SlideShare a Scribd company logo
8  ways  to  leverage  AWS  Lambda
in  your  Big  Data  workloads
Adrian  Hornsby
Solutions  Architect  with  AWS
adhorn@amazon.com
@adhorn
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
1-­ Overview  of  AWS  Lambda  and  Big  Data.
2-­ AWS  Lambda  usage  in  Big  Data  architectures
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
AWS  Lambda
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
What  is  Lambda
Functions	
  are	
  the	
  unit	
  of	
  deployment	
  and	
  scaling.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
How  does  a  Lambda  function  looks  like?
def hello(event, context):
return {
"message": ”Hello World!",
"event": event
}
'use strict';
handlermodule.exports.hello = (event, context, cb) => cb(null,
{ message: ’Hello World!', event }
);
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
How  Lambda  works
S3  event  
notifications
DynamoDB
Streams
Kinesis  
events
Cognito  
events
SNS  
events
Custom  
events
CloudTrail  
events LambdaDynamoDB
Kinesis S3
Any	
  custom
Redshift
SNS
CloudWatch
events
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Continuous  
scaling  
No  servers  to  
manage
Never  pay  for  idle  
– no  cold  servers
Benefits  of  AWS  Lambda
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Key  scenarios
Data	
  Triggers
Customize	
  behavior	
  
on	
  data	
  updates	
  in	
  
S3,	
  SNS	
  and	
  DDB	
  
Control	
  systems
Customize	
  responses	
  and	
  
response	
  workflows	
  to	
  
state	
  changes	
  within	
  AWS
Serverless	
  
backends
Execute	
  server	
  side	
  
backend	
  logic	
  in	
  a	
  
cross	
  platform	
  
fashion
Big	
  data
Realtime	
  processing	
  
of	
  streaming	
  data	
  
updates	
  using	
  
Kinesis
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Big  Data
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Data Gap
1990 2000 2010 2020
Generated	
  Data Available	
  for	
  Analysis
Data	
  Volume
Sources:	
  
Gartner:	
  User	
  Survey	
  Analysis:	
  Key	
  Trends	
  Shaping	
  the	
  Future	
  of	
  Data	
  Center	
  Infrastructure	
  Through	
  2011	
  
IDC:	
  Worldwide	
  Business	
  Analytics	
  Software	
  2012–2016	
  Forecast	
  and	
  2011	
  Vendor	
  Shares	
  
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Data for Competitive Advantage
• Customer  segmentation
• Marketing  spend  optimization
• Financial  modeling  &  forecasting
• Ad  targeting  &  real-­time  bidding
• Clickstream  analysis
• Fraud  detection
• Security  threat  detection
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Data	
  Lake
How  Big  Data  workloads  look  like
Collect Store Analyze Visualize
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Divide  and  conquer  your  Big  Data  workloads
Data	
  Sources
Speed/Stream	
  
(Real-­‐time)
Processing	
  
Pipeline
Batch	
  Processing	
  Pipeline
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Architectures  for  Big  Data  using  
AWS  lambda
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#1
Data  Sharing  Platform  using  AWS  
Lambda
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
AWS  Lambda-­based  fan-­out  function
S3	
  Bucket
AWS	
  Lambda
Kinesis	
  Stream
Amazon	
  SNS
DynamoDB
Source	
  data
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#2  
Amazon	
  S3	
  input	
  validation	
  and	
  
conversion	
  layer.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Event-­Driven  Batch  controlled  with  AWS  Lambda
Source	
  data
Source	
  data
Source	
  data
Source	
  data
Data	
  Staging	
  Layer
/data/source-­‐raw
Data	
  Staging	
  Layer
/data/source-­‐validated
Input	
  Validation	
  and	
  
Conversion	
  layer
Input	
  Tracking	
  layer
State	
  Management	
  Store
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#3  
Indexing	
  Amazon	
  S3	
  metadata	
  using	
  
