3 = 2lim 𝜃→0 tan 𝜃 𝜃 . (lim 𝜃→0 sin 1 2 𝜃 𝜃 ) 2 = 2.1. ( 1 2 ) 2 =2. 1 4 = 1 2 Jawaban B 101. Jika lim 𝑥→0 𝑥3 tan 𝑥−sin 𝑥 = 𝐴 − 2, maka nilai dari (𝐴 + 2) adalah …. A. −2 D.4 B. 0 E. 6 C. 2 Pembahasan lim 𝑥→0 𝑥3 tan 𝑥 − sin 𝑥 = lim 𝑥→0 𝑥3 tan 𝑥 (1 − 𝑐𝑜𝑠𝑥) = lim 𝑥→0 𝑥3 tan 𝑥 . 2 𝑠𝑖𝑛2 1 2 𝑥 = 1 2 lim 𝑥→0 𝑥 tan 𝑥 . lim 𝑥→0 𝑥2 𝑠𝑖𝑛2 1 2 𝑥 = 1 2 lim 𝑥→0 𝑥 tan 𝑥 . (lim 𝑥→0 𝑥 𝑠𝑖𝑛 1 2 𝑥 ) 2 = 1 2 . 1. 1 1 4 = 2 Nilai dari 𝐴 − 2 = 2 sehingga A = 4 Jadi A+2 = 4 + 2 = 6 Jawaban E 102.Nilai lim 𝑥→2 1−𝑐𝑜𝑠2(𝑥−2) 3𝑥2−12𝑥+12 = ⋯. A. 1 3 D.1 B. 1 2 E.2 C. 0 Pembahasan lim 𝑥→2 1 − 𝑐𝑜𝑠2(𝑥 − 2) 3𝑥2 − 12𝑥 + 12 = lim 𝑥→2 sin2(𝑥 − 2) 3(𝑥2 − 4𝑥 + 4) = lim 𝑥→2 sin2(𝑥 − 2) 3(𝑥 − 2)2
  • 42.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 42 SMAN 12 MAKASSAR = lim 𝑥→2 sin(𝑥 − 2) 3(𝑥 − 2) . lim 𝑥→2 sin(𝑥 − 2) (𝑥 − 2) = 1 3 . 1 = 1 3 Jawaban A 103. Nilai lim 𝑥→ 𝜋 4 (𝑥− 𝜋 4 ) sin(3𝑥− 3𝜋 4 ) 2(1−sin 2𝑥) = ⋯. A. 3 4 D.− 3 4 B. 1 4 E. − 3 2 C. 0 Pembahasan Misalkan 𝑥 − 𝜋 4 = 𝑦 ⇔ 𝑥 = 𝑦 + 𝜋 4 sehingga 2𝑥 = 2𝑦 + 𝜋 2 Jika 𝑥 → 𝜋 4 maka 𝑦 → 0 lim 𝑥→ 𝜋 4 (𝑥 − 𝜋 4 ) sin (3𝑥 − 3𝜋 4 ) 2(1 − sin 2𝑥) = lim 𝑥→ 𝜋 4 (𝑥 − 𝜋 4 ) sin 3 (𝑥 − 𝜋 4 ) 2(1 − sin 2𝑥) = lim 𝑦→0 𝑦 sin 3𝑦 2 (1 − sin (2𝑦 + 𝜋 2 )) = lim 𝑦→0 𝑦 sin 3𝑦 2. (1 − 𝑐𝑜𝑠2𝑦) = 1 2 lim 𝑦→0 𝑦 sin 3𝑦 2. sin2y = 1 4 . lim 𝑦→0 𝑦 sin 𝑦 . lim 𝑦→0 sin 3𝑦 sin 𝑦 = 1 4 . 1.3 = 3 4 Jawaban A 104. Nilai lim 𝑥→ 𝜋 2 4(𝑥−𝜋)cos2x 𝜋(𝜋−2𝑥) tan(𝑥− 𝜋 2 ) = ⋯. A. −2 D. 1 B. −1 E. 2 C. 0 Pembahasan Misalkan 𝑦 = 𝑥 − 𝜋 2 maka 𝑥 = 𝜋 2 + 𝑦 lim 𝑥→ 𝜋 2 4(𝑥 − 𝜋)cos2 x 𝜋(𝜋 − 2𝑥) tan (𝑥 − 𝜋 2 ) = lim 𝑦→0 4 ( 𝜋 2 + 𝑦 − 𝜋) cos2 ( 𝜋 2 + 𝑦) 𝜋 (𝜋 − 2. ( 𝜋 2 + 𝑦)) tan 𝑦
