グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
AIST AIRC machine learning team
Masashi Tsubaki
(3 )
( )
[Tsubaki, Tomii, and Sese, 2018 in Bioinformatics]
[Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters]
AIST AIRC machine learning team
Masashi Tsubaki
AIST AIRC machine learning team
1 ( )
Masashi Tsubaki
🤭 🤐 🤫
1
publish … ( )
( )
AIST AIRC machine learning team
Masashi Tsubaki
https://github.com/masashitsubaki
( !)
AIST AIRC machine learning team
GitHub ( SMILES )
Masashi Tsubaki
https://github.com/masashitsubaki/molecularGNN_smiles
GNN
CC(=O)OC1=CC=CC=C1C(=O)O
SMILES
SMILES
(※ SMILES RDKit )
(e.g., or not)
AIST AIRC machine learning team
SMILES
Masashi Tsubaki
(SMILES 0 or 1)
(SMILES )
(※GitHub )
AIST AIRC machine learning team
GitHub ( )
Masashi Tsubaki
Atom x y z
O 0.03 0.98 0.008
H 0.06 0.02 0.002
H 0.87 1.30 0.0007
Water molecule
GNN
(e.g., )
https://github.com/masashitsubaki/molecularGNN_3Dstructure
AIST AIRC machine learning team
Masashi Tsubaki
Molecular property types
Data index
Each atom and its 3D coordinate
in the molecule CH4
Properties in order of the above types
In the following, each data is
described with the same format
( README)
AIST AIRC machine learning team
Masashi Tsubaki
( )
bash train.sh
train.sh
AIST AIRC machine learning team
bash train.sh (Google colab )
Masashi Tsubaki
AIST AIRC machine learning team
(QM9 )
Masashi Tsubaki
dataset: QM9_under14atoms
property: U0(kcal/mol)
dim: 200
layer_hidden: 6
layer_output: 6
batch_train: 32
batch_test: 32
learning_rate: 1e-3
decay of learning rate: 0.99
interval of decay: 10
iteration: 3000
1.9 kcal/mol
1.0 kcal/mol
AIST AIRC machine learning team
Masashi Tsubaki
data_train public data_test in house
dataset 2
(e.g., ) (e.g., )
AIST AIRC machine learning team
preprocess.py train.py ( )
Masashi Tsubaki
( )
AIST AIRC machine learning team
Masashi Tsubaki
DeepChem
Schnet
Chainer chemistry
kGCN
AIST AIRC machine learning team
Masashi Tsubaki
tsubaki.masashi@aist.go.jp
GitHub 🙇
…
🙇
AIST AIRC machine learning team
Masashi Tsubaki
https://github.com/masashitsubaki
( !)
[Tsubaki, Tomii, and Sese, 2018 in Bioinformatics]
[Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters]
AIST AIRC machine learning team
Masashi Tsubaki
😅
🤔 COOH
( )
1
0
1 (e.g., )
( or not)
AIST AIRC machine learning team
( + )
Masashi Tsubaki
(e.g., )
AIST AIRC machine learning team
Masashi Tsubaki
🤖 ( or not)
( )
( ) (end-to-end)
( )
Graph neural network (GNN)
[Scarselli+ 09; Kearnes+ 16]
(1)
( )
(2) (or )
( )
(3)
( )
O C
H
H
AIST AIRC machine learning team
Masashi Tsubaki
: GNN
NN ( )
( transition propagation( ) message passing )
O C
H
H
AIST AIRC machine learning team
Masashi Tsubaki
: GNN
x
(`+1)
i = x
(`)
i +
X
j
f(x
(`)
j )
e.g, ReLu(Wx+b)
NN
(4)
(5)
sum
or not
( )
AIST AIRC machine learning team
Masashi Tsubaki
O C
H
H
sum
or not
(NN ) end-to-end
AIST AIRC machine learning team
Masashi Tsubaki
O C
H
H
PyTorch-like code
AIST AIRC machine learning team
( )
Masashi Tsubaki
