SlideShare a Scribd company logo
Sponsored & Brought to you by
A Lap around Azure Data Factory
Martin Abbott
http://www.twitter.com/martinabbott
https://au.linkedin.com/in/mjabbott
A Lap around Azure Data Factory
Martin Abbott
@martinabbott
About me
10+ years experience
Integration, messaging and cloud person
Organiser of Perth Microsoft Cloud User Group
Member of GlobalAzure Bootcamp admin team
BizTalk developer and architect
Identity management maven
IoT enthusiast
Soon to be Australian Citizen
Agenda
Overview
Data movement
Data transformation
Development
Monitoring
Demonstration
General information
Overview of an Azure Data Factory
Overview of an Azure Data Factory
• Cloud based data integration
• Orchestration and transformation
• Automation
• Large volumes of data
• Part of Cortana Analytics Suite Information Management
• Fully managed service, scalable, reliable
Anatomy of an Azure Data Factory
An Azure Data Factory is made up of:
Linked services
• Represents either
• a data store
• File system
• On-premises SQL Server
• Azure storage
• Azure DocumentDB
• Azure Data Lake Store
• etc.
• a compute resource
• HDInsight (own or on demand)
• Azure Machine Learning Endpoint
• Azure Batch
• Azure SQL Database
• Azure Data Lake Analytics
Data sets
• Named references to data
• Used for both input and output
• Identifies structure
• Files, tables, folders, documents
• Internal or external
• Use SliceStart and SliceEnd
system variables to create
distinct slices on output data
sets, e.g., unique folder based on
date
Activities
• Define actions to perform on data
• Zero or more input data sets
• One or more output data sets
• Unit of orchestration of a pipeline
• Activities for
• data movement
• data transformation
• data analysis
• Use WindowStart and WindowEnd
system variables to select relevant
data using a tumbling window
Pipelines
• Logical grouping of activities
• Provides a unit of work that
performs a task
• Can set active period to run
in the past to back fill data
slices
• Back filling can be performed
in parallel
Scheduling
• Data sets have an availability
"availability": { "frequency": "Hour", "interval": 1 }
• Activities have a schedule (tumbling window)
"scheduler": { "frequency": "Hour", "interval": 1 }
• Pipelines have an active period
"start": "2015-01-01T08:00:00Z"
"end": "2015-01-01T11:00:00Z“ OR
“end” = “start” + 48 hours if not specified OR
“end”: “9999-09-09” for indefinite
Data Lineage / Dependencies
• How does Azure Data Factory know how to link
Pipelines?
• Uses Input and Output data sets
• On the Diagram in portal, can toggle data lineage on and
off
• external required (and externalData policy optional) for
data sets created outside Azure Data Factory
• How does Azure Data Factory know how to link data
sets that have different schedules?
• Uses startTime, endTime and dependency model
Functions
• Rich set of functions to
• Specify data selection queries
• Specify input data set dependencies
• [startTime, endTime] – data set slice
• [f(startTime, endTime), g(startTime, endTime)] – dependency
period
• Use system variables as parameters
• Functions for text formatting and date/time selection
• Text.Format('{0:yyyy}',WindowStart)
• Date.AddDays(SliceStart, -7 - Date.DayOfWeek(SliceStart))
Data movement
Data movement
SOURCE SINK
Azure Blob Azure Blob
Azure Table Azure Table
Azure SQL Database Azure SQL Database
Azure SQL Data Warehouse Azure SQL Data Warehouse
Azure DocumentDB Azure DocumentDB
Azure Data Lake Store Azure Data Lake Store
SQL Server on-premises / Azure IaaS SQL Server on-premises / Azure IaaS
File System on-premises / Azure IaaS File System on-premises / Azure IaaS
Oracle Database on-premises / Azure IaaS
MySQL Database on-premises / Azure IaaS
DB2 Database on-premises / Azure IaaS
Teradata Database on-premises / Azure IaaS
Sybase Database on-premises / Azure IaaS
PostgreSQL Database on-premises / Azure IaaS
Data movement
• Uses the Copy activity and Data Movement Service or Data Management Gateway (for on-premises or
Azure IaaS)
• Globally available service for data movement (except Australia)
• executes at sink location, unless source is on-premises (or IaaS) then uses Data Management Gateway
• Exactly one input and exactly one output
• Support for securely moving between on-premises and the cloud
• Automatic type conversions from source to sink data types
• File based copy supports binary, text and Avro formats, and allows for conversion between formats
• Data Management Gateway supports multiple data sources but only a single Azure Data Factory
Source
Data Movement Service
WAN Serialisation-
Deserialisation
Compression
Column
Mapping
…
WAN Sink
Source
Data Management Gateway
LAN/
WAN Serialisation-
Deserialisation
Compression
Column
Mapping
…
SinkLAN/
WAN
Data analysis and transformation
Data analysis and transformation
