This document discusses tracking multiple objects in video using probabilistic distributions. It proposes using particle filters to represent object positions with random particles. The method initializes particles randomly, updates their positions each frame based on probabilistic distributions, and uses maximum likelihood estimation to compute the distribution parameters. It models object motion using a beta distribution and estimates the distribution's alpha and beta parameters from each frame to predict object positions. The results show this approach can effectively track multiple moving objects, especially when there are occlusions.