SlideShare a Scribd company logo
2017 biological databases_part1_vupload
FBW
14-02-2017
Biological Databases
Wim Van Criekinge
2017 biological databases_part1_vupload
https://calendar.google.com/calendar/embed?src=5uqke3ro9tg29it7n0pa
jonfhk%40group.calendar.google.com&ctz=Europe/Brussels
11 syllabi (2016 edition) left for 15 Euro
Math
Informatics
Bioinformatics, a scientific discipline ? Or the new (molecular) biology ?
Theoretical Biology
Computational Biology
(Molecular)
Biology
Computer Science
Bioinformatics
Lab for Bioinformatics and
computational genomics
Statistics
Machine Learning
Text Mining
Bioinformatics
Discovery Informatics
Informatics (Molecular)
Biology
Statistics
Machine Learning
Text Mining
Python, …
Biological Databases
Bioinformatics
Discovery Informatics
(Molecular)
Biology
The most valuable programming skills to have on a resume
New kid in the coding block …
Statistics
Machine Learning
Text Mining
Python, …
Biological Databases
Epigenetics
Bioinformatics
Discovery Informatics
Sander-Schneider
• HSSP: homology derived secondary structure
2017 biological databases_part1_vupload
Usage of the databases
Annotation searches - Search for keywords, authors, features
Usage of the databases
Annotation searches - Search for keywords, authors, features
 What is the protein sequence for human insulin?
 How does the 3D structure of calmodulin look like?
 What is the genetic location of the cystic fibrosis gene?
 List all intron sequences in rat.
Usage of the databases
Annotation searches - Search for keywords, authors, features
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
 Is there any known protein sequence that is similar to x?
 Is this gene known in any other species?
 Has someone already cloned this sequence?
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
 Do my protein sequence contain any known motif
(that can give me a clue about the function)?
 Which known sequences contain this motif?
 Is any part of my nucleotide sequence recognized
by a transcriptional factor?
 List all known start, splice and stop signals in my
genomic sequence.
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
 What may the structure of my protein be?
Secondary structure prediction.
Modelling by homology.
 What is the gene structure of my genomic sequence?
 Which parts of my protein have a high antigenicity?
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Comparisons
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Comparisons
 Gene families
 Phylogenetic trees
Les 1
• Bioinformatics I Revisited in 5 slides
• Why bother making databases ?
• DataBases
– FF
• *.txt
• Indexed version
– Relational (RDBMS)
• Access, MySQL, PostGRES, Oracle
– OO (OODBMS)
• AceDB, ObjectStore
– Hierarchical
• XML
– Frame based system
• Eg. DAML+OIL
– Hybrid systems
GenBank Format
LOCUS LISOD 756 bp DNA BCT 30-JUN-1993
DEFINITION L.ivanovii sod gene for superoxide dismutase.
ACCESSION X64011.1 GI:37619753
NID g44010
KEYWORDS sod gene; superoxide dismutase.
SOURCE Listeria ivanovii.
ORGANISM Listeria ivanovii
Eubacteria; Firmicutes; Low G+C gram-positive bacteria;
Bacillaceae; Listeria.
REFERENCE 1 (bases 1 to 756)
AUTHORS Haas,A. and Goebel,W.
TITLE Cloning of a superoxide dismutase gene from Listeria ivanovii
by functional complementation in Escherichia coli and
characterization of the gene product
JOURNAL Mol. Gen. Genet. 231 (2), 313-322 (1992)
MEDLINE 92140371
REFERENCE 2 (bases 1 to 756)
AUTHORS Kreft,J.
TITLE Direct Submission
JOURNAL Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie,
Universitaet Wuerzburg, Biozentrum Am Hubland, 8700
Wuerzburg, FRG
Problems with Flat files …
• Wasted storage space
• Wasted processing time
• Data control problems
• Problems caused by changes to data
structures
• Access to data difficult
• Data out of date
• Constraints are system based
• Limited querying eg. all single exon
GPCRs (<1000 bp)
• What is a relational database ?
– Sets of tables and links (the data)
– A language to query the datanase (Structured
Query Language)
– A program to manage the data (RDBMS)
• Flat files are not relational
– Data type (attribute) is part of the data
– Record order mateters
– Multiline records
– Massive duplication
• Bv Organism: Homo sapeinsm Eukaryota, …
– Some records are hierarchical
• Xrefs
– Records contain multiple “sub-records”
– Implecit “Key”
• records
• fields
• linear file of
homogeneous records
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
• Terms and concepts:
– tuple
– domain
– attribute
– key
– integrity rules
Introduction to Database Systems
• Historic Background
– Hierarchical databases (IMS) - IBM 1968
• Hierarchical structures between file records
– Network databases - CODASYL Group 1969
• Network structures of record types
• Linked chains between 'Owner' and 'Member' records
• Included in Cobol, procedural language - Manual
navigation
– Relational Data Model - E. F. Codd 1970
• Mathematical foundation of databases
• New non-procedural language SQL - Automatic
navigation
– Object-relational databases
– Object-oriented databases
Relational
• The Relational model is not only very mature, but it
has developed a strong knowledge on how to make a
relational back-end fast and reliable, and how to
exploit different technologies such as massive SMP,
Optical jukeboxes, clustering and etc. Object
databases are nowhere near to this, and I do not
expect then to get there in the short or medium term.
• Relational Databases have a very well-known and
proven underlying mathematical theory, a simple one
(the set theory) that makes possible
– automatic cost-based query optimization,
– schema generation from high-level models and
– many other features that are now vital for mission-critical
Information Systems development and operations.
The Benefits of Databases
• Redundancy can be reduced
• Inconsistency can be avoided
• Conflicting requirements can be
balanced
• Standards can be enforced
• Data can be shared
• Data independence
• Integrity can be maintained
• Security restrictions can be applied
Relational Terminology
ID NAME PHONE EMP_ID
201 Unisports 55-2066101 12
202 Simms Atheletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11
Row (Tuple)
Column (Attribute)
CUSTOMER Table (Relation)
Relational Database Terminology
• Each row of data in a table is uniquely identified by a primary key (PK)
• Information in multiple tables can be logically related by foreign keys (FK)
ID LAST_NAME FIRST_NAME
10 Havel Marta
11 Magee Colin
12 Giljum Henry
14 Nguyen Mai
ID NAME PHONE EMP_ID
201 Unisports 55-2066101 12
202 Simms Atheletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11
Table Name: CUSTOMER Table Name: EMP
Primary Key Foreign Key Primary Key
Relational Database Terminology
Relational operators
• Relational
– select
rel WHERE boolean-xpr
– project
rel [ attr-specs ]
– join
rel JOIN rel
– divide by
rel DIVIDEBY rel
• Set-based