TRANSFORMATION ACTIVITY COMPUTE ENVIRONMENT
Hive HDInsight [Hadoop]
Pig HDInsight [Hadoop]
MapReduce HDInsight [Hadoop]
Hadoop Streaming HDInsight [Hadoop]
Machine Learning activities: Batch Execution and
Update Resource
Azure VM
Stored Procedure Azure SQL Database
Data Lake Analytics U-SQL Azure Data Lake Analytics
DotNet HDInsight [Hadoop] or Azure Batch
Data analysis and transformation
• Two types of compute environment
• On-demand: Data Factory fully manages environment, currently HDInsight only
• Set timeToLive to set allowed idle time once job finishes
• Set osType for windows or linux
• Set clusterSize to determine number of nodes
• Provisioning an HDInsight cluster on-demand can take some time
• Bring your own: Register own computing environment for use as a linked service
• HDInsight Linked Service
• clusterUri, username, password and location
• Azure Batch Linked Service
• accountName, accessKey and poolName
• Machine Learning Linked Service
• mlEndpoint and apiKey
• Data Lake Analytics Linked Service
• accountName, dataLakeAnalyticsUri and authorization
• Azure SQL Database Linked Service
• connectionString
Development
Development
• JSON for all artefacts
• Ease of management by source control
• Can be developed using:
• Data Factory Editor
• In Azure Portal
• Create and deploy artefacts
• PowerShell
• Cmdlets for each main function in PS ARM
• Visual Studio
• Azure Data Factory Templates
• .NET SDK
Visual Studio
• Rich set of templates including
• Sample applications
• Data analysis and transformation using Hive
and Pig
• Data movement between typical
environments
• Can include sample data
• Can create Azure Data Factory, storage
and compute resources
• Can Publish to Azure Data Factory
• No toolbox, mostly hand crafting JSON
Tips and Tricks with Visual Studio Templates
• Something usually fails
• Issues with sample data
• Run once to create Data Factory and storage accounts
• Usually first run will also create a folder containing Sample Data but NO JSON
artifacts
• May need to manually edit PowerShell scripts or perform manual upload
• Once corrected, deselect Sample Data and run again creating new solution
• Ensure Publish to Data Factory is deselected and JSON artifacts are created
• Issues with Data Factory deployment
• Go to portal and check what failed
• May need to manually create item but deleting published item and recreating with
JSON from project
• When deploying, may need to unselect item that is failing
• You cannot delete from the project
• Need to Exclude From Project
• Once excluded can delete from disk
Deployment
• Add Config files to your Visual Studio
project
• Deployment files contain, for instance,
connection strings to resources that
are replaced at Publish time
• Add deployment files for each
environment you are deploying to,
e.g., Dev, UAT, Prod
• When publishing to Azure Data
Factory choose appropriate Config file
to ensure correct settings are applied
• Publish only artefacts required
Monitoring
Monitoring
• Data slices may fail
• Drill in to errors, diagnose, fix and rerun
• Failed data slices can be rerun and all
dependencies are managed by Azure
Data Factory
• Upstream slices that are Ready stay
available
• Downstream slices that are dependent
stay Pending
• Enable diagnostics to produce logs,
disabled by default
• Add Alerts for Failed or Successful Runs to
receive email notification
Demonstration
General information
Pricing – Low frequency ( <= 1 / day )
USAGE PRICE
Cloud First 5 activities/month Free
6 – 100 activities/month $0.60 per activity
>100 activities/month $0.48 per activity
On-Premises First 5 activities/month Free
6 – 100 activities/month $1.50 per activity
>100 activities/month $1.20 per activity
* Pricing in USD correct at 4 December 2015
Pricing – High frequency ( > 1 / day )
USAGE PRICE
Cloud <= 100 activities/month $0.80 per activity
>100 activities/month $0.64 per activity
On-Premises <= 100 activities/month $2.50 per activity
>100 activities/month $2.00 per activity
* Pricing in USD correct at 4 December 2015
Pricing – Data movement
Cloud $0.25 per hour
On-Premises $0.10 per hour
Pricing – Inactive pipeline
$0.80/month
* Pricing in USD correct at 4 December 2015
Summary
• Use Azure Data Factory if:
• Dealing with Big Data
• Source or destination is in the cloud
• Cut down environment cost
• Cut down administration cost
• Azure is on one side of the movement / transformation
• Consider hybrid scenarios with other data management tools, for example
SQL Server Integration Services
More Information
• Documentation portal
• https://azure.microsoft.com/en-us/documentation/services/data-
factory/
• Learning map
• https://azure.microsoft.com/en-us/documentation/articles/data-
factory-learning-map/
• Samples on github
• https://github.com/Azure/Azure-DataFactory
Thank you!

