SlideShare a Scribd company logo
Learning	to	recreate	our	
visual	world
Jun-Yan	Zhu
UC	Berkeley
4.7	trillion	
photographs
13	billion	images
300	million	images
uploaded	daily
1.5	million	images	
uploaded	daily
300	hours	uploaded	
per	minute
Street
Visual	
Understanding
Scene	understanding
[Zhou	et	al.	2014]
people	
bicycle	
umbrella
Visual	
Understanding
Object	Detection
[Girshick et	al.	2014]
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
[Karpathy and	Fei-Fei	2015]
[Donahue	et	al.	2015]
[Misra et	al.	2015]
Image Captioning
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	Dom’s	father
Man-Computer	Symbiosis
Computers	can	help	us	draw,	even	if	we	can’t.
JCR	Licklider,	1968
Sketchpad
Sutherland,	1960
Image	warping
By	Photoshop
Visual	Synthesis	is	hard!
Why	it	does	not	work
- Is	this	a	handbag?
- What	makes	a	
handbag	look	real?
What	makes	an	image	look	real?
Statistics	of	Natural	Images	and	Models	[Huang	and	Mumford.	2000]
Sample	images	from	the	dataset
(4000	images	in	total)
log	histogram	of	pixels
log	histogram	of	wavelet	pairs
What	makes	an	image	look	fake?
Mismatch	color	statistics
[Lalonde	and	Efros 2007] lack	details	[Johnson	et	al.	2011]
noticeable	boundary
[Perez	et	al.	2003] “Bleeding”	artifacts	[Tao	et	al.	2010]
Deep Generative Models
• Generative	Adversarial	Network	(GAN)
[Goodfellow	et	al.	2014]
• Variational Auto-Encoder	(VAE)		[Kingma and	
Welling	2013]
• DRAW	(Recurrent	Neural	Network)	[Gregor et	
al	2015]
• Pixel	RNN	and	Pixel	CNN	([Oord	et	al	2016])	
• …
Generative	Adversarial	Networks	(GANs)
Discriminato
r	
Real	vs.	Fake
Generator
𝑥	~	𝐺(𝑧)
[Goodfellow et	al.	2014]
Generator
[Goodfellow et	al.	2014]
z G(z)
cat	credit:	aleju/cat-generator
G
real	or	fake?
[Goodfellow et	al.	2014]
Discriminator
z G(z)
D
Generator
G
𝐺:	generate	fake	samples	that	can	fool	𝐷
𝐷:	classify	fake	samples	vs.	real	images
[Goodfellow et	al.	2014]
[Goodfellow et	al.	2014]
fake	0.1
z G(z)
DG
real 0.9
[Goodfellow et	al.	2014]
z G(z)
DG
D
x
fake	0.1
fake	0.3
[Goodfellow et	al.	2014]
z G(z)
DG
D
x
real 0.9
Images	generated	by	GANs
Sample	shoes	images	
from	Zappos.com
[Yu	and	Grauman 2014]
Random	image	samples	
from	Generator	G(z)
[Radford	et	al.	2015]
Explore	the	GANs	latent	space
[Radford	et	al.	2015]
𝐺(𝑧-) 𝐺(𝑧.)Linear	Interpolation	in	z	space:	𝐺(𝑧- + 𝑡 ⋅ (𝑧. − 𝑧-))
Handbag	model	trained	on	137k	Amazon	handbags
Limitations	of	GANs
• produce	images	randomly;	hard	to	control.
• not	photo-realistic	enough;	low	resolution.
Limitations	of	GANs
• produce	images	randomly;	hard	to	control.
• not	photo-realistic	enough;	low	resolution.
Controllable	Image	Generation
[Zhu	et	al.	ECCV	2016]
Trained	on	
Places	Dataset
Generative	Visual	Manipulation	on	the	Natural	Image	Manifold	
Zhu,	Krähenbühl,	Shechtman,	Efros 2016
Manipulating	the	Latent	Vector
Objective:
user	guidance	imageconstraint	violation	loss	𝐿4
Generative	model:	𝐺(𝑧)
z G(z)
G 𝐿4( )
,
𝑣4
Manipulating	the	Latent	Vector
Objective:
user	guidance	imageconstraint	violation	loss	𝐿4
Generative	model:	𝐺(𝑧)
z G(z)
G 𝐿4( )
,
𝑣4
Manipulating	the	Latent	Vector
z G(z)
G 𝐿4( )
,
𝑣4
𝐺(𝑧)
Guidance	
𝑣4
Product	Design
Overview
original	photo	
projection	on	manifold
Project
Results	generated	by	GANs
Editing	UI
Overview
