SlideShare a Scribd company logo
A look inside pandas
design and development
          Wes McKinney
        Lambda Foundry, Inc.

            @wesmckinn

    NYC Python Meetup, 1/10/2012


                                   1
a.k.a. “Pragmatic Python
 for high performance
       data analysis”



                           2
a.k.a. “Rise of the pandas”



                              3
Me




     4
More like...




SPEED!!!

                          5
Or maybe... (j/k)




                    6
Me
• Mathematician at heart
• 3 years in the quant finance industry
• Last 2: statistics + freelance + open source
• My new company: Lambda Foundry
 • Building analytics and tools for finance
    and other domains


                                                 7
Me
• Blog: http://blog.wesmckinney.com
• GitHub: http://github.com/wesm
• Twitter: @wesmckinn
• Working on “Python for Data Analysis” for
  O’Reilly Media
• Giving PyCon tutorial on pandas (!)

                                              8
pandas?
• http://pandas.sf.net
• Swiss-army knife of (in-memory) data
  manipulation in Python

  • Like R’s data.frame on steroids
  • Excellent performance
  • Easy-to-use, highly consistent API
• A foundation for data analysis in Python
                                             9
pandas

• In heavy production use in the financial
  industry
• Generally much better performance than
  other open source alternatives (e.g. R)
• Hope: basis for the “next generation” data
  analytical environment in Python



                                               10
Simplifying data wrangling

• Data munging / preparation / cleaning /
  integration is slow, error prone, and time
  consuming
• Everyone already <3’s Python for data
  wrangling: pandas takes it to the next level




                                                 11
Explosive pandas growth
• Last 6 months: 240 files changed
  49428 insertions(+), 15358 deletions(-)

                          Cython-generated C removed




                                                       12
Rigorous unit testing
• Need to be able to trust your $1e3/e6/e9s
  to pandas
• > 98% line coverage as measured by
  coverage.py
• v0.3.0 (2/19/2011): 533 test functions
• v0.7.0 (1/09/2012): 1272 test functions

                                              13
Some development asides
• I get a lot of questions about my dev env
• Emacs + IPython FTW
• Indispensible development tools
 • pdb (and IPython-enhanced pdb)
 • pylint / pyflakes (integrated with Emacs)
 • nose
 • coverage.py
• grin, for searching code. >> ack/grep IMHO
                                               14
IPython
• Matthew Goodman: “If you are not using
  this tool, you are doing it wrong!”

• Tab completion, introspection, interactive
  debugger, command history

• Designed to enhance your productivity in
  every way. I can’t live without it

• IPython HTML notebook is a game changer
                                               15
Profiling and optimization
• %time, %timeit in IPython
• %prun, to profile a statement with cProfile
• %run -p to profile whole programs
• line_profiler module, for line-by-line timing
• Optimization: find right algorithm first.
  Cython-ize the bottlenecks (if need be)


                                                 16
Other things that matter
• Follow PEP8 religiously
 • Naming conventions, other code style
 • 80 character per line hard limit
• Test more than you think you need to, aim
  for 100% line coverage

• Avoid long functions (> 50 lines), refactor
  aggressively

                                                17
I’m serious about
  function length




 http://gist.github.com/1580880
                                  18
Don’t make a mess




        Uncle Bob

YouTube: “What killed Smalltalk could kill s/Ruby/Python, too”
                                                                 19
Other stuff
• Good keyboard




                       20
Other stuff
• Big monitors




                         21
Other stuff
• Ergonomic chair (good hacking posture)




                                           22
pandas DataFrame
•    Jack-of-trades tabular data structure
    In [10]: tips[:10]
    Out[10]:
        total_bill tip     sex      smoker   day   time     size
    1   16.99       1.01   Female   No       Sun   Dinner   2
    2   10.34       1.66   Male     No       Sun   Dinner   3
    3   21.01       3.50   Male     No       Sun   Dinner   3
    4   23.68       3.31   Male     No       Sun   Dinner   2
    5   24.59       3.61   Female   No       Sun   Dinner   4
    6   25.29       4.71   Male     No       Sun   Dinner   4
    7   8.770       2.00   Male     No       Sun   Dinner   2
    8   26.88       3.12   Male     No       Sun   Dinner   4
    9   15.04       1.96   Male     No       Sun   Dinner   2
    10 14.78        3.23   Male     No       Sun   Dinner   2