rel UNION rel

rel INTERSECT rel

rel MINUS rel

rel TIMES rel
Disadvantages
• size
• complexity
• cost
• Additional hardware costs
• Higher impact of failure
• Recovery more difficult
• RDBM products
– Free
• MySQL, very fast, widely usedm easy to
jump into but limited non standard SQL
• PostrgreSQL – full SQLm limited OO,
higher learning curve than MySQL
– Commercial
• MS Access – Great query builder, GUI
interfaces
• MS SQL Server – full SQL, NT only
• Oracle, everything, including the kitchen
sink
• IBM DB2, Sybase
Example 3-tier model in biological database
http://www.bioinformatics.be
Example of different interface to the same back-end database (MySQL)
2017 biological databases_part1_vupload
2017 biological databases_part1_vupload
BioSQL
Conclusions
• A database is a central component of any
contemporary information system
• The operations on the database and the mainenance
of database consistency is handled by a DBMS
• There exist stand alone query languages or
embedded languages but both deal with definition
(DDL) and manipulation (DML) aspects
• The structural properties, constraints and operations
permitted within a DBMS are defined by a data
model - hierarchical, network, relational
• Recovery and concurrency control are essential
• Linking of heterogebous datasources is central theme
in modern bioinformatics
What is to come ?
Basic outline
• Setup RDMBS
• OLTP Access through CLI, dedicated
client, PHP, Perl/Python
• OLAP Access through Perl/Python, R ..
Integration
• Cytoscape
Semantic Web
• noSQL/Hadoop
• SPARQL
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
3/05/2016 Project Biological Databases
2015-2016
Biological Databases
Bruno Verstraeten, Arthur Zwaenepoel,
Jules Haezebrouck, Laurenz De Cock, Jonathan
Walgraeve, Cedric Bogaert, Dries Schaumont
What is minecraft
• Sandbox game
• Designed by Markus “Notch” Persson
• Mojang
• Bought by Microsoft in 2014
• 70 million sold copies (june 2015)
2017 biological databases_part1_vupload
Minecraft programming from Python
Third party mods
• Extra content made by users
• Adding items, magic and features to
the original game
• The true beauty of minecraft
And now Sciencecraft
• Visualizing proteins in minecraft
• Minecraft Tools python package
• Data directly from PDB flat files or
from the PDB server
• Spigot minecraft server
The basics
1. Start a server with Minecraft Tools
2. Using python import the pdb file
3. Retrieve the coordinates from the file
4. Using the setBlock function blocks of
specific colours are placed in the
minecraft server to represent the protein
5. Fly around and take screenshots
Minecraft programming from Python
# Connect to Minecraft
from mcpi.minecraft import Minecraft
mc = Minecraft.create()
# Set x, y, and z variables to represent coordinates
x = 10.0
y = 110.0
z = 12.0
# Change the player's position
mc.player.setPos(x, y, z)
Verotoxin
Apo-lipoprotein A1
Kinesine
Retrieving PDB data using SPARQL
• PDB available in RDF (wwPDB)
• Using python SPARQLwrapper
Using SPARQL with Python – SPARQLWrapper
SPARQL endpoint
Using SPARQL with Python – SPARQLWrapper
“Search engine”
• Naive regex based
• Returns list of all pdb
entries containing a
certain keyword with
organism name and
full description
• PDB entry can be
retrieved with previous
query
2017 biological databases_part1_vupload
Retrieve .xml.gz file:
 Actual structure information in xml file
<?xml version="1.0" encoding="UTF-8" ?>
<PDBx:datablock datablockName="1O9K"
xmlns:PDBx="http://pdbml.pdb.org/schema/pdbx-v40.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pdbml.pdb.org/schema/pdbx-
v40.xsd pdbx-v40.xsd">
<PDBx:atom_siteCategory>
<PDBx:atom_site id="1">
<PDBx:B_iso_or_equiv>62.42</PDBx:B_iso_or_equiv>
<PDBx:Cartn_x>13.258</PDBx:Cartn_x>
<PDBx:Cartn_y>142.706</PDBx:Cartn_y>
<PDBx:Cartn_z>30.410</PDBx:Cartn_z>
<PDBx:auth_asym_id>A</PDBx:auth_asym_id>
<PDBx:auth_atom_id>N</PDBx:auth_atom_id>
<PDBx:auth_comp_id>MET</PDBx:auth_comp_id>
<PDBx:auth_seq_id>379</PDBx:auth_seq_id>
<PDBx:group_PDB>ATOM</PDBx:group_PDB>
<PDBx:label_alt_id xsi:nil="true" />
<PDBx:label_asym_id>A</PDBx:label_asym_id>
<PDBx:label_atom_id>N</PDBx:label_atom_id>
<PDBx:label_comp_id>MET</PDBx:label_comp_id>
<PDBx:label_entity_id>1</PDBx:label_entity_id>
<PDBx:label_seq_id>8</PDBx:label_seq_id>
<PDBx:occupancy>1.00</PDBx:occupancy>
….
Using SPARQL with Python – SPARQLWrapper
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
CE
ENGINEER
ING
TOGETHE
R:
PARTICIPA
TING AT
IGEM
INTERNATIONAL GENETICALLY
ENGINEERED MACHINE➤ Annual synthetic biology competition
➤ Making new organisms: biobricks
➤ Hosted by MIT: five teams in 2004, 130 teams in 2016
PAST IGEM WINNERS
2014
biosensor for olive
oil quality
2015
3D printing of
biofilms 2016
system for the
control of co-
culture stability
UGENT 2016 TEAM
SOLVING WATER SHORTAGE
FOUR WORK PACKAGES
WP2: Filament
WP3: Biofunction
WP1: Shape
WP4: Measurement
WP1: SHAPE OPTIMISATION
Fogstand beetle
WP2: FILAMENT
WP3: BIOFUNCTION
+
lysatemembrane
WP4: FUNCTIONAL ASSAY
OUR INPUT
OUR INPUT
IN BOSTON: IGEM
CONFERENCE
Presenting, learning and having fun in Boston
FOLLOW UP
➤ Maker City
➤ BrainBooster session
CropDesign
➤ Biodesign competition
➤ Bachelor project on 3D
printing
➤ PLOS iGEM collection
2017 biological databases_part1_vupload
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
85

More Related Content

What's hot (20)

PPTX
2019 02 12_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 03 05_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
PPT
BLAST(Basic Local Alignment Tool)
Sobia
 
PPTX
Blast 2013 1
Jumbo Nantawong
 
PPTX
Blast gp assignment
barathvaj
 
PPT
Phpconf2008 Sphinx En
Murugan Krishnamoorthy
 
PPTX
BLAST (Basic local alignment search Tool)
Ariful Islam Sagar
 
PPTX
Blast
Pooja Sevak
 
PPTX
P7 2018 biopython3
Prof. Wim Van Criekinge
 
PPTX
Blast
ARUNDHATI MEHTA
 
PPTX
Democratizing Big Semantic Data management
WU (Vienna University of Economics and Business)
 
PPT
Mayank
Mayank Miky
 
PPTX
Introduction to HMMER - A biosequence analysis tool with Hidden Markov Models
Anax Fotopoulos
 
PPTX
blast bioinformatics
Sardar Harpreet Kalsi
 
PPTX
BLAST
Rabia W.
 