original	photo	
projection	on	manifold
Project Edit	Transfer
Results	generated	by	GANs
Final	results
Editing	UI
Edit	Transfer	via	Generalized	Optical	Flow
𝐺(𝑧.)𝐺(𝑧-)
Input
Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation	
Linear	Interpolation	in	𝑧 space
[Brox et	al.	2004]
[Shih	et	al.	2013]
Edit	Transfer	via	Generalized	Optical	Flow
𝐺(𝑧.)𝐺(𝑧-)
Input
Linear	Interpolation	in	𝑧 space
Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation	Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation
Edit	Transfer	via	Generalized	Optical	Flow
Result
𝐺(𝑧.)𝐺(𝑧-)
Input
Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation	
Linear	Interpolation	in	𝑧 space
Editing	handbags
Editing	shoes
Generated	
Image
User
Guidance
Scribble→ latent	space	→	Image	[Zhu	et	al. 2016]
G
Scribble ImageLatent	space
Generated	
Image
User
Guidance
Scribble→ latent	space	→	Image	[Zhu	et	al. 2016]
Image-to-Image	Network
[Isola,	Zhu,	Zhou,	Efros.	2017] [Zhu*,	Park*,	Isola,	Efros.	2017]
Image	colorization
Designing	objective	functions
L2	regression
[Johnson et	al.	2016]
Super-resolution
[Zhang et	al.	2016]
L2	regression
slides	credit:	Phillip Isola
Image	colorization
Designing	objective	functions
Cross	entropy	objective,	
with	colorfulness	term
Deep	feature	covariance	
matching	objective
[Johnson et	al.	2016]
Super-resolution
[Zhang et	al.	2016]
Universal	loss?
…
…
…
Generated	vs	
Real
(classifier)
Real	photos
Generated	images
…
…
[Goodfellow et	al.	2014]
Image-to-Image	Translation
Image-to-image	translation	with	conditional	adversarial	nets	[Isola,	Zhu,	Zhou,	Efros.		CVPR	2017]
real	or	fake?
[Goodfellow et	al.	2014]
Discriminator
z G(z)
D
Generator
G
𝐺:	generate	fake	samples	that	can	fool	𝐷
𝐷:	classify	fake	samples	vs.	real	images
real	or	fake?
[Goodfellow et	al.	2014]
Discriminator
x G(x)
D
Generator
G
𝐺:	generate	fake	samples	that	can	fool	𝐷
𝐷:	classify	fake	samples	vs.	real	images
Real!
[Goodfellow et	al.	2014]
Discriminator
x G(x)
D
Generator
G
[Goodfellow et	al.	2014]
Discriminator
x G(x)
D
Generator
G Real	too!
real	or	fake	pair ?
slides	credit:	Many	slides	modified	from	Phillip	Isola’s	talk
x G(x)
G
D
fake pair: 0.1
G
D
x G(x)
real pair:	0.9
𝑦
D
Edges	→	Images
Input Output Input Output Input Output
Edges	from	[Xie &	Tu,	2015]
Sketches →	Images
Input Output Input Output Input Output
Trained	on	Edges	→	Images
Data	from	[Eitz,	Hays,	Alexa,	2012]
#edges2cats [Christopher	Hesse]
Ivy	Tasi @ivymyt
@gods_tail
@matthematician
https://affinelayer.com/pixsrv/
Vitaly Vidmirov @vvid
Input Output Groundtruth
Data	from
[maps.google.com]
Input Output Groundtruth
Data	from	[maps.google.com]
Labels	→ Facades
Input Output Input Output
Data	from	[Tylecek,	2013]
BW	→	Color
Input Output Input Output Input Output
Data	from	[Russakovsky	et	al.	2015]
…
Paired
- Expensive	to	collect	pairs.
- Impossible	in	many	scenarios.
Label	↔ photo:	per-pixel	labeling
…
Paired
Horse ↔ zebra:	how	to	get	zebras?
…
…
…
Paired Unpaired
x G(x)
Generator
G
D
No	input-output	pairs!
Discriminator
x G(x)
D
Generator
G Real!
Discriminator
x G(x)
D
Generator
G Real	too!
GANs	doesn’t force	output	to	
correspond	to	input
mode	collapse!
…CycleGAN,	or	there	and	back	aGAN
[Zhu*,	Park*,	Isola,	Efros.	ICCV	2017]