More Related Content

What's hot (20)

PPTX
Intro to Azure Data Factory v1
Eric Bragas
 
PPTX
Analyzing StackExchange data with Azure Data Lake
BizTalk360
 
PPTX
Azure Data Lake and Azure Data Lake Analytics
Waqas Idrees
 
PPTX
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
Michael Rys
 
PDF
J1 T1 4 - Azure Data Factory vs SSIS - Regis Baccaro
MS Cloud Summit
 
PPTX
Azure data factory
David Giard
 
PPTX
Running cost effective big data workloads with Azure Synapse and Azure Data L...
Michael Rys
 
PDF
Cortana Analytics Workshop: Azure Data Lake
MSAdvAnalytics
 
PPTX
An intro to Azure Data Lake
Rick van den Bosch
 
PPTX
Introduction to Azure Databricks
James Serra
 
PDF
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
MS Cloud Summit
 
PDF
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Lace Lofranco
 
PPTX
Azure Data Factory for Azure Data Week
Mark Kromer
 
PPTX
Microsoft Azure BI Solutions in the Cloud
Mark Kromer
 
PPTX
Streaming Real-time Data to Azure Data Lake Storage Gen 2
Carole Gunst
 
PPTX
Azure Lowlands: An intro to Azure Data Lake
Rick van den Bosch
 
PPTX
Architecting a datalake
Laurent Leturgez
 
PDF
Pipelines and Packages: Introduction to Azure Data Factory (Techorama NL 2019)
Cathrine Wilhelmsen
 
PPTX
Snowflake Datawarehouse Architecturing
Ishan Bhawantha Hewanayake
 
PPTX
Integration Monday - Analysing StackExchange data with Azure Data Lake
Tom Kerkhove
 
Intro to Azure Data Factory v1
Eric Bragas
 
Analyzing StackExchange data with Azure Data Lake
BizTalk360
 
Azure Data Lake and Azure Data Lake Analytics
Waqas Idrees
 
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
Michael Rys
 
J1 T1 4 - Azure Data Factory vs SSIS - Regis Baccaro
MS Cloud Summit
 
Azure data factory
David Giard
 
Running cost effective big data workloads with Azure Synapse and Azure Data L...
Michael Rys
 