PDF
Fast Variant Calling with ADAM and avocado
fnothaft
 
2019 02 12_biological_databases_part1_v_upload
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
BLAST(Basic Local Alignment Tool)
Sobia
 
Blast 2013 1
Jumbo Nantawong
 
Blast gp assignment
barathvaj
 
Phpconf2008 Sphinx En
Murugan Krishnamoorthy
 
BLAST (Basic local alignment search Tool)
Ariful Islam Sagar
 
P7 2018 biopython3
Prof. Wim Van Criekinge
 
Democratizing Big Semantic Data management
WU (Vienna University of Economics and Business)
 
Mayank
Mayank Miky
 
Introduction to HMMER - A biosequence analysis tool with Hidden Markov Models
Anax Fotopoulos
 
blast bioinformatics
Sardar Harpreet Kalsi
 
BLAST
Rabia W.
 
Fast Variant Calling with ADAM and avocado
fnothaft
 

Viewers also liked (20)

PPTX
2016 bioinformatics i_io_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_proteins_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_bio_python_wimvancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_phylogenetics_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_bio_python_ii_wimvancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
Prof. Wim Van Criekinge
 
PPTX
2017 biological databasespart2
Prof. Wim Van Criekinge
 
PDF
Mysql introduction
Prof. Wim Van Criekinge
 
PDF
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn
 
PPTX
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_python_part_1_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_databases_wim_vancriekinge
Prof. Wim Van Criekinge
 
PPTX
2016 bioinformatics i_score_matrices_wim_vancriekinge
Prof. Wim Van Criekinge
 
PDF
2015 Internet Trends Report
IQbal KHan
 
PDF
Tracxn Research - Construction Tech Landscape, February 2017
Tracxn
 
PPTX
Introducing SMCR from an HR perspective
Heath Buck
 
PPTX
Distribution Channels of Oracle
PRIYAJNVCTC
 
PDF
Predictive Analytics with Airflow and PySpark
Russell Jurney
 
PPTX
Tugas 4 0317-imelda felicia-1412510545
imeldafelicia
 
2016 bioinformatics i_io_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_proteins_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_bio_python_wimvancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_phylogenetics_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_bio_python_ii_wimvancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_bio_cheminformatics_wimvancriekinge
Prof. Wim Van Criekinge
 
2017 biological databasespart2
Prof. Wim Van Criekinge
 
Mysql introduction
Prof. Wim Van Criekinge
 
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn
 
2016 bioinformatics i_python_part_2_strings_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_python_part_1_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_python_part_3_io_and_strings_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_databases_wim_vancriekinge
Prof. Wim Van Criekinge
 
2016 bioinformatics i_score_matrices_wim_vancriekinge
Prof. Wim Van Criekinge
 
2015 Internet Trends Report
IQbal KHan
 
Tracxn Research - Construction Tech Landscape, February 2017
Tracxn
 
Introducing SMCR from an HR perspective
Heath Buck
 
Distribution Channels of Oracle
PRIYAJNVCTC
 
Predictive Analytics with Airflow and PySpark
Russell Jurney
 
Tugas 4 0317-imelda felicia-1412510545
imeldafelicia
 
Ad

Similar to 2017 biological databases_part1_vupload (20)