……
Discriminator	D>:	𝐿?@A 𝐺 𝑥 , 𝑦
Real	zebras	vs.	fake	zebras
Discriminator	DB:	𝐿?@A 𝐹 𝑦 , 𝑥
Real	horses	vs.	fake	horses
Discriminator	D>:	𝐿?@A 𝐺 𝑥 , 𝑦
Real	zebras	vs.	fake	zebras
…
…CycleGAN,	or	there	and	back	aGAN
Cycle-consistency	Loss
Forward	cycle	loss:	 F G x − x .
G(x) F(G x )x
Cycle-consistency	Loss
Large cycle	loss
Forward	cycle	loss:	 F G x − x .
G(x) F(G x )x
Small cycle	loss
Cycle-consistency	Loss
Backward	cycle	loss:	 𝐺 𝐹 𝑦 − 𝑦 .
Forward	cycle	loss:	 F G x − x .
G(x) F(G x )x F(y) G(F x )𝑦
See	also	[Yi	et	al.	2017]	[Kim	et	al.	2017]
Results
Collection Style Transfer
Photograph
@	Alexei	Efros
MonetVan	Gogh
CezanneUkiyo-e
Cezanne Ukiyo-eMonetInput Van	Gogh
Monet’s paintings → photos
Monet’s paintings → photos
[213]building ai to recreate our visual world
[213]building ai to recreate our visual world
[213]building ai to recreate our visual world
[213]building ai to recreate our visual world
Neural	Style	Transfer	[Gatys et	al.	2015]
Input Style	Image	I CycleGANStyle	image	II Entire	collection
Photo	→ Van	Gogh	
horse		→ zebra
Input Style	image	I CycleGANStyle	image	II Entire	collection
CG2Real:	GTA5	→ real	streetview
Inspired	by	[Johnson	et	al.	2011]GTA5	CG	Input Output
Real2CG:	real	streetview → GTA
Cityscape	Input Output
[213]building ai to recreate our visual world
[Richter*,	Vineet*	et	al.	2016]
GTA5	images Segmentation	labels
Use	CG	data	to	train	recognition	systems
Per-class	accuracy Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	‘free’	synthetic	data	(GTA5) Test	on	real	images
meanIOU (per-class) Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	CG,	test	on	Real 17.9 54.0
Domain	Adaption	with	CycleGAN
[Tzeng et	al.	]	In	submission
meanIOU (per-class) Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	CG,	test	on	Real 17.9 54.0
FCN	in	the	wild	[Hoffman	et	al.] 27.1	(+6.0) -
Train	on	CycleGAN,	test	on	Real 34.8	(+16.9) 82.8
Train	on	CycleGAN data Test	on	real	images
Failure	cases
[213]building ai to recreate our visual world
[213]building ai to recreate our visual world
ImageNet	
“Wild	horse”
Conclusion
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	Dom’s	father
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	iGAN
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	Pix2pix
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	CycleGAN
Visual	
Synthesis
A	few	things	I	have	learned
• Visual	Synthesis	is	a	learning	problem.	
• We	can	learn	to	do	it	with	trillions	of	photos.	
• Build	general-purpose	tools	and	find	cool	problems.	
• Open-source	the	code	and	data.
Phillip	Isola	and	Jun-Yan	Zhu
Community-driven	research:	#pix2pix
Bertrand	Gondouin	@bgondouinBrannon	Dorsey	@brannondorsey	
Kaihu	Chen	@kaihuchen Mario	Klingemann	@quasimondo
Jun-Yan	Zhu	and	Taesung Park
Pix2pix:		144	lines
CycleGAN:		220	lines
Jun-Yan	Zhu	and	Taesung Park
20+	Implementations	by	others
• [Tensorflow] (by	Harry	Yang)
• [Tensorflow] (by	Archit Rathore)
• [Tensorflow] (by	Van	Huy)
• [Tensorflow] (by	Xiaowei Hu)
• [Tensorflow-simple] (by	Zhenliang He)
• [Chainer] (by	Yanghua Jin)
• [Minimal	PyTorch] (by	yunjey)
• [Mxnet] (by	Ldpe2G)
• [lasagne/keras] (by	tjwei)	
	⋯
Birds	@Matt	Powell
Bear	→ Panda	@Matt	Powell
#CycleGAN