C
O
H
fif 1 else 0
H
[Tsubaki, Tomii, and Sese, 2018 in Bioinformatics]
[Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters]
AIST AIRC machine learning team
Masashi Tsubaki
or not
GNN
GNN assumption
( )
Masashi Tsubaki
AIST AIRC machine learning team
Masashi Tsubaki
AIST AIRC machine learning team
β-lactam
Masashi Tsubaki
AIST AIRC machine learning team
👍
x1
x2
xM
r
(e.g., r=2)
Masashi Tsubaki
x
(`+1)
i = x
(`)
i +
X
j
f(x
(`)
j )
i-th fingerprint
vector
Neighboring fingerprint
vector
fingerprint based-GNN
AIST AIRC machine learning team
β-lactam
Fingerprint vectors
Masashi Tsubaki
( GitHub)
AIST AIRC machine learning team
https://github.com/masashitsubaki/CPI_prediction
fingerprint-GNN CNN
Masashi Tsubaki
(human C.elegans)
AIST AIRC machine learning team
( …)
Dataset: Human
Radius of subgraphs (fingerprints): 2
Amino acid n-gram :3
Dimensionality :10
Layer of GNN: 3
Window size of n-gram :5
Layer of CNN: 3
Learning rate: 1e-4
Decay of learning rate: 0.5
Interval of decay: 10
Dataset: C.elegans
Radius of subgraphs (fingerprints): 2
Amino acid n-gram :3
Dimensionality :10
Layer of GNN: 3
Window size of n-gram :5
Layer of CNN: 3
Learning rate: 1e-4
Decay of learning rate: 0.5
Interval of decay: 10
Liu et al., 2015 -
(highly credible negative samples)
Masashi Tsubaki
AIST AIRC machine learning team
... some reports even above 0.99 AUC on standard benchmarks…
Masashi Tsubaki
AIST AIRC machine learning team
( )
…
[Tsubaki, Tomii, and Sese, 2018 in Bioinformatics]
[Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters]
AIST AIRC machine learning team
Masashi Tsubaki
AIST AIRC machine learning team
Masashi Tsubaki
Atom x y z
O 0.03 0.98 0.008
H 0.06 0.02 0.002
H 0.87 1.30 0.0007
3
( )
-9.24 eV
Water molecule ( …)
( …)
( …)
AIST AIRC machine learning team
Nature comm PRL ( …)
Masashi Tsubaki
( )
AIST AIRC machine learning team
Masashi Tsubaki
( …)
( )
O C
H
H
※
AIST AIRC machine learning team
Masashi Tsubaki
Schnet( )
i
x
(`+1)
i =
X
j
e j d2
ij f(x
(`)
j )
j
( …)
( )
AIST AIRC machine learning team
Masashi Tsubaki
Gaussian
( )
=
O
H
H
f
⌘
exp
⇣
2
※
AIST AIRC machine learning team
Masashi Tsubaki
(※QM9 29 130k )
QM9 14 (15k )
( )
AIST AIRC machine learning team
Masashi Tsubaki
QM9 14 (10k )
1.0
Chemical accuracy
1.90 kcal/mol
AIST AIRC machine learning team
Masashi Tsubaki
1 ( )
1.24 kcal/mol
GNN
( …)
1.90 kcal/mol
1.0
AIST AIRC machine learning team
Masashi Tsubaki
New!
GNN ( )
AIST AIRC machine learning team
( )
Masashi Tsubaki
14 15
New!
AIST AIRC machine learning team
Masashi Tsubaki
Atom x y z
O 0.03 0.98 0.008
H 0.06 0.02 0.002
H 0.87 1.30 0.0007
( )
=
1
-9.24 eV
Water molecule
=
etc…
…
( )
🤭
AIST AIRC machine learning team
Masashi Tsubaki
SchNOrb extends the deep tensor neural network SchNet to represent electronic
wavefunctions, ...model uses about 93 million parameters to predict a large Hamiltonian…
AIST AIRC machine learning team
Masashi Tsubaki
https://github.com/masashitsubaki
tsubaki.masashi@aist.go.jp