Cortana Analytics Workshop: Azure Data Lake
MSAdvAnalytics
 
An intro to Azure Data Lake
Rick van den Bosch
 
Introduction to Azure Databricks
James Serra
 
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
MS Cloud Summit
 
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Lace Lofranco
 
Azure Data Factory for Azure Data Week
Mark Kromer
 
Microsoft Azure BI Solutions in the Cloud
Mark Kromer
 
Streaming Real-time Data to Azure Data Lake Storage Gen 2
Carole Gunst
 
Azure Lowlands: An intro to Azure Data Lake
Rick van den Bosch
 
Architecting a datalake
Laurent Leturgez
 
Pipelines and Packages: Introduction to Azure Data Factory (Techorama NL 2019)
Cathrine Wilhelmsen
 
Snowflake Datawarehouse Architecturing
Ishan Bhawantha Hewanayake
 
Integration Monday - Analysing StackExchange data with Azure Data Lake
Tom Kerkhove
 

Viewers also liked (20)

PPTX
Azure data factory
BizTalk360
 
PPTX
Building the Data Lake with Azure Data Factory and Data Lake Analytics
Khalid Salama
 
PDF
Introduction to Azure Data Factory
Slava Kokaev
 
PDF
Panografias
Hans Brinker
 
PDF
Charlotte Mason in a Nutshell
Debi Taylor-Hough
 
PDF
Ucrete - El piso más resistente
Revitalizate Grupo Empresarial, SA de CV
 
PDF
Multimedia guide on iOS and Android with Content Management Tool for own guid...
advenco Consulting GmbH
 
PPT
Universidad de Alcalá (UAH). Presentación en español. 2012/2013
Universidad de Alcalá
 
PPT
A guide to the CAO system 2015
stfinianscc
 
PPTX
Sistemas de seguridad deportiva(xcupware)
Dr. Manuel Concepción
 
PPTX
[GAB2016] Workshop - Industrialisez vos expérimentations Azure Machine Learni...
Cellenza
 
PPTX
Uruguay Educa y Programa RUMBO: experiencias elearning exitosas en ANEP
Mónica Viera Gómez
 
PPTX
Business process modeling and analysis for data warehouse design
Slava Kokaev
 
PPS
T8 constel·lacions
Albert Grau Gatell
 
PDF
Hemerotecas digitales. Lola Rodríguez Fuentes
Biblioteca Nacional de España
 
PDF
El gran-grimorio-papa-honorio
anibal8500l
 
PDF
Worldstar Group Credentials
laurentjacquot
 
PDF
53328654 airtel-pro
Soumya Sahoo
 
Azure data factory
BizTalk360
 
Building the Data Lake with Azure Data Factory and Data Lake Analytics
Khalid Salama
 
Introduction to Azure Data Factory
Slava Kokaev
 
Panografias
Hans Brinker
 
Charlotte Mason in a Nutshell
Debi Taylor-Hough
 
Ucrete - El piso más resistente
Revitalizate Grupo Empresarial, SA de CV
 
Multimedia guide on iOS and Android with Content Management Tool for own guid...
advenco Consulting GmbH
 
Universidad de Alcalá (UAH). Presentación en español. 2012/2013
Universidad de Alcalá
 
A guide to the CAO system 2015
stfinianscc
 
Sistemas de seguridad deportiva(xcupware)
Dr. Manuel Concepción
 
[GAB2016] Workshop - Industrialisez vos expérimentations Azure Machine Learni...
Cellenza
 
Uruguay Educa y Programa RUMBO: experiencias elearning exitosas en ANEP
Mónica Viera Gómez
 
Business process modeling and analysis for data warehouse design
Slava Kokaev
 
T8 constel·lacions
Albert Grau Gatell
 
Hemerotecas digitales. Lola Rodríguez Fuentes
Biblioteca Nacional de España
 
El gran-grimorio-papa-honorio
anibal8500l
 
Worldstar Group Credentials
laurentjacquot
 
53328654 airtel-pro
Soumya Sahoo
 
Ad

Similar to A lap around Azure Data Factory (20)