  • 43.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 43 SMAN 12 MAKASSAR = lim 𝑦→0 4 (𝑦 − 𝜋 2 ) cos2 ( 𝜋 2 + 𝑦) 𝜋(−𝑦) tan 𝑦 = lim 𝑦→0 (4𝑦 − 2𝜋)(− sin 𝑦)2 𝜋(−𝑦) tan 𝑦 = lim 𝑦→0 (4𝑦 − 2𝜋) −𝜋 . lim 𝑦→0 sin 𝑦 𝑦 . lim 𝑦→0 sin 𝑦 tan 𝑦 = (4.0 − 2𝜋) −𝜋 . 1. 1 1 = −2𝜋 −𝜋 = 2 Jawaban E 105. Nilai lim 𝑥→𝑦 tan 𝑥−tan 𝑦 (1− 𝑥 𝑦 )(1+tan 𝑥 tan 𝑦) = ⋯. A. y D. −1 B. 1 E. – 𝑦 C. 0 Pembahasan lim 𝑥→𝑦 tan 𝑥 − tan 𝑦 (1 − 𝑥 𝑦 ) (1 + tan 𝑥 tan 𝑦) = lim 𝑥→𝑦 tan(𝑥 − 𝑦) (1 − 𝑥 𝑦 ) = lim 𝑥→𝑦 tan(𝑥 − 𝑦) ( 𝑦 − 𝑥 𝑦 ) = lim 𝑥→𝑦 tan(𝑥 − 𝑦) 1 𝑦 (𝑦 − 𝑥) = 𝑦lim 𝑥→𝑦 tan(𝑥 − 𝑦) (𝑦 − 𝑥) = 𝑦lim 𝑥→𝑦 tan(𝑥 − 𝑦) −(𝑥 − 𝑦) = −𝑦lim 𝑥→𝑦 tan(𝑥 − 𝑦) (𝑥 − 𝑦) = −𝑦. 1 = −𝑦 Jawaban: E 106. Nilai lim 𝑎→𝑏 tan 𝑎−tan 𝑏 1+(1− 𝑎 𝑏 ) tan 𝑎 tan 𝑏− 𝑎 𝑏 = ⋯. A. b D. −1 B. 1 E. – 𝑏 C. 0 Pembahasan lim 𝑎→𝑏 tan 𝑎 − tan 𝑏 1 + (1 − 𝑎 𝑏 ) tan 𝑎 tan 𝑏 − 𝑎 𝑏 = lim 𝑎→𝑏 tan 𝑎 − tan 𝑏 (1 − 𝑎 𝑏 ) + (1 − 𝑎 𝑏 ) tan 𝑎 tan 𝑏
  • 44.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 44 SMAN 12 MAKASSAR = lim 𝑎→𝑏 tan 𝑎 − tan 𝑏 (1 − 𝑎 𝑏 ) (1 + tan 𝑎 tan 𝑏) = lim 𝑎→𝑏 tan(𝑎 − 𝑏) (1 − 𝑎 𝑏 ) = lim 𝑎→𝑏 tan(𝑎 − 𝑏) ( 𝑏 − 𝑎 𝑏 ) = lim 𝑎→𝑏 tan(𝑎 − 𝑏) 1 𝑏 (𝑏 − 𝑎) = 𝑏lim 𝑎→𝑏 tan(𝑎 − 𝑏) (𝑏 − 𝑎) = 𝑏lim 𝑎→𝑏 tan(𝑎 − 𝑏) −(𝑎 − 𝑏) = −𝑏lim 𝑎→𝑏 tan(𝑎 − 𝑏) (𝑎 − 𝑏) = −𝑏. 1 = −𝑏 Jawaban E 107. Nilai lim 𝑥→ 𝜋 2 2𝑥− 𝜋 cos 𝑥 = ⋯. A. 4 D. −2 B. 2 E. −4 C. 0 Pembahasan Misalkan 𝑦 = 2𝑥 − 𝜋 sehingga 𝑥 = 𝜋 2 + 𝑦 2 Jika 𝑥 → 𝜋 2 maka 𝑦 → 0 lim 𝑥→ 𝜋 2 2𝑥 − 𝜋 cos 𝑥 = lim 𝑦→0 𝑦 cos ( 𝜋 2 + 𝑦 2 ) = lim 𝑦→0 𝑦 −sin 𝑦 2 = 1 − 1 2 = −2 Jawaban D 108. Nilai lim 𝑥→1 sin 𝜋𝑥 𝑥−1 = ⋯. A. −𝜋 D. 1 B. −1 E. 