Monet	→ Thomas	Kinkade @David	Fouhey
Resurrecting	Ancient	Cities	@	Jack	Clark
Portrait	to	Dollface
@Mario	Klingemann
Colorizing	legacy	photographs
@Mario	Klingemann
#CycleGAN
Face	Swapping	with	#CycleGAN
Input
Face	Swapping	with	#CycleGAN
Input
Generated
Face	Swapping	with	#CycleGAN
Input
Generated
Reconstruction
#CycleGAN:	Face	↔ Ramen
@	Takuya	Kato
@itok_msi
+	Smaller	cycle	loss		+	Global	image	discriminator
Medical imaging appilcations
• Segmentation [Xue et al.], etc.
• CT	denoising [Yi and Babyn]
• MR <-> CT [Wolterink et al. ]
• MRI	Reconstruction [Quan et al. ]
		⋯
MR <-> CT
MRI Reconstruction
Three views of GANs
• generative models
G 𝑧 unsupervised learning
• Trainable regression loss.
• Domain matching loss.
“What should	I	do”
Thank	You!
Eli	ShechtmanPhilipp	Krähenbühl
Alyosha	Efros
Yong	Jae	LeePhillip	Isola
Taesung Park Richard	Zhang Tinghui ZhouTing-Chun	Wang Deepak	Pathak
Trevor	DarrellRavi	
Ramamoorthi
Nima K.	Kalantari
Jue WangOliver	Wang Aseem Agarwala
Eric	Tzeng
Ce	Liu Miki	Rubinstein
Judy	Hoffman
Manmohan	
Chandraker
Young	GengAngela	Lin
Aquarius
Questions?
@LynnHo
Domain	adaption:	train	on	source,	adapt	to	target
• A	recent	survey:	~300	papers
• Minimizing	distribution	distance
– Borgwardt 06,	Mansour	09,	Pan	09,	Fernando	13
• Deep	model	adaption
– Chopra	13,	Tzeng 14,	Long	15,	Ganin 15,	Hoffman	17.
Slides	credit:	Judy	Hoffman
State-of-the-art	domain	adaption	method
Per-class	accuracy Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	CG,	test	on	Real 17.9 54.0
FCN	in	the	wild	[Hoffman	et	al.] 27.1	(+6.0) -
VGG-FCN:	17.9	[Long	et	al.	2015];			Dilated-VGG-FCN:	21.1	[Fisher	and	Koltun 2015’]
Train	on	‘free’	synthetic	data	(GTA5) Test	on	real	images
adapt
Cats	are	as	popular	as	GANs
• GitHub:	github.com/junyanz/CatPapers
• 90%	data	is	visual;	most	of	visual	data	are	about	Cats.
• 70+	vision,	learning	and	graphics	papers.
[213]building ai to recreate our visual world
Most	influential	cat	paper
• Fred	Attneave.	“Some	informational	aspects	of	visual	
perception”.	Psychological	Review	(1954).
Questions?
User-Guided	Colorization
[Zhang*,	Zhu*	et	al.	SIGGRAPH	17]
Grayscale	image
Output	colorization
User	colors,	mask
Raw	Data
Training	Details:	Objective	function
• Conditional	GAN
Training	Details:	Objective	function
• Conditional	GAN	+	L1	
𝑦
,
{ }
• Stable	training	+	fast	convergence.
Training	Details:	Discriminator	𝐷
[Radford et	al.,	2015]
ImageGAN
Slide	from	Victor	Garcia
• Faster,	fewer	parameters;	Arbitrarily	large	images
• Equal	or	better	results
Our	discriminator
PatchGAN
Effects	of	discriminator	𝐷
Training	Details:	Generator	𝐺
Encoder-decoder
U-Net
[Ronneberger et	al.]
Shallower	depth	of	field
iPhone DSLR iPhone DSLR
Summer ↔ Winter
Ablation	study	on	paired	dataset
the	same	output
mode	collapse!
Ablation	study	on	paired	dataset
the	same	output
mode	collapse!
Ablation	Study	on	Cityscapes	dataset
Training	Details:	Objective
• GANs	with	cross-entropy	loss
• Least	square	GANs	[Mao	et	al.	2016]
Stable	training	+	better	results
Vanishing	gradients
Training	Details:	Generator	𝐺
Encoder-decoderU-Net
[Ronneberger et	al.]
ResNet [He	et	al.]	[Johnson	et	al.]
• Both	have	skip	connections	
• ResNet:	fewer	parameters
better	for	ill-posed	problems

