SlideShare a Scribd company logo
6.2 Unit Circle and Circular
Functions
Chapter 6 Circular Functions and Their Graphs
Concepts and Objectives
 Use the unit circle to define values for trig functions.
 Determine the measure of an angle based on the
coordinates of its trig value.
 Determine linear and angular speed of a rotating point.
Unit Circle
 0 1,0
 

0,1
2
  1,0
 


3
0, 1
2
















x
y
Unit Circle
 0 1,0
 
 
 
2 2
,
4 2 2
 

0,1
2
 
 
 
3 2 2
,
4 2 2
  1,0
 
  
 
5 2 2
,
4 2 2
 


3
0, 1
2
 
 
 
7 2 2
,
4 2 2
















x
y
Unit Circle
 0 1,0
 
 
 
2 2
,
4 2 2
 
 
 
1 3
,
3 2 2
 

0,1
2
 
 
 
2 1 3
,
3 2 2
 
 
 
3 2 2
,
4 2 2
  1,0
 
  
 
5 2 2
,
4 2 2
 
  
 
4 1 3
,
3 2 2  


3
0, 1
2
 
 
 
5 1 3
,
3 2 2
 
 
 
7 2 2
,
4 2 2
















x
y
Unit Circle
 0 1,0
 
 
 
3 1
,
6 2 2
 
 
 
2 2
,
4 2 2
 
 
 
1 3
,
3 2 2
 

0,1
2
 
 
 
2 1 3
,
3 2 2
 
 
 
3 2 2
,
4 2 2
 
 
 
5 3 1
,
6 2 2
  1,0
 
  
 
7 3 1
,
6 2 2
 
  
 
5 2 2
,
4 2 2
 
  
 
4 1 3
,
3 2 2  


3
0, 1
2
 
 
 
5 1 3
,
3 2 2
 
 
 
7 2 2
,
4 2 2
 
 
 
11 3 1
,
6 2 2
















x
y
Circular Functions
 The circular functions of real numbers correspond to the
trigonometric functions of angles measured in radians.
r
s = 
x
y

(cos s, sin s) = (x, y)
Circular function values of
real numbers are obtained in
the same manner as
trigonometric function
values of angles measured in
radians.
Circular Functions (cont.)
For any real number s represented by a directed arc on
the unit circle,
sins y coss x  tan 0
y
s x
x
 
 
1
csc 0y
y
   
1
sec 0s x
x
   cot 0
x
s y
y
 
Circular Functions (cont.)
 Example: Find the exact values of and
7
cos
4
 
 
 
5
tan
3
Circular Functions (cont.)
 Example: Find the exact values of and
cos s = x, so the x-coordinate at
, and at , the coordinates are
7
cos
4
 
 
 
5
tan
3
7 2
4 2


tan
y
s
x


5
3
 
 
 
1 3
,
2 2

3
2
1
2
y
x

3
1
 3 or   
3 1 3 2
3
2 2 2 1
Calculator Tips
 I prefer to keep the calculators set in degree mode, so
what should we do when we need to keep switching
back and forth between degrees and radians?
 One solution might be to use the calculator for degrees
and set the scientific calculator on your phone to
radians.
 My preferred solution is to use a function on the
calculator that tells the problem your quantity is in
radians. Pressing /k, and then selecting r will add a
small r (almost like an exponent) to your number.
Approximating Circular Functions
 Example: Find a calculator approximation for each
circular function value.
(a) cos 1.85 (b) cot 1.3209 (c) sec(–2.9234)
Approximating Circular Functions
 Example: Find a calculator approximation for each
circular function value.
(a) cos 1.85 (b) cot 1.3209 (c) sec(–2.9234)
Make sure your values are in radians!
(a) cos 1.85 ≈ –.2756
(b) cot 1.3209 ≈ .2552
(c) sec(–2.9234) ≈ –1.0243
Approximating Circular Functions
 Example: Approximate the value of s in the interval
if cos s = .9685.
 