PPTX
Bioinformatics
ShailendraSinghKhich
 
PPTX
2016 02 23_biological_databases_part1
Prof. Wim Van Criekinge
 
PPT
B.sc biochem i bobi u 2 database
Rai University
 
PPT
2012 03 01_bioinformatics_ii_les1
Prof. Wim Van Criekinge
 
PPT
Project report-on-bio-informatics
Daniela Rotariu
 
PPT
1.Databases for bioinformatics and its types
DrBeenishAftab
 
PPT
Bioinformatics and Databases in Biological Science
MohamedHasan816582
 
PPTX
biological databases.pptx
science lover
 
PPTX
Bioinformatics introduction
Hafiz Muhammad Zeeshan Raza
 
PDF
BIOLOGICAL DATABASE AND ITS TYPES,IMPORTANCE OF BIOLOGICAL DATABASE
savidhasam2001
 
PDF
Bioinformatics - Exam_Materials.pdf by uos
Taimur Khan
 
PDF
Bioinformatics__Lecture_1.ppt
sirwansleman
 
PPTX
Biological databases
Qamar iqbal
 
PPT
Bioinformatics&Databases.ppt
BlackHunt1
 
PPT
Introducción a la bioinformatica
Martín Arrieta
 
PPT
Biological Database Systems
Denis Shestakov
 
PPTX
BIOINFO unit 1.pptx
rnath286
 
PPTX
Bioinformatics_1_ChenS.pptx
xRowlet
 
PPTX
Introduction to bioinformatics
maulikchaudhary8
 
Bioinformatics
ShailendraSinghKhich
 
2016 02 23_biological_databases_part1
Prof. Wim Van Criekinge
 
B.sc biochem i bobi u 2 database
Rai University
 
2012 03 01_bioinformatics_ii_les1
Prof. Wim Van Criekinge
 
Project report-on-bio-informatics
Daniela Rotariu
 
1.Databases for bioinformatics and its types
DrBeenishAftab
 
Bioinformatics and Databases in Biological Science
MohamedHasan816582
 
biological databases.pptx
science lover
 
Bioinformatics introduction
Hafiz Muhammad Zeeshan Raza
 
BIOLOGICAL DATABASE AND ITS TYPES,IMPORTANCE OF BIOLOGICAL DATABASE
savidhasam2001
 
Bioinformatics - Exam_Materials.pdf by uos
Taimur Khan
 
Bioinformatics__Lecture_1.ppt
sirwansleman
 
Biological databases
Qamar iqbal
 
Bioinformatics&Databases.ppt
BlackHunt1
 
Introducción a la bioinformatica
Martín Arrieta
 
Biological Database Systems
Denis Shestakov
 
BIOINFO unit 1.pptx
rnath286
 
Bioinformatics_1_ChenS.pptx
xRowlet
 
Introduction to bioinformatics
maulikchaudhary8
 
Ad

More from Prof. Wim Van Criekinge (20)

PPTX
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 03 05_biological_databases_part3_v_upload
Prof. Wim Van Criekinge
 
PPTX
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
PPTX
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
PPTX
P4 2018 io_functions
Prof. Wim Van Criekinge
 
PPTX
P3 2018 python_regexes
Prof. Wim Van Criekinge
 
PPTX
T1 2018 bioinformatics
Prof. Wim Van Criekinge
 
PPTX
P1 2018 python
Prof. Wim Van Criekinge
 
PPTX
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
PPTX
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
PPTX
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
PPTX
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
PPTX
P7 2017 biopython3
Prof. Wim Van Criekinge
 
PPTX
P6 2017 biopython2
Prof. Wim Van Criekinge
 
PPTX
Van criekinge 2017_11_13_rodebiotech
Prof. Wim Van Criekinge
 
PPTX
P4 2017 io
Prof. Wim Van Criekinge
 
PPTX
T5 2017 database_searching_v_upload
Prof. Wim Van Criekinge
 
PPTX
P1 3 2017_python_exercises
Prof. Wim Van Criekinge
 
PPTX
P3 2017 python_regexes
Prof. Wim Van Criekinge
 
PPTX
P2 2017 python_strings
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
2019 03 05_biological_databases_part3_v_upload
Prof. Wim Van Criekinge
 
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
P4 2018 io_functions
Prof. Wim Van Criekinge
 
P3 2018 python_regexes
Prof. Wim Van Criekinge
 
T1 2018 bioinformatics
Prof. Wim Van Criekinge
 
P1 2018 python
Prof. Wim Van Criekinge
 
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
P7 2017 biopython3
Prof. Wim Van Criekinge
 
P6 2017 biopython2
Prof. Wim Van Criekinge
 
Van criekinge 2017_11_13_rodebiotech
Prof. Wim Van Criekinge
 
T5 2017 database_searching_v_upload
Prof. Wim Van Criekinge
 
P1 3 2017_python_exercises
Prof. Wim Van Criekinge
 
P3 2017 python_regexes
Prof. Wim Van Criekinge
 
P2 2017 python_strings
Prof. Wim Van Criekinge
 

Recently uploaded (20)

PPTX
How to Set Up Tags in Odoo 18 - Odoo Slides
Celine George
 
PPTX
Post Dated Cheque(PDC) Management in Odoo 18
Celine George
 
PPTX
Introduction to Biochemistry & Cellular Foundations.pptx
marvinnbustamante1
 
PDF
Aprendendo Arquitetura Framework Salesforce - Dia 03
Mauricio Alexandre Silva
 
PDF
epi editorial commitee meeting presentation
MIPLM
 
PDF
Mahidol_Change_Agent_Note_2025-06-27-29_MUSEF
Tassanee Lerksuthirat
 
PPTX
Introduction to Indian Writing in English
Trushali Dodiya
 
PPTX
Nitrogen rule, ring rule, mc lafferty.pptx
nbisen2001
 
PDF
QNL June Edition hosted by Pragya the official Quiz Club of the University of...
Pragya - UEM Kolkata Quiz Club
 
PPTX
HUMAN RESOURCE MANAGEMENT: RECRUITMENT, SELECTION, PLACEMENT, DEPLOYMENT, TRA...
PRADEEP ABOTHU
 
PDF
Women's Health: Essential Tips for Every Stage.pdf
Iftikhar Ahmed
 
PPTX
How to Manage Allocation Report for Manufacturing Orders in Odoo 18
Celine George
 
PPTX
Identifying elements in the story. Arrange the events in the story
geraldineamahido2
 
PDF
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
PDF
Introduction presentation of the patentbutler tool
MIPLM
 