𝜋 C. 0 Pembahasan Misalkan 𝑦 = 𝑥 − 1 sehingga 𝑥 = 𝑦 + 1 Jika 𝑥 → 1 maka 𝑦 → 0 lim 𝑥→1 sin 𝜋𝑥 𝑥 − 1 = lim 𝑦→0 sin 𝜋(𝑦 + 1) 𝑦 = lim 𝑦→0 sin(𝜋𝑦 + 𝜋) 𝑦 = lim 𝑦→0 −sin 𝜋𝑦 𝑦 = −𝜋 Jawaban A
  • 45.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 45 SMAN 12 MAKASSAR 109. Nilai lim 𝑥→−2 tan 𝜋𝑥 𝑥+2 = ⋯. A. −𝜋 D. 1 B. −1 E. 𝜋 C. 0 Pembahasan Sifat yang digunkan: tan(2𝜋 − 𝑎) = − tan 𝑎 Misalkan 𝑦 = 𝑥 + 2, sehingga 𝑥 = 𝑦 − 2 Jika 𝑥 → −2 maka 𝑦 → −2 + 2 = 0 lim 𝑥→−2 tan 𝜋𝑥 𝑥 + 2 = lim 𝑦→0 tan 𝜋(𝑦 − 2) 𝑦 = lim 𝑦→0 tan(𝜋𝑦 − 2𝜋) 𝑦 = lim 𝑦→0 tan 𝜋𝑦 𝑦 = 𝜋 Jawaban E 110. Nilai dari lim 𝑥→𝜋 1+cos 𝑥 (𝑥−𝜋)2 =…. A. −0,50 D. 0,25 B. −0,25 E. 0,50 C. 0 Pembahasan Misalkan 𝑦 = 𝑥 − 𝜋, sehingga 𝑥 = 𝜋 + 𝑦 Jika 𝑥 → 𝜋 maka 𝑦 → 𝜋 − 𝜋 = 0 lim 𝑥→𝜋 1 + cos 𝑥 (𝑥 − 𝜋)2 = lim 𝑦→0 1 + cos(𝜋 + 𝑦) 𝑦2 = lim 𝑦→0 1 − cos 𝑦 𝑦2 = lim 𝑦→0 2 𝑠𝑖𝑛2 1 2 𝑦 𝑦2 = 2 (lim 𝑦→0 sin 1 2 𝑦 𝑦 ) 2 = 2. 1 2 2 = 2 4 = 0,50 Jawaban E 111. Nilai lim 𝑥→ 𝜋 2 sin 2𝑥 𝑥− 𝜋 2 =... A. −2 D. 1 B. −1 E. 2 C. 0
  • 46.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 46 SMAN 12 MAKASSAR Pembahasan Misalkan 𝑥 − 𝜋 2 = 𝑦 atau 𝑥 = 𝜋 2 + 𝑦 sin 2𝑥 = sin 2 ( 𝜋 2 + 𝑦) = sin(𝜋 + 𝑦) = − sin 𝑦 lim 𝑥→ 𝜋 2 sin 2𝑥 𝑥 − 𝜋 2 = lim 𝑦→0 − sin 𝑦 𝑦 = − lim 𝑦→0 sin 𝑦 𝑦 = −1 Jawaban B 112. Nilai lim 𝑥→𝜋 𝑥−𝜋 sin 𝑥 =.... A. −2 D. 1 B. −1 E. 2 C. 0 Pembahasan Misalkan 𝑥 − 𝜋 = 𝑦 atau 𝑥 = 𝜋 + 𝑦 sin 𝑥 = sin(𝜋 + 𝑦) = − sin 𝑦 Jika 𝑥 → 𝜋 maka 𝑦 → 0 lim 𝑥→𝜋 𝑥 − 𝜋 sin 𝑥 = lim 𝑦→0 𝑦 −sin 𝑦 = − lim 𝑦→0 𝑦 sin 𝑦 = −1 Jawaban B 113. Nilai lim 𝑥→ 𝜋 2 1−sin 𝑥 (𝜋−2𝑥)2 =.... A. 8 D. 1 2 B. 4 E. 1 8 C. 2 Pembahasan Misalkan 𝜋 − 2𝑥 = 𝑦 sehingga 𝑥 = 𝜋 2 − 𝑦 2 sin 𝑥 = sin ( 𝜋 2 − 𝑦 2 ) = cos 𝑦 2 Jika 𝑥 → 𝜋 2 maka 𝑦 → 0 lim 𝑥→ 𝜋 2 1 − sin 𝑥 (𝜋 − 2𝑥)2 = lim 𝑦→0 1 − cos 𝑦 2 𝑦2 = lim 𝑦→0 2 𝑠𝑖𝑛2 𝑦 4 𝑦2 = 2lim 𝑦→0 sin 𝑦 4 𝑦 . lim 𝑦→0 sin 𝑦 4 𝑦 = 2. 1 4 . 1 4 = 1 8 Jawaban E
  • 47.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 47 SMAN 12 MAKASSAR 114. Nilai lim 𝑥→1 (1 − 𝑥) tan ( 𝜋𝑥 2 )=…. A. 𝜋 2 D. 𝜋 B. 2 𝜋 E. 0 C. 3 𝜋 Pembahasan Misalkan (1 − 𝑥) = 𝑦 lim 𝑥→1 (1 − 𝑥) tan ( 𝜋𝑥 2 ) = lim 𝑦→0 𝑦 tan ( 𝜋(1 − 𝑦) 2 ) = lim 𝑦→0 𝑦 tan ( 𝜋 2 − 𝜋 2 𝑦) = lim 𝑦→0 𝑦 cot ( 𝜋 2 𝑦) = lim 𝑦→0 𝑦 tan ( 𝜋 2 𝑦) = 1 𝜋 2 = 2 𝜋 Jawaban B 115. Nilai lim 𝑥→𝜋 1+cos 𝑥 𝑡𝑎𝑛2 𝑥 =…. A. −1 D. 1 2 B. − 1 2 E. 1 C. 0 Pembahasan Misalkan 𝑥 − 𝜋 = 𝑡 → 𝑥 = 𝜋 + 𝑡 Jika 𝑥 → 𝜋 maka 𝑡 → 0 lim 𝑥→𝜋 1 + cos 𝑥 𝑡𝑎𝑛2 𝑥 = lim 𝑡→0 1 + cos(𝜋 + 𝑡) 𝑡𝑎𝑛2(𝜋 + 𝑡) = lim 𝑡→0 1 − cos 𝑡 𝑡𝑎𝑛2 𝑡 = lim 𝑡→0 2 𝑠𝑖𝑛2 1 2 𝑡 𝑡𝑎𝑛2 𝑡 = 2 lim 𝑡→0 sin 1 2 𝑡 tan 𝑡 . lim 𝑡→0 sin 1 2 𝑡 tan 𝑡 = 2. 1 2 . 1 2 = 1 2 Jawaban D
  • 48.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 48 SMAN 12 MAKASSAR 116. lim 𝑥→1 tan(𝑥2−1) (𝑥−1) =…. A. 2 D. −2 B. 1 2 E. − 1 2 C. 0 Pembahasan lim 𝑥→1 tan(𝑥2 − 1) (𝑥 − 1) = lim 𝑥→1 tan(𝑥2 − 1) (𝑥 − 1) = lim 𝑥→1 tan(𝑥2 − 1) (𝑥 − 1) . (𝑥 + 1) (𝑥 + 1) = lim 𝑥→1 tan(𝑥2 − 1) (𝑥2 − 1) . lim 𝑥→1 (𝑥 + 1) = 1. (1 + 1) = 2 Jawaban