  
0,
2
Approximating Circular Functions
 Example: Approximate the value of s in the interval
if cos s = .9685.
cos–1 .9685 ≈ .2517
Since this value is in the quadrant given , this
is our value.
 
  
0,
2
1.57
2
 
 
 
Approximating Circular Values
 Example: Approximate the value of s in if
cos s = –.367.
 
  
3
,
2
Approximating Circular Values
 Example: Approximate the value of s in if
cos s = –.367.
cos–1 –.367 ≈ 1.947.
 
  
3
,
2
This angle is in QII, not QIII. To
find our angle, we need to
consider the angle with the same
x-value.
To find the “other” angle,
subtract the first angle from 2.
-.367

3
2
 2 1.947 4.337
Exact Circular Values
 Example: Find the exact value of s in the interval
if tan s = 1.
 
  
3
,
2
Exact Circular Values
 Example: Find the exact value of s in the interval
if tan s = 1.
tan s = 1 when x = y, which occurs at in the given
interval.
 
  
3
,
2
5
4
Linear and Angular Speed
 Suppose that point P moves at
a constant speed along a circle
of radius r. The measure of
how fast the position of P is
changing is called linear speed.
 If v represents linear speed,
then
r
s
x
y

P

distance
speed
time

s
v
t
Linear and Angular Speed
 As point P moves along the
circle, ray OP rotates around
the origin. The measure of how
fast POB is changing is called
angular speed.
 Angular speed, symbolized ,
is given as
where  is in radians.
r
s
x
y

P
O B

t


Linear and Angular Speed (cont.)
 Example: Suppose that point P is on circle O with radius
10 cm, and ray OP is rotating with angular speed /18
radians per second.
(a) Find the angle generated by P in 6 sec.
(b) Find the distance traveled by P in 6 sec.
(c) Find the linear speed of P in centimeters per second.
Linear and Angular Speed (cont.)
 Example: Suppose that point P is on circle O with radius
10 cm, and ray OP is rotating with angular speed /18
radians per second.
(a) Find the angle generated by P in 6 sec.


18
18 6
 

 
  
6
radians
18 3
Linear and Angular Speed (cont.)
 Example: Suppose that point P is on circle O with radius
10 cm, and ray OP is rotating with angular speed /18
radians per second.
(b) Find the distance traveled by P in 6 sec.
s r 
 
 
  
 
10
3
s


10
cm
3
Linear and Angular Speed (cont.)
 Example: Suppose that point P is on circle O with radius
10 cm, and ray OP is rotating with angular speed /18
radians per second.
(c) Find the linear speed of P in centimeters per second.

s
v
t


10
3
6
v
 
 
10 5
cm/sec
18 9
Classwork
 College Algebra
 Page 580: 8-34 (even), page 565: 54-60, 64-70 (even),
page 539: 32-56 (4)

More Related Content

PPTX
Sine and Cosine Functions Ppt
Devan Tate
 
PPTX
Lecture 11 systems of nonlinear equations
Hazel Joy Chong
 
PPTX
PC_Q2_W1-2_Angles in a Unit Circle Presentation PPT
RichieReyes12
 
PPTX
Radian and Degree Measure ppt.pptx
nolimnoga
 
PPT
Radian and degree measure.
Kiran S B
 
PPT
Verifying trigonometric identities
Jessica Garcia
 
PPTX
Pre-Calculus: Conics - Introduction to Conics and Determining & Graphing Circ...
Myrrhtaire Castillo
 
PPTX
Graphs of the Sine and Cosine Functions Lecture
Froyd Wess
 
Sine and Cosine Functions Ppt
Devan Tate
 
Lecture 11 systems of nonlinear equations
Hazel Joy Chong
 
PC_Q2_W1-2_Angles in a Unit Circle Presentation PPT
RichieReyes12
 
Radian and Degree Measure ppt.pptx
nolimnoga
 
Radian and degree measure.
Kiran S B
 
Verifying trigonometric identities
Jessica Garcia
 
Pre-Calculus: Conics - Introduction to Conics and Determining & Graphing Circ...
Myrrhtaire Castillo
 