PPTX
DIGITAL CITIZENSHIP TOPIC TLE 8 MATATAG CURRICULUM
ROBERTAUGUSTINEFRANC
 
PDF
Week 2 - Irish Natural Heritage Powerpoint.pdf
swainealan
 
PPTX
Universal immunization Programme (UIP).pptx
Vishal Chanalia
 
PPTX
DAY 1_QUARTER1 ENGLISH 5 WEEK- PRESENTATION.pptx
BanyMacalintal
 
PPTX
How to Create a Customer From Website in Odoo 18.pptx
Celine George
 
How to Set Up Tags in Odoo 18 - Odoo Slides
Celine George
 
Post Dated Cheque(PDC) Management in Odoo 18
Celine George
 
Introduction to Biochemistry & Cellular Foundations.pptx
marvinnbustamante1
 
Aprendendo Arquitetura Framework Salesforce - Dia 03
Mauricio Alexandre Silva
 
epi editorial commitee meeting presentation
MIPLM
 
Mahidol_Change_Agent_Note_2025-06-27-29_MUSEF
Tassanee Lerksuthirat
 
Introduction to Indian Writing in English
Trushali Dodiya
 
Nitrogen rule, ring rule, mc lafferty.pptx
nbisen2001
 
QNL June Edition hosted by Pragya the official Quiz Club of the University of...
Pragya - UEM Kolkata Quiz Club
 
HUMAN RESOURCE MANAGEMENT: RECRUITMENT, SELECTION, PLACEMENT, DEPLOYMENT, TRA...
PRADEEP ABOTHU
 
Women's Health: Essential Tips for Every Stage.pdf
Iftikhar Ahmed
 
How to Manage Allocation Report for Manufacturing Orders in Odoo 18
Celine George
 
Identifying elements in the story. Arrange the events in the story
geraldineamahido2
 
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
Introduction presentation of the patentbutler tool
MIPLM
 