A 117. Nilai lim 𝑥→0 √1−cos 𝑥 𝑥 adalah …. A. −√2 D. 1 2 √2 B. − 1 2 √2 E. √2 C. 0 Pembahasan lim 𝑥→0 √1 − cos 𝑥 𝑥 = lim 𝑥→0 √1 − cos 𝑥 √𝑥2 = lim 𝑥→0 √ 1 − cos 𝑥 𝑥2 = √lim 𝑥→0 1 − cos 𝑥 𝑥2 = √ lim 𝑥→0 2 𝑠𝑖𝑛2 1 2 𝑥 𝑥2 = √ 2lim 𝑥→0 sin 1 2 𝑥 𝑥 . lim 𝑥→0 sin 1 2 𝑥 𝑥 = √2. 1 2 . 1 2 = 1 2 √2 Jawaban D
  • 49.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 49 SMAN 12 MAKASSAR 118. Jika diketahui lim 𝑥→0 𝑎𝑥 sin 𝑥+𝑏 cos 𝑥−1 = 1, maka nilai 𝑎 dan 𝑏 yang memenuhi adalah …. A. 𝑎 = − 1 2 , 𝑏 = 0 D. 𝑎 = 1, 𝑏 = −1 B. 𝑎 = 1, 𝑏 = 1 E. . 𝑎 = 1, 𝑏 = 0 C. 𝑎 = 1 2 , 𝑏 = 0 Pembahasan Karena cos 𝑥 − 1 bernilai 0 untuk 𝑥 = 0 dan nilai limit 1, maka bagian pembilang harus bernilai 0 𝑎. 0. sin 0 + 𝑏 = 0 sehingga 𝑏 = 0 lim 𝑥→0 𝑎𝑥 sin 𝑥 + 𝑏 cos 𝑥 − 1 = 1 ⇔ lim 𝑥→0 𝑎𝑥 sin 𝑥 cos 𝑥 − 1 = 1 ⇔ lim 𝑥→0 𝑎𝑥 sin 𝑥 −2 𝑠𝑖𝑛2 1 2 𝑥 = 1 ⇔ lim 𝑥→0 𝑎𝑥 sin 1 2 𝑥 . lim 𝑥→0 sin 𝑥 sin 1 2 𝑥 = −2 ⇔ 𝑎 1 2 . 1 1 2 = −2 ⇔ 𝑎 = −2 × 1 4 = − 1 2 Jawaban A 119. Misalkan 𝛼 dan 𝛽 adalah akar-akar persamaan 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, maka lim 𝑥→𝛼 1−cos(𝑎𝑥2+𝑏𝑥+𝑐) (𝑥−𝛼)2 sama dengan …. A. 0 D. 𝛼2 2 (𝛼 + 𝛽)2 B. 1 2 (𝛼 − 𝛽)2 E. 𝛽2 2 (𝛼 − 𝛽)2 C. 𝛼2 2 (𝛼 − 𝛽)2 Pembahasan lim 𝑥→𝛼 1 − cos(𝑎𝑥2 + 𝑏𝑥 + 𝑐) (𝑥 − 𝛼)2 = lim 𝑥→𝛼 2 sin2 1 2 (𝑎𝑥2 + 𝑏𝑥 + 𝑐) (𝑥 − 𝛼)2 = lim 𝑥→𝛼 2 sin2 1 2 (𝑥 − 𝛼)(𝑥 − 𝛽) (𝑥 − 𝛼)2 = 2 (lim 𝑥→𝛼 sin 1 2 (𝑥 − 𝛼)(𝑥 − 𝛽) (𝑥 − 𝛼) ) 2 = 2 (lim 𝑥→𝛼 sin 1 2 (𝑥 − 𝛼)(𝑥 − 𝛽) (𝑥 − 𝛼) . (𝑥 − 𝛽) (𝑥 − 𝛽) ) 2 = 2 (lim 𝑥→𝛼 (𝑥 − 𝛽)sin 1 2 (𝑥 − 𝛼)(𝑥 − 𝛽) (𝑥 − 𝛼)(𝑥 − 𝛽) ) 2
  • 50.