Graphs of the Sine and Cosine Functions Lecture
Froyd Wess
 

What's hot (20)

PDF
Circular Functions
Jonalyn Asi
 
PDF
Arc length, area of a sector and segments of a circle
Joey Fontanilla Valdriz
 
PPT
Circular functions
Jessica Garcia
 
PPT
Unit circle
Neil MacIntosh
 
PPTX
5.2.1 trigonometric functions
Northside ISD
 
PPTX
Trigonometric identities
Irishgel Cabasisi
 
PPTX
Rectangular coordinate system
Cathy Francisco
 
PPT
Lesson3.1 The Derivative And The Tangent Line
seltzermath
 
PPTX
Domain-and-Range-of-a-Function
EmeraldAcaba
 
PPTX
Graphing polynomial functions (Grade 10)
grace joy canseco
 
PPT
3.3 conic sections circles
math123c
 
PPTX
distance formula
Charlene Ballera
 
PPTX
Graphs of polynomial functions
Carlos Erepol
 
PPT
Unit circle
kristinmiller929
 
PPT
10.1 Distance and Midpoint Formulas
swartzje
 
PPTX
Math presentation on domain and range
Touhidul Shawan
 
PPTX
The remainder theorem powerpoint
Juwileene Soriano
 
PPTX
Cartesian coordinate plane
Elvie Hernandez
 
PPTX
Introduction to conic sections
rey castro
 
PDF
Functions and Relations
sheisirenebkm
 
Circular Functions
Jonalyn Asi
 
Arc length, area of a sector and segments of a circle
Joey Fontanilla Valdriz
 
Circular functions
Jessica Garcia
 
Unit circle
Neil MacIntosh
 
5.2.1 trigonometric functions
Northside ISD
 
Trigonometric identities
Irishgel Cabasisi
 
Rectangular coordinate system
Cathy Francisco
 
Lesson3.1 The Derivative And The Tangent Line
seltzermath
 
Domain-and-Range-of-a-Function
EmeraldAcaba
 
Graphing polynomial functions (Grade 10)
grace joy canseco
 
3.3 conic sections circles
math123c
 
distance formula
Charlene Ballera
 
Graphs of polynomial functions
Carlos Erepol
 
Unit circle
kristinmiller929
 
10.1 Distance and Midpoint Formulas
swartzje
 
Math presentation on domain and range
Touhidul Shawan
 
The remainder theorem powerpoint
Juwileene Soriano
 
Cartesian coordinate plane
Elvie Hernandez
 
Introduction to conic sections
rey castro
 
Functions and Relations
sheisirenebkm
 
Ad

Similar to 6.2 Unit Circle and Circular Functions (20)

PPT
Circular functions
Jessica Garcia
 
PPT
unit_circle_lesson_in trigonometric functions
ramfreecs13
 
PDF
T7.3 The Unit Circle and Angles Presentation
smiller5
 
PDF
circular trigonometric functions and practice
lanceaban2025
 
PPTX
Trigonometry and trigonometric ratios angles
GladzAryanDiola
 
PPTX
Circular-Functions-An-Overview Lesson.pptx
SherraMaeBagood1
 
PDF
D4 trigonometrypdf
Krysleng Lynlyn
 
PPTX
circular-functions.pptx
CjIgcasenza
 
PPTX
Unit-Circle.pptxhdhshdbbdbsbbdbxi duhdbd
jasperbernaldo3
 
PPT
Trigonometry Functions
Siva Palanisamy
 
PPTX
Lesson no. 4 (Circular functions on Real Numbers)
Genaro de Mesa, Jr.
 
