3
Most read
10
Most read
17
Most read
Rational Exponents
Review of Exponential Rules

                  

                         
                       
                       
                         
                         
                       
Simplifying Expressions with Rational Exponents

Radicals can also be expressed as a rational (or fractional) 
 power of an expression.   It will sometimes be easier to 
use this new method of expressing a radical to simplify a 
                   radical expression.   
                          1
                      b = b
                          n       n

 When you see a radical 
      expression, 
 you can convert it to a                     
                                                                                    

                                            
   fractional power.
Example 1           Write each expression in Radical Form


            1
                             6
1) x        6
                                 x

                2
                             3       2
 2) m           3
                                 m
Example 2     Write each radical using Rational Exponents

                                      1
          5
1)            b                   b   5



                                 1        5     7
                  5   7
2)    3
            6x y             6 x y
                                 3        3     3
Example 3   Evaluate Each Expression




            −1                         1
1) 49        2

                                       7
Rational Exponents
For any nonzero Real number a and 
any integers m and n, with n > 1

 m
a = ( a) = a
 n         n        m       n        m
Notice:   The index of the radical becomes the 
denominator of the rational power, and the exponent of the 
radicand (expression inside the radical) becomes the 
numerator.
 Look at these examples:
 (1)                        (2)                             (3) 
                                                                                        




                                                                  power
              root
                            x   power
                                                           =x      ro ot
Remember the Rules of Exponents?
They are still valid for rational exponents!!!
              Rule                                   Example


                                                                               



                                               
                                                                          



                                           
                                                                             
Example 4   Evaluate 
                  2
  (−125)          3



  ( − 125 )
    3             2




    25
Example 5    Evaluate 
            −3
 36        2

 
 49 
    343
    216
Simplify


    (3a )(− 7a )
Example 6

            3              1
            2              5




                     17
   − 21a             10
Check out how these problems are done 
using the rules of exponents:

 Evaluate:


                                  
                                                                                      




 Evaluate:
            
                                                                            
Simplify each expression completely




        =
Expression with Rational Exponents
An expression with Rational Exponents is simplified when:

 1.  It has no negative exponents

 2.  It has no Fractional Exponents in the denominator

 3.   It is not a Complex Fraction

 4.  The index of any remaining radical is the least 
 number possible.
Simplifying radicals is often                       Simplify:              


easier using rational exponents.                       3     
Look at this "rational" example,
                                                        3
   solved two ways.     ==>
                           
                                                            3
Solved by Rationalizing the                         Solved by Using
Denominator                                         Rational Exponents

                                                                                    
Example 7        Simplify


  (8x y )   3
            4     2
                      −1
                       3



                                  3     1
            1
                                x 4   y 3
      1           2         =
   2x 4         y 3              2 xy
Example 8       Simplify

       −7
        4
   n
            3
      n     7



      n
Example 9   Simplify
      2                17
 n               n     12         5
                            =n
      3

      1
               =                 12
 n    4
                  n
Example 8     Simplify
                      Multiply 
Change to Same Base                Add Exponents
                      Exponents 




Subtract 
Exponents
                                                   4
                                             2     5

                                           =
                                             4
Example 9     Simplify


    2 a −3        − a +1             a −2
x            ⋅x                 x
            2 a −4
                            =
     (x )                       x   2a −8



=x     (a – 2) – (2a – 8)
                                =x      -a + 6
Example 10    Simplify

      1
    y +1
      2

      1
    y −1
      2




          1
   y + 2y 2         +1
             y −1

More Related Content

PPT
Rational Exponents
PPTX
Integral Exponents
PPT
Simplifying radical expressions, rational exponents, radical equations
PPTX
Lecture 05 b radicals multiplication and division
PPTX
zero, negative and rational exponents
PPTX
7.2 simplifying radicals
PDF
Adding and subtracting radical expressions
PPTX
Addition and Subtraction of Radicals
Rational Exponents
Integral Exponents
Simplifying radical expressions, rational exponents, radical equations
Lecture 05 b radicals multiplication and division
zero, negative and rational exponents
7.2 simplifying radicals
Adding and subtracting radical expressions
Addition and Subtraction of Radicals

What's hot (20)