PPTX
Transform your data with Azure Data factory
Prometix Pty Ltd
 
PPTX
Azure datafactory
Dimko Zhluktenko
 
PDF
Azure Data Factory usage at Aucfanlab
Aucfan
 
PDF
Azure Data Factory Interview Questions PDF By ScholarHat
Scholarhat
 
PDF
Azure Data Factory Introduction.pdf
MaheshPandit16
 
PPTX
Azure Data Factory for Redmond SQL PASS UG Sept 2018
Mark Kromer
 
PPTX
Next Generation of Data Integration with Azure Data Factory by Tom Kerkhove
Codit
 
PPTX
Next Generation Data Integration with Azure Data Factory
Tom Kerkhove
 
PPTX
Azuresatpn19 - An Introduction To Azure Data Factory
Riccardo Perico
 
PDF
Azure Data Engineer Course | Azure Data Engineer Trainin
Accentfuture
 
PPTX
Microsoft Azure Data Factory Hands-On Lab Overview Slides
Mark Kromer
 
PPTX
Azure Data Engineer Course | Azure Data Engineer Training Hyderabad.pptx
sivavisualpath
 
PPTX
Designing big data analytics solutions on azure
Mohamed Tawfik
 
PPTX
4Developers 2018: Przetwarzanie Big Data w oparciu o architekturę Lambda na p...
PROIDEA
 
PDF
Azure Data Factory | Moving On-Premise Data to Azure Cloud | Microsoft Azure ...
Edureka!
 
PDF
www-credosystemz-com-azure-data-engineering-interview-questions-and-answers-.pdf
csvishnukumar
 
DOCX
adf.docx
KMGANGOTRISINGH
 
PPTX
Intelligent Cloud Conference 2018 - Next Generation of Data Integration with ...
Tom Kerkhove
 
PPTX
Azure Data Factory ETL Patterns in the Cloud
Mark Kromer
 
PPTX
Building IoT and Big Data Solutions on Azure
Ido Flatow
 
Transform your data with Azure Data factory
Prometix Pty Ltd
 
Azure datafactory
Dimko Zhluktenko
 
Azure Data Factory usage at Aucfanlab
Aucfan
 
Azure Data Factory Interview Questions PDF By ScholarHat
Scholarhat
 
Azure Data Factory Introduction.pdf
MaheshPandit16
 
Azure Data Factory for Redmond SQL PASS UG Sept 2018
Mark Kromer
 
Next Generation of Data Integration with Azure Data Factory by Tom Kerkhove
Codit
 
Next Generation Data Integration with Azure Data Factory
Tom Kerkhove
 
Azuresatpn19 - An Introduction To Azure Data Factory
Riccardo Perico
 
Azure Data Engineer Course | Azure Data Engineer Trainin
Accentfuture
 
Microsoft Azure Data Factory Hands-On Lab Overview Slides
Mark Kromer
 
Azure Data Engineer Course | Azure Data Engineer Training Hyderabad.pptx
sivavisualpath
 
Designing big data analytics solutions on azure
Mohamed Tawfik
 
4Developers 2018: Przetwarzanie Big Data w oparciu o architekturę Lambda na p...
PROIDEA
 
Azure Data Factory | Moving On-Premise Data to Azure Cloud | Microsoft Azure ...
Edureka!
 
www-credosystemz-com-azure-data-engineering-interview-questions-and-answers-.pdf
csvishnukumar
 
adf.docx
KMGANGOTRISINGH
 
Intelligent Cloud Conference 2018 - Next Generation of Data Integration with ...
Tom Kerkhove
 
Azure Data Factory ETL Patterns in the Cloud
Mark Kromer
 
Building IoT and Big Data Solutions on Azure
Ido Flatow
 
Ad

More from BizTalk360 (20)

PPTX
Optimise Business Activity Tracking – Insights from Smurfit Kappa
BizTalk360
 
PPTX
Optimise Business Activity Tracking – Insights from Smurfit Kappa
BizTalk360
 
PPTX
What's inside "migrating to biz talk server 2020" Book (BizTalk360 Webinar)
BizTalk360
 
PPTX
Integration Monday - Logic Apps: Development Experiences
BizTalk360
 
PPTX
Integration Monday - BizTalk Migrator Deep Dive
BizTalk360
 
PPTX
Testing for Logic App Solutions | Integration Monday
BizTalk360
 
PPTX
No-Slides
BizTalk360
 
PPTX
System Integration using Reactive Programming | Integration Monday
BizTalk360
 