PPTX
Trigonometric Ratios and Functions 2.pptx
Marjorie Malveda
 
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
imshancldsrs
 
DOC
Maths formulae
Mahesh Chopra
 
PPTX
Trigonometry Cheat Sheet
Jayson Albrey Sastre
 
PPT
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
ayaulymsun
 
PDF
CBSE - Grade 11 - Mathematics - Ch 3 - Trigonometric Functions - Notes (PDF F...
Sritoma Majumder
 
PDF
Module 4 circular functions
dionesioable
 
PDF
economics
SanyiTesfa
 
PDF
Math resources trigonometric_formulas
Er Deepak Sharma
 
Circular functions
Jessica Garcia
 
unit_circle_lesson_in trigonometric functions
ramfreecs13
 
T7.3 The Unit Circle and Angles Presentation
smiller5
 
circular trigonometric functions and practice
lanceaban2025
 
Trigonometry and trigonometric ratios angles
GladzAryanDiola
 
Circular-Functions-An-Overview Lesson.pptx
SherraMaeBagood1
 
D4 trigonometrypdf
Krysleng Lynlyn
 
circular-functions.pptx
CjIgcasenza
 
Unit-Circle.pptxhdhshdbbdbsbbdbxi duhdbd
jasperbernaldo3
 
Trigonometry Functions
Siva Palanisamy
 
Lesson no. 4 (Circular functions on Real Numbers)
Genaro de Mesa, Jr.
 
Trigonometric Ratios and Functions 2.pptx
Marjorie Malveda
 
Correlation: Powerpoint 2- Trigonometry (1).pdf
imshancldsrs
 
Maths formulae
Mahesh Chopra
 
Trigonometry Cheat Sheet
Jayson Albrey Sastre
 
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
ayaulymsun
 
CBSE - Grade 11 - Mathematics - Ch 3 - Trigonometric Functions - Notes (PDF F...
Sritoma Majumder
 
Module 4 circular functions
dionesioable
 
economics
SanyiTesfa
 
Math resources trigonometric_formulas
Er Deepak Sharma
 
Ad

More from smiller5 (20)