AWS	
  Lambda.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Amazon  S3  Metadata  Index
Source	
  data
Source	
  data
Source	
  data
Source	
  data
S3	
  Bucket DynamoDB
ObjectCreate
Event
Put	
  Index
Entry
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#4  
Indexing	
  Amazon	
  DynamoDB	
  Content	
  
using	
  AWS	
  Lambda
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Indexing  DynamoDB  content  using  ElasticSearch
DynamoDB DynamoDB	
  Streams
Push	
  changes
AWS	
  Lambda
Amazon	
  Elasticsearch
Service
Index	
  Record
Search	
  Query
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#5
Apply	
  custom	
  logic	
  to	
  data	
  being	
  
uploaded	
  into	
  Kinesis.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Real-­time  Clickstream  Processing  with  Amazon  Kinesis
Web	
  Clients
Users
API	
  Gateway Kinesis	
  Stream
Input
JSON	
  payload
Kinesis	
  Stream
Output
CSV	
  payload
AWS	
  Lambda Amazon	
  SNS
Kinesis	
  Analytics
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#6
Apply	
  custom	
  logic	
  to	
  data	
  being	
  
uploaded	
  into	
  AWS	
  IoT.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Anomaly  Detection  Using  AWS  Lambda
AWS	
  Lambda
Amazon	
  SNS
DynamoDB
AWS	
  IoTSensors
Control	
  System
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#7
Simplify	
  Resource	
  Management	
  using	
  
AWS	
  Lambda.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Automated  cluster  backups  using  AWS  Lambda
AWS	
  Lambda Amazon	
  Redshift
Cluster	
  1
Cluster	
  2
Cluster	
  3
Rules:	
  every	
  15min
Amazon	
  
Cloudwatch
Snapshot
Snapshot
Snapshot
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Auto  Start/Shutdown  of  Instances
AWS	
  Lambda
Amazon	
  
Cloudwatch
Rules:	
  every	
  day	
  at	
  21h30	
  	
  
Rules:	
  every	
  day	
  at	
  6h15	
  	
  
Sleep	
  trigger
Wakeup	
  trigger
AWS	
  Resources	
  
(EC2	
  instances)
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Auto  Tagging  resources  as  they  start
Amazon	
  
Cloudwatch
AWS	
  LambdaEvents:
RunInstances
EC2	
  Instances	
  Tag:
Owner	
  =	
  userName
PrincipalId =	
  aws:userid
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
#8
Orchestrating	
  Big	
  Data	
  pipelines	
  using	
  
AWS	
  Lambda.
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Pipeline  Orchestration
S3	
  Bucket	
  or	
  
Manifest	
  File
Trigger Launch
Data	
  Pipeline EMR	
  Cluster
Create
AWS	
  Lambda Amazon	
  SNS
S3	
  BucketMetadata	
  Index
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Big Data Case Studies
Learn from other AWS customers
aws.amazon.com/solutions/case-studies/big-data
©	
  2015,	
  Amazon	
  Web	
  Services,	
  Inc.	
  or	
  its	
  Affiliates.	
  All	
  rights	
  reserved.
Thanks!

More Related Content

PDF
Being Well Architected in the Cloud
Adrian Hornsby
 
PPTX
Getting started with Serverless on AWS
Adrian Hornsby
 
PDF
Cutting to the chase for Machine Learning Analytics Ecosystem & AWS Lake Form...
AWS Riyadh User Group
 
PDF
AWS re:Invent 2016 Day 1 Keynote re:Cap
Ian Massingham
 
PDF
찾아가는 AWS 세미나(구로,가산,판교) - AWS 기반 빅데이터 활용 방법 (김일호 솔루션즈 아키텍트)
Amazon Web Services Korea
 
PDF
AWS re:Invent 2016 Day 1 Keynote re:Cap
Adrian Hornsby
 
PPTX
Derive Insight from IoT data in minute with AWS
Adrian Hornsby
 
PDF
Space Invading: an approach to sensing
Adrian Hornsby
 
Being Well Architected in the Cloud
Adrian Hornsby
 
Getting started with Serverless on AWS
Adrian Hornsby
 
Cutting to the chase for Machine Learning Analytics Ecosystem & AWS Lake Form...
AWS Riyadh User Group
 
AWS re:Invent 2016 Day 1 Keynote re:Cap
Ian Massingham
 
찾아가는 AWS 세미나(구로,가산,판교) - AWS 기반 빅데이터 활용 방법 (김일호 솔루션즈 아키텍트)
Amazon Web Services Korea
 
AWS re:Invent 2016 Day 1 Keynote re:Cap
Adrian Hornsby
 
Derive Insight from IoT data in minute with AWS
Adrian Hornsby
 
Space Invading: an approach to sensing
Adrian Hornsby
 

Viewers also liked (13)

PDF
Bringing Wireless Sensing to its full potential
Adrian Hornsby
 
PPTX
Compare DynamoDB vs. MongoDB
Amar Das
 
PDF
CI&CD with AWS - AWS Prague User Group - May 2015
Vladimir Simek
 
PDF
Travel hackathon
Vladimir Simek
 
PDF
Scaling real-time search and analytics with Elasticsearch
clintongormley
 
PPTX
How to run your Hadoop Cluster in 10 minutes
Vladimir Simek
 
PPTX
Derive Insight from IoT data in minute with AWS
Adrian Hornsby
 
PPTX
Building an ETL pipeline for Elasticsearch using Spark
Itai Yaffe
 
PDF
AWS Lambda from the Trenches
Yan Cui
 
ODP
Introduction to Apache Kafka- Part 1
Knoldus Inc.
 