PPTX
Building workflow solution with Microsoft Azure and Cloud | Integration Monday
BizTalk360
 
PPTX
Serverless Minimalism: How to architect your apps to save 98% on your Azure b...
BizTalk360
 
PPTX
Migrating BizTalk Solutions to Azure: Mapping Messages | Integration Monday
BizTalk360
 
PPTX
Integration-Monday-Infrastructure-As-Code-With-Terraform
BizTalk360
 
PDF
Integration-Monday-Stateful-Programming-Models-Serverless-Functions
BizTalk360
 
PPTX
Integration-Monday-Serverless-Slackbots-with-Azure-Durable-Functions
BizTalk360
 
PPTX
Integration-Monday-Building-Stateful-Workloads-Kubernetes
BizTalk360
 
PPTX
Integration-Monday-Logic-Apps-Tips-Tricks
BizTalk360
 
PPTX
Integration-Monday-Terraform-Serverless
BizTalk360
 
PPTX
Integration-Monday-Microsoft-Power-Platform
BizTalk360
 
PDF
One name unify them all
BizTalk360
 
PPTX
Securely Publishing Azure Services
BizTalk360
 
Optimise Business Activity Tracking – Insights from Smurfit Kappa
BizTalk360
 
Optimise Business Activity Tracking – Insights from Smurfit Kappa
BizTalk360
 
What's inside "migrating to biz talk server 2020" Book (BizTalk360 Webinar)
BizTalk360
 
Integration Monday - Logic Apps: Development Experiences
BizTalk360
 
Integration Monday - BizTalk Migrator Deep Dive
BizTalk360
 
Testing for Logic App Solutions | Integration Monday
BizTalk360
 
No-Slides
BizTalk360
 
System Integration using Reactive Programming | Integration Monday
BizTalk360
 
Building workflow solution with Microsoft Azure and Cloud | Integration Monday
BizTalk360
 
Serverless Minimalism: How to architect your apps to save 98% on your Azure b...
BizTalk360
 
Migrating BizTalk Solutions to Azure: Mapping Messages | Integration Monday
BizTalk360
 
Integration-Monday-Infrastructure-As-Code-With-Terraform
BizTalk360
 
Integration-Monday-Stateful-Programming-Models-Serverless-Functions
BizTalk360
 
Integration-Monday-Serverless-Slackbots-with-Azure-Durable-Functions
BizTalk360
 
Integration-Monday-Building-Stateful-Workloads-Kubernetes
BizTalk360
 
Integration-Monday-Logic-Apps-Tips-Tricks
BizTalk360
 
Integration-Monday-Terraform-Serverless
BizTalk360
 
Integration-Monday-Microsoft-Power-Platform
BizTalk360
 
One name unify them all
BizTalk360
 
Securely Publishing Azure Services
BizTalk360
 

Recently uploaded (20)

PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PDF
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
PDF
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 

