This document summarizes a study on the effect of parameters of a geometric multigrid method on CPU time for solving one-dimensional problems related to heat transfer and fluid flow. The parameters studied include coarsening ratio of grids, number of inner iterations, number of grid levels, and tolerances. Finite difference methods were used to discretize partial differential equations for problems involving Poisson, advection-diffusion, and heat transfer equations. Comparisons were made between multigrid and single grid methods like Gauss-Seidel and TDMA. Results confirmed some literature findings and presented some new results on the effect of parameters on CPU time.