                                                                   23
DataFrame

• Heterogeneous columns
• Data alignment and axis indexing
• No-copy data selection (!)
• Agile reshaping
• Fast joining, merging, concatenation

                                         24
DataFrame
• Axis indexing enable rich data alignment,
  joins / merges, reshaping, selection, etc.

  day             Fri     Sat     Sun     Thur
  sex    smoker
  Female No       3.125   2.725   3.329   2.460
         Yes      2.683   2.869   3.500   2.990
  Male   No       2.500   3.257   3.115   2.942
         Yes      2.741   2.879   3.521   3.058




                                                  25
Let’s have a little fun

 To the IPython Notebook, Batman

http://ashleyw.co.uk/project/food-nutrient-database




                                                      26
Axis indexing, the special
 pandas-flavored sauce
• Enables “alignment-free” programming
• Prevents major source of data munging
  frustration and errors
• Fast (O(1) or O(log n)) selecting data
• Powerful way of describing reshape / join /
  merge / pivot-table operations


                                                27
Data alignment, join ops

• The brains live in the axis index
• Indexes know how to do set logic
• Join/align ops: produce “indexers”
 • Mapping between source/output
• Indexer passed to fast “take” function

                                           28
Index join example
left      right          joined     lidx     ridx
                               a    -1         0
 d
        a                      b     1         1
 b
   JOIN b                      c     2         2
 c
        c                      d     0        -1
 e
                               e     3        -1

left_values.take(lidx, axis)       reindexed data

                                                    29
Implementing index joins
• Completely irregular case: use hash tables
• Monotonic / increasing values
 • Faster specialized left/right/inner/outer
    join routines, especially for native types
    (int32/64, datetime64)
• Lookup hash table is persisted inside the
  Index object!


                                                 30
Um, hash table?
    left         joined   indexer




{ }
                   a        -1
d          0
                   b         1
b          1
               map c         2
c          2
                   d         0
e          3
                   e         3




                                    31
Hash tables
• Form the core of many critical pandas
  algorithms
 • unique (for set intersection / union)
 • “factor”ize
 • groupby
 • join / merge / align

                                           32
GroupBy, a brief
 algorithmic exploration
• Simple problem: compute group sums for a
  vector given group identifications
 labels values
   b      -1
                         unique       group
   b       3
                         labels       sums
    a      2
                            a           2
    a      3
                           b            4
   b       2
    a     -4
    a      1
                                              33
GroupBy: Algo #1

unique_labels = np.unique(labels)
results = np.empty(len(unique_labels))

for i, label in enumerate(unique_labels):
    results[i] = values[labels == label].sum()



    For all these examples, assume N data
         points and K unique groups


                                                 34
GroupBy: Algo #1, don’t do this

 unique_labels = np.unique(labels)
 results = np.empty(len(unique_labels))

 for i, label in enumerate(unique_labels):
     results[i] = values[labels == label].sum()


Some obvious problems
  • O(N * K) comparisons. Slow for large K
  • K passes through values
  • numpy.unique is pretty slow (more on this later)
                                                       35
GroupBy: Algo #2
Make this dict in O(N) (pseudocode)
   g_inds = {label : [i where labels[i] == label]}
Now
    for i, label in enumerate(unique_labels):
        indices = g_inds[label]
        label_values = values.take(indices)
        result[i] = label_values.sum()


 Pros: one pass through values. ~O(N) for N >> K
 Cons: g_inds can be built in O(N), but too many
 list/dict API calls, even using Cython

                                                     36
GroupBy: Algo #3, much faster
 • “Factorize” labels
  • Produce vectorto the unique observedK-1
     corresponding
                      of integers from 0, ...,
      values (use a hash table)
   result = np.zeros(k)
   for i, j in enumerate(factorized_labels):
       result[j] += values[i]

Pros: avoid expensive dict-of-lists creation. Avoid
numpy.unique and have option to not to sort the
unique labels, skipping O(K lg K) work
                                                      37
Speed comparisons
• Test case: 100,000 data points, 5,000 groups
 • Algo 3, don’t sort groups: 5.46 ms
 • Algo 3, sort groups: 10.6 ms
 • Algo 2: 155 ms (14.6x slower)
 • Algo 1: 10.49 seconds (990x slower)
• Algos 2/3 implemented in Cython
                                                 38
GroupBy