More Related Content

PDF
SSII2022 [OS3-02] Federated Learningの基礎と応用
PDF
2019年度チュートリアルBPE
PDF
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
PDF
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
PPTX
【DL輪読会】時系列予測 Transfomers の精度向上手法
PPTX
[DL輪読会]相互情報量最大化による表現学習
PDF
SchNet: A continuous-filter convolutional neural network for modeling quantum...
PDF
【メタサーベイ】Video Transformer
SSII2022 [OS3-02] Federated Learningの基礎と応用
2019年度チュートリアルBPE
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
【DL輪読会】時系列予測 Transfomers の精度向上手法
[DL輪読会]相互情報量最大化による表現学習
SchNet: A continuous-filter convolutional neural network for modeling quantum...
【メタサーベイ】Video Transformer

What's hot (20)

PDF
PCAの最終形態GPLVMの解説
PPTX
【論文紹介】How Powerful are Graph Neural Networks?
PPTX
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
PPTX
畳み込みニューラルネットワークの高精度化と高速化
PDF
3D CNNによる人物行動認識の動向
PDF
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
PPTX
モデル高速化百選
PPTX
Graph convolution (スペクトルアプローチ)
PDF
深層学習によるHuman Pose Estimationの基礎
PPTX
深層学習の数理
PDF
ドメイン適応の原理と応用
PPTX
[DL輪読会]Neural Ordinary Differential Equations
PPTX
[DL輪読会]When Does Label Smoothing Help?
PDF
[DL輪読会]Relational inductive biases, deep learning, and graph networks
PDF
自己教師学習(Self-Supervised Learning)
PPTX
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
PDF
BlackBox モデルの説明性・解釈性技術の実装
PDF
機械学習のためのベイズ最適化入門
PDF
[DL輪読会]Understanding Black-box Predictions via Influence Functions
PDF
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PCAの最終形態GPLVMの解説
【論文紹介】How Powerful are Graph Neural Networks?
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
畳み込みニューラルネットワークの高精度化と高速化
3D CNNによる人物行動認識の動向
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
モデル高速化百選
Graph convolution (スペクトルアプローチ)
深層学習によるHuman Pose Estimationの基礎
深層学習の数理
ドメイン適応の原理と応用
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]When Does Label Smoothing Help?
[DL輪読会]Relational inductive biases, deep learning, and graph networks
自己教師学習(Self-Supervised Learning)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
BlackBox モデルの説明性・解釈性技術の実装
機械学習のためのベイズ最適化入門
[DL輪読会]Understanding Black-box Predictions via Influence Functions
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
Ad

Similar to グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー) (20)

PDF
AI in Chemistry: Deep Learning Models Love Really Big Data
PPTX
241223_JW_labseminar[Neural Message Passing for Quantum Chemistry].pptx
PDF
Introduction to Chainer Chemistry
PDF
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
PPTX
240324_Thuy_Labseminar[GeoTMI: Predicting Quantum Chemical Property with Easy...
PPTX
Towards Predicting Molecular Property by Graph Neural Networks
PDF
Deep learning methods applied to physicochemical and toxicological endpoints
PDF
AdaptivesequencingusingnanoporesanddeeplearningofmitochondrialDNA
PDF
AdaptivesequencingusingnanoporesanddeeplearningofmitochondrialDNA
PDF
AI that/for matters
PDF
The interplay between data-driven and theory-driven methods for chemical scie...
PDF
AnoMalNet: outlier detection based malaria cell image classification method l...
PDF
Predicting Molecular Properties
PDF
Accelerating materials property predictions using machine learning
PDF
Machine Learning for Chemistry: Representing and Intervening
PDF
Machine Learning in Chemistry: Part II
PDF
CEHS 2016 Poster
PDF
DL for molecules
PDF
Deep learning for molecules, introduction to chainer chemistry
PPTX
Modelling Probability Distributions using Neural Networks: Applications to Me...
AI in Chemistry: Deep Learning Models Love Really Big Data
241223_JW_labseminar[Neural Message Passing for Quantum Chemistry].pptx
Introduction to Chainer Chemistry
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
240324_Thuy_Labseminar[GeoTMI: Predicting Quantum Chemical Property with Easy...
Towards Predicting Molecular Property by Graph Neural Networks
Deep learning methods applied to physicochemical and toxicological endpoints
AdaptivesequencingusingnanoporesanddeeplearningofmitochondrialDNA
AdaptivesequencingusingnanoporesanddeeplearningofmitochondrialDNA
AI that/for matters
The interplay between data-driven and theory-driven methods for chemical scie...
AnoMalNet: outlier detection based malaria cell image classification method l...
Predicting Molecular Properties
Accelerating materials property predictions using machine learning
Machine Learning for Chemistry: Representing and Intervening
Machine Learning in Chemistry: Part II
CEHS 2016 Poster
DL for molecules
Deep learning for molecules, introduction to chainer chemistry
Modelling Probability Distributions using Neural Networks: Applications to Me...
Ad