PPTX
Math 8 - Linear Inequalities in Two Variables
PPT
Slope of a Line
PDF
Solving Equations Involving Radical Expressions
PPTX
Rational exponents and radicals
PPTX
Rational algebraic expressions
PDF
Direct Variation (Mathematics 9)
PPTX
Quadratic inequality
PPTX
Quadratic Inequalities
PPTX
Adding and subtracting rational expressions
PPTX
Inverse variation
PPT
7-2 Exterior Angle Theorem
PDF
Illustrating Rational Algebraic Expressions
PPSX
Math 8 - Solving Problems Involving Linear Functions
PPTX
solving quadratic equations using quadratic formula
PDF
Nature of the roots and sum and product of the roots of a quadratic equation
PPTX
Problem Solving Involving Factoring
PPT
Solving quadratics by completing the square
PPTX
Law of Radicals.pptx
PDF
Solving Quadratic Equations
PPT
Quadratic inequalities
Math 8 - Linear Inequalities in Two Variables
Slope of a Line
Solving Equations Involving Radical Expressions
Rational exponents and radicals
Rational algebraic expressions
Direct Variation (Mathematics 9)
Quadratic inequality
Quadratic Inequalities
Adding and subtracting rational expressions
Inverse variation
7-2 Exterior Angle Theorem
Illustrating Rational Algebraic Expressions
Math 8 - Solving Problems Involving Linear Functions
solving quadratic equations using quadratic formula
Nature of the roots and sum and product of the roots of a quadratic equation
Problem Solving Involving Factoring
Solving quadratics by completing the square
Law of Radicals.pptx
Solving Quadratic Equations
Quadratic inequalities
Ad

Viewers also liked (20)

DOCX
Digital textbook -EXPONENTS AND POWERS
PPTX
Unit 3.4
ODP
Simplifying exponents
PPT
Remainder theorem
PPT
Exponential functions
PPT
Dividing Polynomials Slide Share
PDF
Grade 9: Mathematics Unit 4Zero Exponents, Negative Integral Exponents, Ratio...
PPT
Solving rational expressions
PPT
Hprec5.1
PPTX
Rational Root Theorem
PPTX
Rational Exponents
PPTX
6-1 nth roots reg
PPT
Fractional Equations
PPT
Algebra 2 5.1 Class Notes
PPT
Integer review
PPTX
Exponents
PPTX
Second 9 review edmodo 2013 2014
PPTX
PDF
PPTX
Algebraic multiplication
Digital textbook -EXPONENTS AND POWERS
Unit 3.4
Simplifying exponents
Remainder theorem
Exponential functions
Dividing Polynomials Slide Share
Grade 9: Mathematics Unit 4Zero Exponents, Negative Integral Exponents, Ratio...
Solving rational expressions
Hprec5.1
Rational Root Theorem
Rational Exponents
6-1 nth roots reg
Fractional Equations
Algebra 2 5.1 Class Notes
Integer review
Exponents
Second 9 review edmodo 2013 2014
Algebraic multiplication
Ad

Similar to Rational Exponents (20)

PPT
PPTX
Radical and exponents (2)
PPT
PPTX
PPT
Chapter4.3
PPT
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPT
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPTX
Algebra 1 chapter 1 complete notes
PPS
1 rules for exponents
PPT
Exponents
PDF
0.6 Rational Exponents
PDF
classNotes_m110_2018F.pdf
PPTX
Roots and Radicals
KEY
Notes - Polynomial Division
PPT
Exponent & Logarithm
KEY
Unit 1 - dividing a polynomial by a monomial
KEY
Topic 4 dividing a polynomial by a monomial
PPTX
Rational Expressions
PPT
Aa c1 s2
PDF
3 Rational Expressions Mar 4
Radical and exponents (2)
Chapter4.3
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
Algebra 1 chapter 1 complete notes
1 rules for exponents
Exponents
0.6 Rational Exponents
classNotes_m110_2018F.pdf
Roots and Radicals
Notes - Polynomial Division
Exponent & Logarithm
Unit 1 - dividing a polynomial by a monomial
Topic 4 dividing a polynomial by a monomial
Rational Expressions
Aa c1 s2
3 Rational Expressions Mar 4

More from Ver Louie Gautani (10)

PPTX
Division Properties of Exponents
PPTX
Sequences, Series, and the Binomial Theorem
PPTX
PPT
Simplification of Fractions and Operations on Fractions
PPTX
Multiplication Properties of Exponents
PPTX
Scientific Notation
PPTX
First Quarter - Chapter 2 - Quadratic Equation
PPTX
Factoring Polynomials
PPTX
Operations on Polynomials
PPTX
Polynomials
Division Properties of Exponents
Sequences, Series, and the Binomial Theorem
Simplification of Fractions and Operations on Fractions
Multiplication Properties of Exponents
Scientific Notation
First Quarter - Chapter 2 - Quadratic Equation
Factoring Polynomials
Operations on Polynomials
Polynomials

Rational Exponents