A lap around Azure Data Factory

  • 1. Sponsored & Brought to you by A Lap around Azure Data Factory Martin Abbott http://www.twitter.com/martinabbott https://au.linkedin.com/in/mjabbott
  • 2. A Lap around Azure Data Factory Martin Abbott @martinabbott
  • 3. About me 10+ years experience Integration, messaging and cloud person Organiser of Perth Microsoft Cloud User Group Member of GlobalAzure Bootcamp admin team BizTalk developer and architect Identity management maven IoT enthusiast Soon to be Australian Citizen
  • 5. Overview of an Azure Data Factory
  • 6. Overview of an Azure Data Factory • Cloud based data integration • Orchestration and transformation • Automation • Large volumes of data • Part of Cortana Analytics Suite Information Management • Fully managed service, scalable, reliable
  • 7. Anatomy of an Azure Data Factory An Azure Data Factory is made up of:
  • 8. Linked services • Represents either • a data store • File system • On-premises SQL Server • Azure storage • Azure DocumentDB • Azure Data Lake Store • etc. • a compute resource • HDInsight (own or on demand) • Azure Machine Learning Endpoint • Azure Batch • Azure SQL Database • Azure Data Lake Analytics
  • 9. Data sets • Named references to data • Used for both input and output • Identifies structure • Files, tables, folders, documents • Internal or external • Use SliceStart and SliceEnd system variables to create distinct slices on output data sets, e.g., unique folder based on date
  • 10. Activities • Define actions to perform on data • Zero or more input data sets • One or more output data sets • Unit of orchestration of a pipeline • Activities for • data movement • data transformation • data analysis • Use WindowStart and WindowEnd system variables to select relevant data using a tumbling window
  • 11. Pipelines • Logical grouping of activities • Provides a unit of work that performs a task • Can set active period to run in the past to back fill data slices • Back filling can be performed in parallel
  • 12. Scheduling • Data sets have an availability "availability": { "frequency": "Hour", "interval": 1 } • Activities have a schedule (tumbling window) "scheduler": { "frequency": "Hour", "interval": 1 } • Pipelines have an active period "start": "2015-01-01T08:00:00Z" "end": "2015-01-01T11:00:00Z“ OR “end” = “start” + 48 hours if not specified OR “end”: “9999-09-09” for indefinite
  • 13. Data Lineage / Dependencies • How does Azure Data Factory know how to link Pipelines? • Uses Input and Output data sets • On the Diagram in portal, can toggle data lineage on and off • external required (and externalData policy optional) for data sets created outside Azure Data Factory • How does Azure Data Factory know how to link data sets that have different schedules? • Uses startTime, endTime and dependency model
  • 14. Functions • Rich set of functions to • Specify data selection queries • Specify input data set dependencies • [startTime, endTime] – data set slice • [f(startTime, endTime), g(startTime, endTime)] – dependency period • Use system variables as parameters • Functions for text formatting and date/time selection • Text.Format('{0:yyyy}',WindowStart) • Date.AddDays(SliceStart, -7 - Date.DayOfWeek(SliceStart))
  • 16. Data movement SOURCE SINK Azure Blob Azure Blob Azure Table Azure Table Azure SQL Database Azure SQL Database Azure SQL Data Warehouse Azure SQL Data Warehouse Azure DocumentDB Azure DocumentDB Azure Data Lake Store Azure Data Lake Store SQL Server on-premises / Azure IaaS SQL Server on-premises / Azure IaaS File System on-premises / Azure IaaS File System on-premises / Azure IaaS Oracle Database on-premises / Azure IaaS MySQL Database on-premises / Azure IaaS DB2 Database on-premises / Azure IaaS Teradata Database on-premises / Azure IaaS Sybase Database on-premises / Azure IaaS PostgreSQL Database on-premises / Azure IaaS
  • 17. Data movement • Uses the Copy activity and Data Movement Service or Data Management Gateway (for on-premises or Azure IaaS) • Globally available service for data movement (except Australia) • executes at sink location, unless source is on-premises (or IaaS) then uses Data Management Gateway • Exactly one input and exactly one output • Support for securely moving between on-premises and the cloud • Automatic type conversions from source to sink data types • File based copy supports binary, text and Avro formats, and allows for conversion between formats • Data Management Gateway supports multiple data sources but only a single Azure Data Factory Source Data Movement Service WAN Serialisation- Deserialisation Compression Column Mapping … WAN Sink Source Data Management Gateway LAN/ WAN Serialisation- Deserialisation Compression Column Mapping … SinkLAN/ WAN
  • 18. Data analysis and transformation