More from STAIR Lab, Chiba Institute of Technology (20)

PDF
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
PPTX
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
PDF
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
PPTX
メテオサーチチャレンジ報告 (2位解法)
PDF
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
PDF
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
PDF
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
PPTX
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
PDF
高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)
PDF
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
PDF
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
PDF
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
PDF
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
PPTX
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
PDF
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
PDF
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
PDF
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
PDF
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
PDF
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)
リアクティブプログラミングにおける時変値永続化の試み (第2回ステアラボソフトウェア技術セミナー)
制約解消によるプログラム検証・合成 (第1回ステアラボソフトウェア技術セミナー)
企業化する大学と、公益化する企業。そして、人工知能の社会実装に向けて。(ステアラボ人工知能シンポジウム)
メテオサーチチャレンジ報告 (2位解法)
画像キャプションと動作認識の最前線 〜データセットに注目して〜(第17回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
Computer Vision meets Fashion (第12回ステアラボ人工知能セミナー)
高次元空間におけるハブの出現 (第11回ステアラボ人工知能セミナー)
知識グラフの埋め込みとその応用 (第10回ステアラボ人工知能セミナー)
時系列ビッグデータの特徴自動抽出とリアルタイム将来予測(第9回ステアラボ人工知能セミナー)
Stair Captions and Stair Actions(ステアラボ人工知能シンポジウム2017)
最近の重要な論文の紹介 - テキストとの対応付けによる映像の理解に関連して(ステアラボ人工知能シンポジウム2017)
視覚×言語の最前線(ステアラボ人工知能シンポジウム2017)
自然言語処理分野の最前線(ステアラボ人工知能シンポジウム2017)
ヒューマンコンピュテーションのための専門家発見(ステアラボ人工知能シンポジウム2017)
深層学習を利用した映像要約への取り組み(第7回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
群衆の知を引き出すための機械学習(第4回ステアラボ人工知能セミナー)

Recently uploaded (20)

PDF
LMS bot: enhanced learning management systems for improved student learning e...
PDF
5-Ways-AI-is-Revolutionizing-Telecom-Quality-Engineering.pdf
PDF
“The Future of Visual AI: Efficient Multimodal Intelligence,” a Keynote Prese...
PPTX
Module 1 Introduction to Web Programming .pptx
PDF
NewMind AI Weekly Chronicles – August ’25 Week IV
PDF
Lung cancer patients survival prediction using outlier detection and optimize...
PDF
Transform-Your-Streaming-Platform-with-AI-Driven-Quality-Engineering.pdf
PDF
Aug23rd - Mulesoft Community Workshop - Hyd, India.pdf
PDF
Early detection and classification of bone marrow changes in lumbar vertebrae...
PDF
Planning-an-Audit-A-How-To-Guide-Checklist-WP.pdf
PDF
Data Virtualization in Action: Scaling APIs and Apps with FME
PPTX
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
PDF
A symptom-driven medical diagnosis support model based on machine learning te...
PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
A hybrid framework for wild animal classification using fine-tuned DenseNet12...
PDF
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
PDF
giants, standing on the shoulders of - by Daniel Stenberg
PDF
Enhancing plagiarism detection using data pre-processing and machine learning...
PDF
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
PDF
Accessing-Finance-in-Jordan-MENA 2024 2025.pdf
LMS bot: enhanced learning management systems for improved student learning e...
5-Ways-AI-is-Revolutionizing-Telecom-Quality-Engineering.pdf
“The Future of Visual AI: Efficient Multimodal Intelligence,” a Keynote Prese...
Module 1 Introduction to Web Programming .pptx
NewMind AI Weekly Chronicles – August ’25 Week IV
Lung cancer patients survival prediction using outlier detection and optimize...
Transform-Your-Streaming-Platform-with-AI-Driven-Quality-Engineering.pdf
Aug23rd - Mulesoft Community Workshop - Hyd, India.pdf
Early detection and classification of bone marrow changes in lumbar vertebrae...
Planning-an-Audit-A-How-To-Guide-Checklist-WP.pdf
Data Virtualization in Action: Scaling APIs and Apps with FME
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
A symptom-driven medical diagnosis support model based on machine learning te...
Comparative analysis of machine learning models for fake news detection in so...
A hybrid framework for wild animal classification using fine-tuned DenseNet12...
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
giants, standing on the shoulders of - by Daniel Stenberg
Enhancing plagiarism detection using data pre-processing and machine learning...
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
Accessing-Finance-in-Jordan-MENA 2024 2025.pdf

グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)

  • 2. AIST AIRC machine learning team Masashi Tsubaki (3 ) ( )
  • 3. [Tsubaki, Tomii, and Sese, 2018 in Bioinformatics] [Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters] AIST AIRC machine learning team Masashi Tsubaki
  • 4. AIST AIRC machine learning team 1 ( ) Masashi Tsubaki 🤭 🤐 🤫 1 publish … ( ) ( )
  • 5. AIST AIRC machine learning team Masashi Tsubaki https://github.com/masashitsubaki ( !)
  • 6. AIST AIRC machine learning team GitHub ( SMILES ) Masashi Tsubaki https://github.com/masashitsubaki/molecularGNN_smiles GNN CC(=O)OC1=CC=CC=C1C(=O)O SMILES SMILES (※ SMILES RDKit ) (e.g., or not)
  • 7. AIST AIRC machine learning team SMILES Masashi Tsubaki (SMILES 0 or 1) (SMILES ) (※GitHub )
  • 8. AIST AIRC machine learning team GitHub ( ) Masashi Tsubaki Atom x y z O 0.03 0.98 0.008 H 0.06 0.02 0.002 H 0.87 1.30 0.0007 Water molecule GNN (e.g., ) https://github.com/masashitsubaki/molecularGNN_3Dstructure
  • 9. AIST AIRC machine learning team Masashi Tsubaki Molecular property types Data index Each atom and its 3D coordinate in the molecule CH4 Properties in order of the above types In the following, each data is described with the same format ( README)
  • 10. AIST AIRC machine learning team Masashi Tsubaki ( ) bash train.sh train.sh
  • 11. AIST AIRC machine learning team bash train.sh (Google colab ) Masashi Tsubaki
  • 12. AIST AIRC machine learning team (QM9 ) Masashi Tsubaki dataset: QM9_under14atoms property: U0(kcal/mol) dim: 200 layer_hidden: 6 layer_output: 6 batch_train: 32 batch_test: 32 learning_rate: 1e-3 decay of learning rate: 0.99 interval of decay: 10 iteration: 3000 1.9 kcal/mol 1.0 kcal/mol
  • 13. AIST AIRC machine learning team Masashi Tsubaki data_train public data_test in house dataset 2 (e.g., ) (e.g., )
  • 14. AIST AIRC machine learning team preprocess.py train.py ( ) Masashi Tsubaki ( )
  • 15. AIST AIRC machine learning team Masashi Tsubaki DeepChem Schnet Chainer chemistry kGCN
  • 16. AIST AIRC machine learning team Masashi Tsubaki [email protected] GitHub 🙇 …
  • 17. 🙇 AIST AIRC machine learning team Masashi Tsubaki https://github.com/masashitsubaki ( !)
  • 18. [Tsubaki, Tomii, and Sese, 2018 in Bioinformatics] [Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters] AIST AIRC machine learning team Masashi Tsubaki
  • 19. 😅 🤔 COOH ( ) 1 0 1 (e.g., ) ( or not) AIST AIRC machine learning team ( + ) Masashi Tsubaki (e.g., )
  • 20. AIST AIRC machine learning team Masashi Tsubaki 🤖 ( or not) ( ) ( ) (end-to-end) ( ) Graph neural network (GNN) [Scarselli+ 09; Kearnes+ 16]
  • 21. (1) ( ) (2) (or ) ( ) (3) ( ) O C H H AIST AIRC machine learning team Masashi Tsubaki : GNN
  • 22. NN ( ) ( transition propagation( ) message passing ) O C H H AIST AIRC machine learning team Masashi Tsubaki : GNN x (`+1) i = x (`) i + X j f(x (`) j ) e.g, ReLu(Wx+b) NN (4) (5)
  • 23. sum or not ( ) AIST AIRC machine learning team Masashi Tsubaki O C H H
  • 24. sum or not (NN ) end-to-end AIST AIRC machine learning team Masashi Tsubaki O C H H
  • 25. PyTorch-like code AIST AIRC machine learning team ( ) Masashi Tsubaki C O H fif 1 else 0 H