More Related Content

PDF
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
NAVER D2
 
PDF
[234]멀티테넌트 하둡 클러스터 운영 경험기
NAVER D2
 
PDF
[241]large scale search with polysemous codes
NAVER D2
 
PDF
[215]streetwise machine learning for painless parking
NAVER D2
 
PDF
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
NAVER D2
 
PDF
[242]open stack neutron dataplane 구현
NAVER D2
 
PDF
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
NAVER D2
 
PDF
[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
NAVER D2
 
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
NAVER D2
 
[234]멀티테넌트 하둡 클러스터 운영 경험기
NAVER D2
 
[241]large scale search with polysemous codes
NAVER D2
 
[215]streetwise machine learning for painless parking
NAVER D2
 
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
NAVER D2
 
[242]open stack neutron dataplane 구현
NAVER D2
 
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
NAVER D2
 
[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
NAVER D2
 

Viewers also liked (20)

PDF
[221]똑똑한 인공지능 dj 비서 clova music
NAVER D2
 
PDF
[212]big models without big data using domain specific deep networks in data-...
NAVER D2
 
PDF
[246]reasoning, attention and memory toward differentiable reasoning machines
NAVER D2
 
PDF
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
NAVER D2
 
PDF
[232]mist 고성능 iot 스트림 처리 시스템
NAVER D2
 
PDF
인공지능추천시스템 airs개발기_모델링과시스템
NAVER D2
 
PPTX
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
NAVER D2
 
PDF
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
NAVER D2
 
PPTX
[211] HBase 기반 검색 데이터 저장소 (공개용)
NAVER D2
 
PDF
유연하고 확장성 있는 빅데이터 처리
NAVER D2
 
PDF
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
NAVER D2
 
PPTX
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
NAVER D2
 
PDF
[141]네이버랩스의 로보틱스 연구 소개
NAVER D2
 
PDF
웨일브라우저 성능 및 메모리 최적화
NAVER D2
 
PDF
밑바닥부터시작하는360뷰어
NAVER D2
 
PDF
[131]chromium binging 기술을 node.js에 적용해보자
NAVER D2
 
PDF
[124]자율주행과 기계학습
NAVER D2
 
PDF
[111]open, share, enjoy 네이버의 오픈소스 활동
NAVER D2
 
PDF
[112]clova platform 인공지능을 엮는 기술
NAVER D2
 
PDF
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
NAVER D2
 
[221]똑똑한 인공지능 dj 비서 clova music
NAVER D2
 
[212]big models without big data using domain specific deep networks in data-...
NAVER D2
 
[246]reasoning, attention and memory toward differentiable reasoning machines
NAVER D2
 