DIGITAL CITIZENSHIP TOPIC TLE 8 MATATAG CURRICULUM
ROBERTAUGUSTINEFRANC
 
Week 2 - Irish Natural Heritage Powerpoint.pdf
swainealan
 
Universal immunization Programme (UIP).pptx
Vishal Chanalia
 
DAY 1_QUARTER1 ENGLISH 5 WEEK- PRESENTATION.pptx
BanyMacalintal
 
How to Create a Customer From Website in Odoo 18.pptx
Celine George
 

2017 biological databases_part1_vupload

  • 5. 11 syllabi (2016 edition) left for 15 Euro
  • 6. Math Informatics Bioinformatics, a scientific discipline ? Or the new (molecular) biology ? Theoretical Biology Computational Biology (Molecular) Biology Computer Science Bioinformatics
  • 7. Lab for Bioinformatics and computational genomics
  • 8. Statistics Machine Learning Text Mining Bioinformatics Discovery Informatics Informatics (Molecular) Biology
  • 9. Statistics Machine Learning Text Mining Python, … Biological Databases Bioinformatics Discovery Informatics (Molecular) Biology
  • 10. The most valuable programming skills to have on a resume
  • 11. New kid in the coding block …
  • 12. Statistics Machine Learning Text Mining Python, … Biological Databases Epigenetics Bioinformatics Discovery Informatics
  • 13. Sander-Schneider • HSSP: homology derived secondary structure
  • 15. Usage of the databases Annotation searches - Search for keywords, authors, features
  • 16. Usage of the databases Annotation searches - Search for keywords, authors, features  What is the protein sequence for human insulin?  How does the 3D structure of calmodulin look like?  What is the genetic location of the cystic fibrosis gene?  List all intron sequences in rat.
  • 17. Usage of the databases Annotation searches - Search for keywords, authors, features
  • 18. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences
  • 19. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences  Is there any known protein sequence that is similar to x?  Is this gene known in any other species?  Has someone already cloned this sequence?
  • 20. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences
  • 21. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns
  • 22. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns  Do my protein sequence contain any known motif (that can give me a clue about the function)?  Which known sequences contain this motif?  Is any part of my nucleotide sequence recognized by a transcriptional factor?  List all known start, splice and stop signals in my genomic sequence.
  • 23. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns
  • 24. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases
  • 25. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases  What may the structure of my protein be? Secondary structure prediction. Modelling by homology.  What is the gene structure of my genomic sequence?  Which parts of my protein have a high antigenicity?
  • 26. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases
  • 27. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases Comparisons
  • 28. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases Comparisons  Gene families  Phylogenetic trees
  • 29. Les 1 • Bioinformatics I Revisited in 5 slides • Why bother making databases ? • DataBases – FF • *.txt • Indexed version – Relational (RDBMS) • Access, MySQL, PostGRES, Oracle – OO (OODBMS) • AceDB, ObjectStore – Hierarchical • XML – Frame based system • Eg. DAML+OIL – Hybrid systems
  • 30. GenBank Format LOCUS LISOD 756 bp DNA BCT 30-JUN-1993 DEFINITION L.ivanovii sod gene for superoxide dismutase. ACCESSION X64011.1 GI:37619753 NID g44010 KEYWORDS sod gene; superoxide dismutase. SOURCE Listeria ivanovii. ORGANISM Listeria ivanovii Eubacteria; Firmicutes; Low G+C gram-positive bacteria; Bacillaceae; Listeria. REFERENCE 1 (bases 1 to 756) AUTHORS Haas,A. and Goebel,W. TITLE Cloning of a superoxide dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product JOURNAL Mol. Gen. Genet. 231 (2), 313-322 (1992) MEDLINE 92140371 REFERENCE 2 (bases 1 to 756) AUTHORS Kreft,J. TITLE Direct Submission JOURNAL Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie, Universitaet Wuerzburg, Biozentrum Am Hubland, 8700 Wuerzburg, FRG