  • 26. [Tsubaki, Tomii, and Sese, 2018 in Bioinformatics] [Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters] AIST AIRC machine learning team Masashi Tsubaki
  • 27. or not GNN GNN assumption ( ) Masashi Tsubaki AIST AIRC machine learning team
  • 28. Masashi Tsubaki AIST AIRC machine learning team
  • 29. β-lactam Masashi Tsubaki AIST AIRC machine learning team
  • 30. 👍 x1 x2 xM r (e.g., r=2) Masashi Tsubaki x (`+1) i = x (`) i + X j f(x (`) j ) i-th fingerprint vector Neighboring fingerprint vector fingerprint based-GNN AIST AIRC machine learning team β-lactam Fingerprint vectors
  • 31. Masashi Tsubaki ( GitHub) AIST AIRC machine learning team https://github.com/masashitsubaki/CPI_prediction fingerprint-GNN CNN
  • 32. Masashi Tsubaki (human C.elegans) AIST AIRC machine learning team ( …) Dataset: Human Radius of subgraphs (fingerprints): 2 Amino acid n-gram :3 Dimensionality :10 Layer of GNN: 3 Window size of n-gram :5 Layer of CNN: 3 Learning rate: 1e-4 Decay of learning rate: 0.5 Interval of decay: 10 Dataset: C.elegans Radius of subgraphs (fingerprints): 2 Amino acid n-gram :3 Dimensionality :10 Layer of GNN: 3 Window size of n-gram :5 Layer of CNN: 3 Learning rate: 1e-4 Decay of learning rate: 0.5 Interval of decay: 10 Liu et al., 2015 - (highly credible negative samples)
  • 33. Masashi Tsubaki AIST AIRC machine learning team ... some reports even above 0.99 AUC on standard benchmarks…
  • 34. Masashi Tsubaki AIST AIRC machine learning team ( ) …
  • 35. [Tsubaki, Tomii, and Sese, 2018 in Bioinformatics] [Tsubaki and Mizoguchi, 2018 in Journal of physical chemistry letters] AIST AIRC machine learning team Masashi Tsubaki
  • 36. AIST AIRC machine learning team Masashi Tsubaki Atom x y z O 0.03 0.98 0.008 H 0.06 0.02 0.002 H 0.87 1.30 0.0007 3 ( ) -9.24 eV Water molecule ( …) ( …) ( …)
  • 37. AIST AIRC machine learning team Nature comm PRL ( …) Masashi Tsubaki ( )
  • 38. AIST AIRC machine learning team Masashi Tsubaki ( …) ( ) O C H H ※
  • 39. AIST AIRC machine learning team Masashi Tsubaki Schnet( ) i x (`+1) i = X j e j d2 ij f(x (`) j ) j ( …) ( )
  • 40. AIST AIRC machine learning team Masashi Tsubaki Gaussian ( ) = O H H f ⌘ exp ⇣ 2 ※
  • 41. AIST AIRC machine learning team Masashi Tsubaki (※QM9 29 130k ) QM9 14 (15k ) ( )
  • 42. AIST AIRC machine learning team Masashi Tsubaki QM9 14 (10k ) 1.0 Chemical accuracy 1.90 kcal/mol
  • 43. AIST AIRC machine learning team Masashi Tsubaki 1 ( ) 1.24 kcal/mol GNN ( …) 1.90 kcal/mol 1.0
  • 44. AIST AIRC machine learning team Masashi Tsubaki New! GNN ( )
  • 45. AIST AIRC machine learning team ( ) Masashi Tsubaki 14 15 New!
  • 46. AIST AIRC machine learning team Masashi Tsubaki Atom x y z O 0.03 0.98 0.008 H 0.06 0.02 0.002 H 0.87 1.30 0.0007 ( ) = 1 -9.24 eV Water molecule = etc… … ( ) 🤭
  • 47. AIST AIRC machine learning team Masashi Tsubaki SchNOrb extends the deep tensor neural network SchNet to represent electronic wavefunctions, ...model uses about 93 million parameters to predict a large Hamiltonian…
  • 48. AIST AIRC machine learning team Masashi Tsubaki https://github.com/masashitsubaki [email protected]