    Muhammad Arif,S.Pd,M.Pd. 120 LimitFungsi Trigonometri 50 SMAN 12 MAKASSAR = 2 (lim 𝑥→𝛼 (𝑥 − 𝛽)lim 𝑥→𝛼 sin 1 2 (𝑥 − 𝛼)(𝑥 − 𝛽) (𝑥 − 𝛼)(𝑥 − 𝛽) ) 2 = 2 ((𝛼 − 𝛽). 1 2 ) 2 = 2. 1 4 (𝛼 − 𝛽)2 = 1 2 (𝛼 − 𝛽)2 Jawaban B 120. Jika 𝑓(𝑥) = cos 2𝑥 maka lim ℎ→0 𝑓(𝑥+2ℎ)−2𝑓(𝑥)+𝑓(𝑥−2ℎ) (2ℎ)2 = ⋯. A. 2 cos 2𝑥 D. −4 cos 2𝑥 B. −2 sin 2𝑥 E. 2 cos 4𝑥 C. 4 sin 2𝑥 Pembahasan o 𝑓(𝑥) = cos 2𝑥 o 𝑓(𝑥 + 2ℎ) = cos 2(𝑥 + 2ℎ) = cos(2𝑥 + 4ℎ) o 𝑓(𝑥 − 2ℎ) = cos 2(𝑥 − 2ℎ) = cos(2𝑥 − 4ℎ) o 𝑓(𝑥 + 2ℎ) − 𝑓(𝑥 − 2ℎ) = cos(2𝑥 + 4ℎ) − cos(2𝑥 − 4ℎ) 𝑓(𝑥 + 2ℎ) − 𝑓(𝑥 − 2ℎ) = 2 cos 1 2 (2𝑥 + 4ℎ + 2𝑥 − 4ℎ) cos 1 2 (2𝑥 + 4ℎ − 2𝑥 + 4ℎ) 𝑓(𝑥 + 2ℎ) − 𝑓(𝑥 − 2ℎ) = 2 cos 2𝑥 cos 4ℎ Sehingga lim ℎ→0 𝑓(𝑥 + 2ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 − 2ℎ) (2ℎ)2 = lim ℎ→0 2 cos 2𝑥 cos 4ℎ − 2 cos 2𝑥 (2ℎ)2 = lim ℎ→0 2 cos 2𝑥 (cos 4ℎ − 1) 4ℎ2 = lim ℎ→0 2 cos 2𝑥 (−2. 𝑠𝑖𝑛2 2ℎ) 4. ℎ2 = lim ℎ→0 − cos 2𝑥 . sin 2 2ℎ ℎ2 = lim ℎ→0 − cos 2𝑥 lim ℎ→0 sin 2 2ℎ ℎ2 = − cos 2𝑥 lim ℎ→0 sin 2ℎ ℎ . lim ℎ→0 sin 2ℎ ℎ = − cos 2𝑥 . 2.2 = −4 cos 2𝑥 Jawaban D Kritik dan saran: [email protected]