  • 31. Problems with Flat files … • Wasted storage space • Wasted processing time • Data control problems • Problems caused by changes to data structures • Access to data difficult • Data out of date • Constraints are system based • Limited querying eg. all single exon GPCRs (<1000 bp)
  • 32. • What is a relational database ? – Sets of tables and links (the data) – A language to query the datanase (Structured Query Language) – A program to manage the data (RDBMS) • Flat files are not relational – Data type (attribute) is part of the data – Record order mateters – Multiline records – Massive duplication • Bv Organism: Homo sapeinsm Eukaryota, … – Some records are hierarchical • Xrefs – Records contain multiple “sub-records” – Implecit “Key”
  • 33. • records • fields • linear file of homogeneous records name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address......................
  • 34. • Terms and concepts: – tuple – domain – attribute – key – integrity rules
  • 35. Introduction to Database Systems • Historic Background – Hierarchical databases (IMS) - IBM 1968 • Hierarchical structures between file records – Network databases - CODASYL Group 1969 • Network structures of record types • Linked chains between 'Owner' and 'Member' records • Included in Cobol, procedural language - Manual navigation – Relational Data Model - E. F. Codd 1970 • Mathematical foundation of databases • New non-procedural language SQL - Automatic navigation – Object-relational databases – Object-oriented databases
  • 36. Relational • The Relational model is not only very mature, but it has developed a strong knowledge on how to make a relational back-end fast and reliable, and how to exploit different technologies such as massive SMP, Optical jukeboxes, clustering and etc. Object databases are nowhere near to this, and I do not expect then to get there in the short or medium term. • Relational Databases have a very well-known and proven underlying mathematical theory, a simple one (the set theory) that makes possible – automatic cost-based query optimization, – schema generation from high-level models and – many other features that are now vital for mission-critical Information Systems development and operations.
  • 37. The Benefits of Databases • Redundancy can be reduced • Inconsistency can be avoided • Conflicting requirements can be balanced • Standards can be enforced • Data can be shared • Data independence • Integrity can be maintained • Security restrictions can be applied
  • 38. Relational Terminology ID NAME PHONE EMP_ID 201 Unisports 55-2066101 12 202 Simms Atheletics 81-20101 14 203 Delhi Sports 91-10351 14 204 Womansport 1-206-104-0103 11 Row (Tuple) Column (Attribute) CUSTOMER Table (Relation)
  • 39. Relational Database Terminology • Each row of data in a table is uniquely identified by a primary key (PK) • Information in multiple tables can be logically related by foreign keys (FK) ID LAST_NAME FIRST_NAME 10 Havel Marta 11 Magee Colin 12 Giljum Henry 14 Nguyen Mai ID NAME PHONE EMP_ID 201 Unisports 55-2066101 12 202 Simms Atheletics 81-20101 14 203 Delhi Sports 91-10351 14 204 Womansport 1-206-104-0103 11 Table Name: CUSTOMER Table Name: EMP Primary Key Foreign Key Primary Key
  • 40. Relational Database Terminology Relational operators • Relational – select rel WHERE boolean-xpr – project rel [ attr-specs ] – join rel JOIN rel – divide by rel DIVIDEBY rel • Set-based  rel UNION rel  rel INTERSECT rel rel MINUS rel  rel TIMES rel
  • 41. Disadvantages • size • complexity • cost • Additional hardware costs • Higher impact of failure • Recovery more difficult
  • 42. • RDBM products – Free • MySQL, very fast, widely usedm easy to jump into but limited non standard SQL • PostrgreSQL – full SQLm limited OO, higher learning curve than MySQL – Commercial • MS Access – Great query builder, GUI interfaces • MS SQL Server – full SQL, NT only • Oracle, everything, including the kitchen sink • IBM DB2, Sybase
  • 43. Example 3-tier model in biological database http://www.bioinformatics.be Example of different interface to the same back-end database (MySQL)