PDF
AWS re:Invent 2016 Day 2 Keynote re:Cap
Adrian Hornsby
 
PDF
빅데이터를 위한 AWS 모범사례와 아키텍처 구축 패턴 :: 양승도 :: AWS Summit Seoul 2016
Amazon Web Services Korea
 
PPTX
Microservices in the Apache Kafka Ecosystem
confluent
 
Bringing Wireless Sensing to its full potential
Adrian Hornsby
 
Compare DynamoDB vs. MongoDB
Amar Das
 
CI&CD with AWS - AWS Prague User Group - May 2015
Vladimir Simek
 
Travel hackathon
Vladimir Simek
 
Scaling real-time search and analytics with Elasticsearch
clintongormley
 
How to run your Hadoop Cluster in 10 minutes
Vladimir Simek
 
Derive Insight from IoT data in minute with AWS
Adrian Hornsby
 
Building an ETL pipeline for Elasticsearch using Spark
Itai Yaffe
 
AWS Lambda from the Trenches
Yan Cui
 
Introduction to Apache Kafka- Part 1
Knoldus Inc.
 
AWS re:Invent 2016 Day 2 Keynote re:Cap
Adrian Hornsby
 
빅데이터를 위한 AWS 모범사례와 아키텍처 구축 패턴 :: 양승도 :: AWS Summit Seoul 2016
Amazon Web Services Korea
 
Microservices in the Apache Kafka Ecosystem
confluent
 
Ad

Similar to 8 ways to leverage AWS Lambda in your Big Data workloads (8)

PDF
Serverless applications with AWS
javier ramirez
 
PDF
Scaling to Billions of IoT Devices with MindSphere on AWS
rosmarkov1
 
PDF
Serverless Architectural Patterns - ServerlessDays TLV
Boaz Ziniman
 
PDF
Serverless Architectural Patterns - GOTO Amsterdam
Boaz Ziniman
 
PDF
Getting Started with Serverless Architectures
Rohini Gaonkar
 
PDF
20200520 - Como empezar a desarrollar aplicaciones serverless
Marcia Villalba
 
PPTX
Getting Started with Serverless Architectures
AWS Summits
 
PPTX
The Serverless Tidal Wave - SwampUP 2018 Keynote
Arun Gupta
 
Serverless applications with AWS
javier ramirez
 
Scaling to Billions of IoT Devices with MindSphere on AWS
rosmarkov1
 
Serverless Architectural Patterns - ServerlessDays TLV
Boaz Ziniman
 
Serverless Architectural Patterns - GOTO Amsterdam
Boaz Ziniman
 
Getting Started with Serverless Architectures
Rohini Gaonkar
 
20200520 - Como empezar a desarrollar aplicaciones serverless
Marcia Villalba
 
Getting Started with Serverless Architectures
AWS Summits
 
The Serverless Tidal Wave - SwampUP 2018 Keynote
Arun Gupta
 
Ad

More from Adrian Hornsby (20)

PPTX
How can your business benefit from going serverless?
Adrian Hornsby
 
PDF
Can Automotive be as agile as Unicorns?
Adrian Hornsby
 
PDF
Moving Forward with AI - as presented at the Prosessipäivät 2018
Adrian Hornsby
 
PPTX
Chaos Engineering: Why Breaking Things Should Be Practised.
Adrian Hornsby
 
PPTX
Chaos Engineering: Why Breaking Things Should Be Practised.
Adrian Hornsby
 
PPTX
Model Serving for Deep Learning
Adrian Hornsby
 
PDF
AI in Finance: Moving forward!
Adrian Hornsby
 
PPTX
Building a Multi-Region, Active-Active Serverless Backends.
Adrian Hornsby
 
PDF
Moving Forward with AI
Adrian Hornsby
 
PPTX
AI: State of the Union
Adrian Hornsby
 
PPTX
Serverless Architectural Patterns
Adrian Hornsby
 
PPTX
re:Invent re:Cap - An overview of Artificial Intelligence and Machine Learnin...
Adrian Hornsby
 