PDF
T7.2 Right Triangle Trigonometry Presentation
smiller5
 
PDF
1.3 Factoring Quadratics (Presentation).pdf
smiller5
 
PPTX
1.3 Factoring Polynomial and Quadratic Expressions
smiller5
 
PDF
Trigonometry 7.1 Angles (Degrees and Radians)
smiller5
 
PDF
6.7 Exponential and Logarithmic Models
smiller5
 
PDF
4.5 Special Segments in Triangles
smiller5
 
PDF
1.4 Conditional Statements
smiller5
 
PDF
1.3 Distance and Midpoint Formulas
smiller5
 
PDF
1.5 Quadratic Equations.pdf
smiller5
 
PDF
3.2 Graphs of Functions
smiller5
 
PDF
3.2 Graphs of Functions
smiller5
 
PDF
3.1 Functions
smiller5
 
PDF
2.5 Transformations of Functions
smiller5
 
PDF
2.2 More on Functions and Their Graphs
smiller5
 
PDF
1.6 Other Types of Equations
smiller5
 
PDF
1.5 Quadratic Equations (Review)
smiller5
 
PDF
2.1 Basics of Functions and Their Graphs
smiller5
 
PDF
9.6 Binomial Theorem
smiller5
 
PDF
13.3 Venn Diagrams & Two-Way Tables
smiller5
 
PDF
13.2 Independent & Dependent Events
smiller5
 
T7.2 Right Triangle Trigonometry Presentation
smiller5
 
1.3 Factoring Quadratics (Presentation).pdf
smiller5
 
1.3 Factoring Polynomial and Quadratic Expressions
smiller5
 
Trigonometry 7.1 Angles (Degrees and Radians)
smiller5
 
6.7 Exponential and Logarithmic Models
smiller5
 
4.5 Special Segments in Triangles
smiller5
 
1.4 Conditional Statements
smiller5
 
1.3 Distance and Midpoint Formulas
smiller5
 
1.5 Quadratic Equations.pdf
smiller5
 
3.2 Graphs of Functions
smiller5
 
3.2 Graphs of Functions
smiller5
 
3.1 Functions
smiller5
 
2.5 Transformations of Functions
smiller5
 
2.2 More on Functions and Their Graphs
smiller5
 
1.6 Other Types of Equations
smiller5
 
1.5 Quadratic Equations (Review)
smiller5
 
2.1 Basics of Functions and Their Graphs
smiller5
 
9.6 Binomial Theorem
smiller5
 
13.3 Venn Diagrams & Two-Way Tables
smiller5
 
13.2 Independent & Dependent Events
smiller5
 

Recently uploaded (20)

PPTX
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
PPTX
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
PPTX
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
PPTX
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
PPTX
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
PPTX
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
PPTX
How to Apply for a Job From Odoo 18 Website
Celine George
 
PDF
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
PPTX
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
PDF
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PPTX
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
PPTX
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
PPTX
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
PPTX
CDH. pptx
AneetaSharma15
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PPTX
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
PPTX
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
PPTX
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
Five Point Someone – Chetan Bhagat | Book Summary & Analysis by Bhupesh Kushwaha
Bhupesh Kushwaha
 
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
How to Apply for a Job From Odoo 18 Website
Celine George
 
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
INTESTINALPARASITES OR WORM INFESTATIONS.pptx
PRADEEP ABOTHU
 
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
CDH. pptx
AneetaSharma15
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 

