This document describes a new distance-based clustering algorithm (DBCA) that aims to improve upon K-means clustering. DBCA selects initial cluster centroids based on the total distance of each data point to all other points, rather than random selection. It calculates distances between all points, identifies points with maximum total distances, and sets initial centroids as the averages of groups of these maximally distant points. The algorithm is compared to K-means, hierarchical clustering, and hierarchical partitioning clustering on synthetic and real data. Experimental results show DBCA produces better quality clusters than these other algorithms.