  • 19. Data analysis and transformation TRANSFORMATION ACTIVITY COMPUTE ENVIRONMENT Hive HDInsight [Hadoop] Pig HDInsight [Hadoop] MapReduce HDInsight [Hadoop] Hadoop Streaming HDInsight [Hadoop] Machine Learning activities: Batch Execution and Update Resource Azure VM Stored Procedure Azure SQL Database Data Lake Analytics U-SQL Azure Data Lake Analytics DotNet HDInsight [Hadoop] or Azure Batch
  • 20. Data analysis and transformation • Two types of compute environment • On-demand: Data Factory fully manages environment, currently HDInsight only • Set timeToLive to set allowed idle time once job finishes • Set osType for windows or linux • Set clusterSize to determine number of nodes • Provisioning an HDInsight cluster on-demand can take some time • Bring your own: Register own computing environment for use as a linked service • HDInsight Linked Service • clusterUri, username, password and location • Azure Batch Linked Service • accountName, accessKey and poolName • Machine Learning Linked Service • mlEndpoint and apiKey • Data Lake Analytics Linked Service • accountName, dataLakeAnalyticsUri and authorization • Azure SQL Database Linked Service • connectionString
  • 22. Development • JSON for all artefacts • Ease of management by source control • Can be developed using: • Data Factory Editor • In Azure Portal • Create and deploy artefacts • PowerShell • Cmdlets for each main function in PS ARM • Visual Studio • Azure Data Factory Templates • .NET SDK
  • 23. Visual Studio • Rich set of templates including • Sample applications • Data analysis and transformation using Hive and Pig • Data movement between typical environments • Can include sample data • Can create Azure Data Factory, storage and compute resources • Can Publish to Azure Data Factory • No toolbox, mostly hand crafting JSON
  • 24. Tips and Tricks with Visual Studio Templates • Something usually fails • Issues with sample data • Run once to create Data Factory and storage accounts • Usually first run will also create a folder containing Sample Data but NO JSON artifacts • May need to manually edit PowerShell scripts or perform manual upload • Once corrected, deselect Sample Data and run again creating new solution • Ensure Publish to Data Factory is deselected and JSON artifacts are created • Issues with Data Factory deployment • Go to portal and check what failed • May need to manually create item but deleting published item and recreating with JSON from project • When deploying, may need to unselect item that is failing • You cannot delete from the project • Need to Exclude From Project • Once excluded can delete from disk
  • 25. Deployment • Add Config files to your Visual Studio project • Deployment files contain, for instance, connection strings to resources that are replaced at Publish time • Add deployment files for each environment you are deploying to, e.g., Dev, UAT, Prod • When publishing to Azure Data Factory choose appropriate Config file to ensure correct settings are applied • Publish only artefacts required
  • 27. Monitoring • Data slices may fail • Drill in to errors, diagnose, fix and rerun • Failed data slices can be rerun and all dependencies are managed by Azure Data Factory • Upstream slices that are Ready stay available • Downstream slices that are dependent stay Pending • Enable diagnostics to produce logs, disabled by default • Add Alerts for Failed or Successful Runs to receive email notification
  • 30. Pricing – Low frequency ( <= 1 / day ) USAGE PRICE Cloud First 5 activities/month Free 6 – 100 activities/month $0.60 per activity >100 activities/month $0.48 per activity On-Premises First 5 activities/month Free 6 – 100 activities/month $1.50 per activity >100 activities/month $1.20 per activity * Pricing in USD correct at 4 December 2015
  • 31. Pricing – High frequency ( > 1 / day ) USAGE PRICE Cloud <= 100 activities/month $0.80 per activity >100 activities/month $0.64 per activity On-Premises <= 100 activities/month $2.50 per activity >100 activities/month $2.00 per activity * Pricing in USD correct at 4 December 2015
  • 32. Pricing – Data movement Cloud $0.25 per hour On-Premises $0.10 per hour Pricing – Inactive pipeline $0.80/month * Pricing in USD correct at 4 December 2015
  • 33. Summary • Use Azure Data Factory if: • Dealing with Big Data • Source or destination is in the cloud • Cut down environment cost • Cut down administration cost • Azure is on one side of the movement / transformation • Consider hybrid scenarios with other data management tools, for example SQL Server Integration Services
  • 34. More Information • Documentation portal • https://azure.microsoft.com/en-us/documentation/services/data- factory/ • Learning map • https://azure.microsoft.com/en-us/documentation/articles/data- factory-learning-map/ • Samples on github • https://github.com/Azure/Azure-DataFactory