  • 47. Conclusions • A database is a central component of any contemporary information system • The operations on the database and the mainenance of database consistency is handled by a DBMS • There exist stand alone query languages or embedded languages but both deal with definition (DDL) and manipulation (DML) aspects • The structural properties, constraints and operations permitted within a DBMS are defined by a data model - hierarchical, network, relational • Recovery and concurrency control are essential • Linking of heterogebous datasources is central theme in modern bioinformatics
  • 48. What is to come ? Basic outline • Setup RDMBS • OLTP Access through CLI, dedicated client, PHP, Perl/Python • OLAP Access through Perl/Python, R .. Integration • Cytoscape Semantic Web • noSQL/Hadoop • SPARQL
  • 50. 3/05/2016 Project Biological Databases 2015-2016 Biological Databases Bruno Verstraeten, Arthur Zwaenepoel, Jules Haezebrouck, Laurenz De Cock, Jonathan Walgraeve, Cedric Bogaert, Dries Schaumont
  • 51. What is minecraft • Sandbox game • Designed by Markus “Notch” Persson • Mojang • Bought by Microsoft in 2014 • 70 million sold copies (june 2015)
  • 54. Third party mods • Extra content made by users • Adding items, magic and features to the original game • The true beauty of minecraft
  • 55. And now Sciencecraft • Visualizing proteins in minecraft • Minecraft Tools python package • Data directly from PDB flat files or from the PDB server • Spigot minecraft server
  • 56. The basics 1. Start a server with Minecraft Tools 2. Using python import the pdb file 3. Retrieve the coordinates from the file 4. Using the setBlock function blocks of specific colours are placed in the minecraft server to represent the protein 5. Fly around and take screenshots
  • 57. Minecraft programming from Python # Connect to Minecraft from mcpi.minecraft import Minecraft mc = Minecraft.create() # Set x, y, and z variables to represent coordinates x = 10.0 y = 110.0 z = 12.0 # Change the player's position mc.player.setPos(x, y, z)
  • 61. Retrieving PDB data using SPARQL • PDB available in RDF (wwPDB) • Using python SPARQLwrapper
  • 62. Using SPARQL with Python – SPARQLWrapper SPARQL endpoint
  • 63. Using SPARQL with Python – SPARQLWrapper “Search engine” • Naive regex based • Returns list of all pdb entries containing a certain keyword with organism name and full description • PDB entry can be retrieved with previous query
  • 65. Retrieve .xml.gz file:  Actual structure information in xml file <?xml version="1.0" encoding="UTF-8" ?> <PDBx:datablock datablockName="1O9K" xmlns:PDBx="http://pdbml.pdb.org/schema/pdbx-v40.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://pdbml.pdb.org/schema/pdbx- v40.xsd pdbx-v40.xsd"> <PDBx:atom_siteCategory> <PDBx:atom_site id="1"> <PDBx:B_iso_or_equiv>62.42</PDBx:B_iso_or_equiv> <PDBx:Cartn_x>13.258</PDBx:Cartn_x> <PDBx:Cartn_y>142.706</PDBx:Cartn_y> <PDBx:Cartn_z>30.410</PDBx:Cartn_z> <PDBx:auth_asym_id>A</PDBx:auth_asym_id> <PDBx:auth_atom_id>N</PDBx:auth_atom_id> <PDBx:auth_comp_id>MET</PDBx:auth_comp_id> <PDBx:auth_seq_id>379</PDBx:auth_seq_id> <PDBx:group_PDB>ATOM</PDBx:group_PDB> <PDBx:label_alt_id xsi:nil="true" /> <PDBx:label_asym_id>A</PDBx:label_asym_id> <PDBx:label_atom_id>N</PDBx:label_atom_id> <PDBx:label_comp_id>MET</PDBx:label_comp_id> <PDBx:label_entity_id>1</PDBx:label_entity_id> <PDBx:label_seq_id>8</PDBx:label_seq_id> <PDBx:occupancy>1.00</PDBx:occupancy> …. Using SPARQL with Python – SPARQLWrapper
  • 68. INTERNATIONAL GENETICALLY ENGINEERED MACHINE➤ Annual synthetic biology competition ➤ Making new organisms: biobricks ➤ Hosted by MIT: five teams in 2004, 130 teams in 2016
  • 69. PAST IGEM WINNERS 2014 biosensor for olive oil quality 2015 3D printing of biofilms 2016 system for the control of co- culture stability
  • 72. FOUR WORK PACKAGES WP2: Filament WP3: Biofunction WP1: Shape WP4: Measurement
  • 80. Presenting, learning and having fun in Boston
  • 81. FOLLOW UP ➤ Maker City ➤ BrainBooster session CropDesign ➤ Biodesign competition ➤ Bachelor project on 3D printing ➤ PLOS iGEM collection
  • 84. 85