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
NAVER D2
 
[232]mist 고성능 iot 스트림 처리 시스템
NAVER D2
 
인공지능추천시스템 airs개발기_모델링과시스템
NAVER D2
 
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
NAVER D2
 
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
NAVER D2
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
NAVER D2
 
유연하고 확장성 있는 빅데이터 처리
NAVER D2
 
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
NAVER D2
 
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
NAVER D2
 
[141]네이버랩스의 로보틱스 연구 소개
NAVER D2
 
웨일브라우저 성능 및 메모리 최적화
NAVER D2
 
밑바닥부터시작하는360뷰어
NAVER D2
 
[131]chromium binging 기술을 node.js에 적용해보자
NAVER D2
 
[124]자율주행과 기계학습
NAVER D2
 
[111]open, share, enjoy 네이버의 오픈소스 활동
NAVER D2
 
[112]clova platform 인공지능을 엮는 기술
NAVER D2
 
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
NAVER D2
 
Ad

More from NAVER D2 (20)

PDF
[211] 인공지능이 인공지능 챗봇을 만든다
NAVER D2
 
PDF
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
NAVER D2
 
PDF
[215] Druid로 쉽고 빠르게 데이터 분석하기
NAVER D2
 
PDF
[245]Papago Internals: 모델분석과 응용기술 개발
NAVER D2
 
PDF
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
NAVER D2
 
PDF
[235]Wikipedia-scale Q&A
NAVER D2
 
PDF
[244]로봇이 현실 세계에 대해 학습하도록 만들기
NAVER D2
 
PDF
[243] Deep Learning to help student’s Deep Learning
NAVER D2
 
PDF
[234]Fast & Accurate Data Annotation Pipeline for AI applications
NAVER D2
 
PDF
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
NAVER D2
 
PDF
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
NAVER D2
 
PDF
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
NAVER D2
 
PDF
[224]네이버 검색과 개인화
NAVER D2
 
PDF
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
NAVER D2
 
PDF
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
NAVER D2
 
PDF
[213] Fashion Visual Search
NAVER D2
 
PDF
[232] TensorRT를 활용한 딥러닝 Inference 최적화
NAVER D2
 
PDF
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
NAVER D2
 
PDF
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
NAVER D2
 
PDF
[223]기계독해 QA: 검색인가, NLP인가?
NAVER D2
 
[211] 인공지능이 인공지능 챗봇을 만든다
NAVER D2
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
NAVER D2
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
NAVER D2
 
[245]Papago Internals: 모델분석과 응용기술 개발
NAVER D2
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
NAVER D2
 
[235]Wikipedia-scale Q&A
NAVER D2
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
NAVER D2
 
[243] Deep Learning to help student’s Deep Learning
NAVER D2
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
NAVER D2
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
NAVER D2
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
NAVER D2
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
NAVER D2
 
[224]네이버 검색과 개인화
NAVER D2
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
NAVER D2
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
NAVER D2
 
[213] Fashion Visual Search
NAVER D2
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
NAVER D2
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
NAVER D2
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
NAVER D2
 
[223]기계독해 QA: 검색인가, NLP인가?
NAVER D2
 
Ad

Recently uploaded (20)

PDF
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
PDF
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
PPTX
IoT Sensor Integration 2025 Powering Smart Tech and Industrial Automation.pptx
Rejig Digital
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PDF
Software Development Company | KodekX
KodekX
 
PDF
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PDF
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
PPTX
Coupa-Overview _Assumptions presentation
annapureddyn
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
This slide provides an overview Technology
mineshkharadi333
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
PDF
Beyond Automation: The Role of IoT Sensor Integration in Next-Gen Industries
Rejig Digital
 
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
IoT Sensor Integration 2025 Powering Smart Tech and Industrial Automation.pptx
Rejig Digital
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Software Development Company | KodekX
KodekX
 
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
Coupa-Overview _Assumptions presentation
annapureddyn
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
This slide provides an overview Technology
mineshkharadi333
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
Beyond Automation: The Role of IoT Sensor Integration in Next-Gen Industries
Rejig Digital
 

[213]building ai to recreate our visual world