6.2 Unit Circle and Circular Functions

  • 1. 6.2 Unit Circle and Circular Functions Chapter 6 Circular Functions and Their Graphs
  • 2. Concepts and Objectives  Use the unit circle to define values for trig functions.  Determine the measure of an angle based on the coordinates of its trig value.  Determine linear and angular speed of a rotating point.
  • 3. Unit Circle  0 1,0    0,1 2   1,0     3 0, 1 2                 x y
  • 4. Unit Circle  0 1,0       2 2 , 4 2 2    0,1 2       3 2 2 , 4 2 2   1,0        5 2 2 , 4 2 2     3 0, 1 2       7 2 2 , 4 2 2                 x y
  • 5. Unit Circle  0 1,0       2 2 , 4 2 2       1 3 , 3 2 2    0,1 2       2 1 3 , 3 2 2       3 2 2 , 4 2 2   1,0        5 2 2 , 4 2 2        4 1 3 , 3 2 2     3 0, 1 2       5 1 3 , 3 2 2       7 2 2 , 4 2 2                 x y
  • 6. Unit Circle  0 1,0       3 1 , 6 2 2       2 2 , 4 2 2       1 3 , 3 2 2    0,1 2       2 1 3 , 3 2 2       3 2 2 , 4 2 2       5 3 1 , 6 2 2   1,0        7 3 1 , 6 2 2        5 2 2 , 4 2 2        4 1 3 , 3 2 2     3 0, 1 2       5 1 3 , 3 2 2       7 2 2 , 4 2 2       11 3 1 , 6 2 2                 x y
  • 7. Circular Functions  The circular functions of real numbers correspond to the trigonometric functions of angles measured in radians. r s =  x y  (cos s, sin s) = (x, y) Circular function values of real numbers are obtained in the same manner as trigonometric function values of angles measured in radians.
  • 8. Circular Functions (cont.) For any real number s represented by a directed arc on the unit circle, sins y coss x  tan 0 y s x x     1 csc 0y y     1 sec 0s x x    cot 0 x s y y  
  • 9. Circular Functions (cont.)  Example: Find the exact values of and 7 cos 4       5 tan 3
  • 10. Circular Functions (cont.)  Example: Find the exact values of and cos s = x, so the x-coordinate at , and at , the coordinates are 7 cos 4       5 tan 3 7 2 4 2   tan y s x   5 3       1 3 , 2 2  3 2 1 2 y x  3 1  3 or    3 1 3 2 3 2 2 2 1
  • 11. Calculator Tips  I prefer to keep the calculators set in degree mode, so what should we do when we need to keep switching back and forth between degrees and radians?  One solution might be to use the calculator for degrees and set the scientific calculator on your phone to radians.  My preferred solution is to use a function on the calculator that tells the problem your quantity is in radians. Pressing /k, and then selecting r will add a small r (almost like an exponent) to your number.
  • 12. Approximating Circular Functions  Example: Find a calculator approximation for each circular function value. (a) cos 1.85 (b) cot 1.3209 (c) sec(–2.9234)
  • 13. Approximating Circular Functions  Example: Find a calculator approximation for each circular function value. (a) cos 1.85 (b) cot 1.3209 (c) sec(–2.9234) Make sure your values are in radians! (a) cos 1.85 ≈ –.2756 (b) cot 1.3209 ≈ .2552 (c) sec(–2.9234) ≈ –1.0243
  • 14. Approximating Circular Functions  Example: Approximate the value of s in the interval if cos s = .9685.      0, 2
  • 15. Approximating Circular Functions  Example: Approximate the value of s in the interval if cos s = .9685. cos–1 .9685 ≈ .2517 Since this value is in the quadrant given , this is our value.      0, 2 1.57 2      
  • 16. Approximating Circular Values  Example: Approximate the value of s in if cos s = –.367.      3 , 2
  • 17. Approximating Circular Values  Example: Approximate the value of s in if cos s = –.367. cos–1 –.367 ≈ 1.947.      3 , 2 This angle is in QII, not QIII. To find our angle, we need to consider the angle with the same x-value. To find the “other” angle, subtract the first angle from 2. -.367  3 2  2 1.947 4.337
  • 18. Exact Circular Values  Example: Find the exact value of s in the interval if tan s = 1.      3 , 2
  • 19. Exact Circular Values  Example: Find the exact value of s in the interval if tan s = 1. tan s = 1 when x = y, which occurs at in the given interval.      3 , 2 5 4
  • 20. Linear and Angular Speed  Suppose that point P moves at a constant speed along a circle of radius r. The measure of how fast the position of P is changing is called linear speed.  If v represents linear speed, then r s x y  P  distance speed time  s v t
  • 21. Linear and Angular Speed  As point P moves along the circle, ray OP rotates around the origin. The measure of how fast POB is changing is called angular speed.  Angular speed, symbolized , is given as where  is in radians. r s x y  P O B  t  
  • 22. Linear and Angular Speed (cont.)  Example: Suppose that point P is on circle O with radius 10 cm, and ray OP is rotating with angular speed /18 radians per second. (a) Find the angle generated by P in 6 sec. (b) Find the distance traveled by P in 6 sec. (c) Find the linear speed of P in centimeters per second.
  • 23. Linear and Angular Speed (cont.)  Example: Suppose that point P is on circle O with radius 10 cm, and ray OP is rotating with angular speed /18 radians per second. (a) Find the angle generated by P in 6 sec.   18 18 6         6 radians 18 3
  • 24. Linear and Angular Speed (cont.)  Example: Suppose that point P is on circle O with radius 10 cm, and ray OP is rotating with angular speed /18 radians per second. (b) Find the distance traveled by P in 6 sec. s r           10 3 s   10 cm 3
  • 25. Linear and Angular Speed (cont.)  Example: Suppose that point P is on circle O with radius 10 cm, and ray OP is rotating with angular speed /18 radians per second. (c) Find the linear speed of P in centimeters per second.  s v t   10 3 6 v     10 5 cm/sec 18 9
  • 26. Classwork  College Algebra  Page 580: 8-34 (even), page 565: 54-60, 64-70 (even), page 539: 32-56 (4)