PPTX
re:Invent re:Cap - Big Data & IoT at Any Scale
Adrian Hornsby
 
PPTX
Innovations and the Cloud
Adrian Hornsby
 
PPTX
Serverless in Action on AWS
Adrian Hornsby
 
PDF
Innovations and The Cloud
Adrian Hornsby
 
PPTX
Devoxx: Building AI-powered applications on AWS
Adrian Hornsby
 
PDF
10 Lessons from 10 Years of AWS
Adrian Hornsby
 
PDF
Developing Sophisticated Serverless Applications with AI
Adrian Hornsby
 
PPTX
AWS Startup Day Bangalore: Being Well-Architected in the Cloud
Adrian Hornsby
 
How can your business benefit from going serverless?
Adrian Hornsby
 
Can Automotive be as agile as Unicorns?
Adrian Hornsby
 
Moving Forward with AI - as presented at the Prosessipäivät 2018
Adrian Hornsby
 
Chaos Engineering: Why Breaking Things Should Be Practised.
Adrian Hornsby
 
Chaos Engineering: Why Breaking Things Should Be Practised.
Adrian Hornsby
 
Model Serving for Deep Learning
Adrian Hornsby
 
AI in Finance: Moving forward!
Adrian Hornsby
 
Building a Multi-Region, Active-Active Serverless Backends.
Adrian Hornsby
 
Moving Forward with AI
Adrian Hornsby
 
AI: State of the Union
Adrian Hornsby
 
Serverless Architectural Patterns
Adrian Hornsby
 
re:Invent re:Cap - An overview of Artificial Intelligence and Machine Learnin...
Adrian Hornsby
 
re:Invent re:Cap - Big Data & IoT at Any Scale
Adrian Hornsby
 
Innovations and the Cloud
Adrian Hornsby
 
Serverless in Action on AWS
Adrian Hornsby
 
Innovations and The Cloud
Adrian Hornsby
 
Devoxx: Building AI-powered applications on AWS
Adrian Hornsby
 
10 Lessons from 10 Years of AWS
Adrian Hornsby
 
Developing Sophisticated Serverless Applications with AI
Adrian Hornsby
 
AWS Startup Day Bangalore: Being Well-Architected in the Cloud
Adrian Hornsby
 

Recently uploaded (20)

PDF
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PDF
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
PDF
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
Software Development Methodologies in 2025
KodekX
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PDF
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
PDF
REPORT: Heating appliances market in Poland 2024
SPIUG
 
PDF
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PDF
Doc9.....................................
SofiaCollazos
 
PPTX
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
PDF
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PDF
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
PPTX
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
Software Development Methodologies in 2025
KodekX
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
The Future of Artificial Intelligence (AI)
Mukul
 
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
REPORT: Heating appliances market in Poland 2024
SPIUG
 
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Doc9.....................................
SofiaCollazos
 
