This document reviews the use of data mining and neural network techniques for stock market prediction. It discusses how data mining can extract hidden patterns from large datasets and neural networks can handle nonlinear and uncertain financial data. Specifically, it examines how a combination of data mining and neural networks may improve the reliability of stock predictions by leveraging their complementary strengths. The document also provides an overview of common data mining and neural network methods used for this purpose, such as statistical data mining, neural network-based data processing, clustering, and fuzzy logic. It reviews several previous studies that found neural networks and other nonlinear techniques often outperform traditional statistical models at predicting stock prices and indices.