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 

8 ways to leverage AWS Lambda in your Big Data workloads

  • 1. 8  ways  to  leverage  AWS  Lambda in  your  Big  Data  workloads Adrian  Hornsby Solutions  Architect  with  AWS [email protected] @adhorn
  • 2. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. 1-­ Overview  of  AWS  Lambda  and  Big  Data. 2-­ AWS  Lambda  usage  in  Big  Data  architectures
  • 3. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. AWS  Lambda
  • 4. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. What  is  Lambda Functions  are  the  unit  of  deployment  and  scaling.
  • 5. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. How  does  a  Lambda  function  looks  like? def hello(event, context): return { "message": ”Hello World!", "event": event } 'use strict'; handlermodule.exports.hello = (event, context, cb) => cb(null, { message: ’Hello World!', event } );
  • 6. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. How  Lambda  works S3  event   notifications DynamoDB Streams Kinesis   events Cognito   events SNS   events Custom   events CloudTrail   events LambdaDynamoDB Kinesis S3 Any  custom Redshift SNS CloudWatch events
  • 7. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Continuous   scaling   No  servers  to   manage Never  pay  for  idle   – no  cold  servers Benefits  of  AWS  Lambda
  • 8. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Key  scenarios Data  Triggers Customize  behavior   on  data  updates  in   S3,  SNS  and  DDB   Control  systems Customize  responses  and   response  workflows  to   state  changes  within  AWS Serverless   backends Execute  server  side   backend  logic  in  a   cross  platform   fashion Big  data Realtime  processing   of  streaming  data   updates  using   Kinesis
  • 9. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Big  Data
  • 10. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Data Gap 1990 2000 2010 2020 Generated  Data Available  for  Analysis Data  Volume Sources:   Gartner:  User  Survey  Analysis:  Key  Trends  Shaping  the  Future  of  Data  Center  Infrastructure  Through  2011   IDC:  Worldwide  Business  Analytics  Software  2012–2016  Forecast  and  2011  Vendor  Shares  
  • 11. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Data for Competitive Advantage • Customer  segmentation • Marketing  spend  optimization • Financial  modeling  &  forecasting • Ad  targeting  &  real-­time  bidding • Clickstream  analysis • Fraud  detection • Security  threat  detection
  • 12. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Data  Lake How  Big  Data  workloads  look  like Collect Store Analyze Visualize
  • 13. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Divide  and  conquer  your  Big  Data  workloads Data  Sources Speed/Stream   (Real-­‐time) Processing   Pipeline Batch  Processing  Pipeline
  • 14. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Architectures  for  Big  Data  using   AWS  lambda
  • 15. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #1 Data  Sharing  Platform  using  AWS   Lambda
  • 16. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. AWS  Lambda-­based  fan-­out  function S3  Bucket AWS  Lambda Kinesis  Stream Amazon  SNS DynamoDB Source  data
  • 17. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #2   Amazon  S3  input  validation  and   conversion  layer.
  • 18. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Event-­Driven  Batch  controlled  with  AWS  Lambda Source  data Source  data Source  data Source  data Data  Staging  Layer /data/source-­‐raw Data  Staging  Layer /data/source-­‐validated Input  Validation  and   Conversion  layer Input  Tracking  layer State  Management  Store
  • 19. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #3   Indexing  Amazon  S3  metadata  using   AWS  Lambda.
  • 20. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Amazon  S3  Metadata  Index Source  data Source  data Source  data Source  data S3  Bucket DynamoDB ObjectCreate Event Put  Index Entry
  • 21. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #4   Indexing  Amazon  DynamoDB  Content   using  AWS  Lambda
  • 22. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Indexing  DynamoDB  content  using  ElasticSearch DynamoDB DynamoDB  Streams Push  changes AWS  Lambda Amazon  Elasticsearch Service Index  Record Search  Query
  • 23. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #5 Apply  custom  logic  to  data  being   uploaded  into  Kinesis.
  • 24. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Real-­time  Clickstream  Processing  with  Amazon  Kinesis Web  Clients Users API  Gateway Kinesis  Stream Input JSON  payload Kinesis  Stream Output CSV  payload AWS  Lambda Amazon  SNS Kinesis  Analytics
  • 25. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #6 Apply  custom  logic  to  data  being   uploaded  into  AWS  IoT.
  • 26. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Anomaly  Detection  Using  AWS  Lambda AWS  Lambda Amazon  SNS DynamoDB AWS  IoTSensors Control  System
  • 27. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #7 Simplify  Resource  Management  using   AWS  Lambda.
  • 28. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Automated  cluster  backups  using  AWS  Lambda AWS  Lambda Amazon  Redshift Cluster  1 Cluster  2 Cluster  3 Rules:  every  15min Amazon   Cloudwatch Snapshot Snapshot Snapshot
  • 29. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Auto  Start/Shutdown  of  Instances AWS  Lambda Amazon   Cloudwatch Rules:  every  day  at  21h30     Rules:  every  day  at  6h15     Sleep  trigger Wakeup  trigger AWS  Resources   (EC2  instances)
  • 30. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Auto  Tagging  resources  as  they  start Amazon   Cloudwatch AWS  LambdaEvents: RunInstances EC2  Instances  Tag: Owner  =  userName PrincipalId =  aws:userid
  • 31. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. #8 Orchestrating  Big  Data  pipelines  using   AWS  Lambda.
  • 32. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Pipeline  Orchestration S3  Bucket  or   Manifest  File Trigger Launch Data  Pipeline EMR  Cluster Create AWS  Lambda Amazon  SNS S3  BucketMetadata  Index
  • 33. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Big Data Case Studies Learn from other AWS customers aws.amazon.com/solutions/case-studies/big-data
  • 34. ©  2015,  Amazon  Web  Services,  Inc.  or  its  Affiliates.  All  rights  reserved. Thanks!