• Situation is significantly more complicated
  in the multi-key case.
• More on this later


                                               39
Algo 3, profiled
In [32]: %prun for _ in xrange(100) algo3_nosort()

cumtime   filename:lineno(function)
  0.592   <string>:1(<module>)
  0.584   groupby_ex.py:37(algo3_nosort)
  0.535   {method 'factorize' of DictFactorizer' objects}
  0.047   {pandas._tseries.group_add}
  0.002   numeric.py:65(zeros_like)
  0.001   {method 'fill' of 'numpy.ndarray' objects}
  0.000   {numpy.core.multiarray.empty_like}
  0.000   {numpy.core.multiarray.empty}


                     Curious
                                                        40
Slaves to algorithms

• Turns out that numpy.unique works by
  sorting, not a hash table. Thus O(N log N)
  versus O(N)
• Takes > 70% of the runtime of Algo #2
• Factorize is the new bottleneck, possible to
  go faster?!



                                                 41
Unique-ing faster
Basic algorithm using a dict, do this in Cython

        table = {}
        uniques = []
        for value in values:
            if value not in table:
                 table[value] = None # dummy
                 uniques.append(value)
        if sort:
            uniques.sort()

     Performance may depend on the number of
          unique groups (due to dict resizing)
                                                  42
Unique-ing faster




No Sort: at best ~70x faster, worst 6.5x faster
   Sort: at best ~70x faster, worst 1.7x faster
                                                  43
Remember




           44
Can we go faster?
• Python dictimplementations one of the best
  hash table
              is renowned as
                             anywhere
• But:
 • No abilityresizings
    arbitrary
              to preallocate, subject to

  • We don’t care about reference counting,
    throw away table once done
• Hm, what to do, what to do?
                                               45
Enter klib
• http://github.com/attractivechaos/klib
• Small, portable C data structures and
  algorithms
• khash: fast, memory-efficient hash table
• Hack a Cython interface (pxd file) and
  we’re in business



                                            46
khash Cython interface
cdef extern from "khash.h":
    ctypedef struct kh_pymap_t:
        khint_t n_buckets, size, n_occupied, upper_bound
        uint32_t *flags
        PyObject **keys
        Py_ssize_t *vals

    inline kh_pymap_t* kh_init_pymap()
    inline void kh_destroy_pymap(kh_pymap_t*)
    inline khint_t kh_get_pymap(kh_pymap_t*, PyObject*)
    inline khint_t kh_put_pymap(kh_pymap_t*, PyObject*, int*)
    inline void kh_clear_pymap(kh_pymap_t*)
    inline void kh_resize_pymap(kh_pymap_t*, khint_t)
    inline void kh_del_pymap(kh_pymap_t*, khint_t)
    bint kh_exist_pymap(kh_pymap_t*, khiter_t)


                                                                47
PyDict vs. khash unique




Conclusions: dict resizing makes a big impact
                                                48
Use strcmp in C




                  49
Gloves come off
             with int64




PyObject* boxing / PyRichCompare obvious culprit
                                                   50
Some NumPy-fu
• Think about the sorted factorize algorithm
 • Want to compute sorted unique labels
 • Also compute integer ids relative to the
    unique values, without making 2 passes
    through a hash table!

    sorter = uniques.argsort()
    reverse_indexer = np.empty(len(sorter))
    reverse_indexer.put(sorter, np.arange(len(sorter)))

    labels = reverse_indexer.take(labels)


                                                          51
Aside, for the R community
• R’s factor function is suboptimal
• Makes two hash table passes
 • unique          uniquify and sort
 • match           ids relative to unique labels
• This is highly fixable
• R’s integer unique is about 40% slower than
  my khash_int64 unique

                                                   52
Multi-key GroupBy
• Significantly more complicated because the
  number of possible key combinations may
  be very large
• Example, group by two sets of labels
 • 1000 unique values in each
 • “Key space”: 1,000,000, even though
    observed key pairs may be small


                                              53
Multi-key GroupBy
Simplified Algorithm
  id1, count1 = factorize(label1)
  id2, count2 = factorize(label2)
  group_id = id1 * count2 + id2
  nobs = count1 * count2

  if nobs > LARGE_NUMBER:
      group_id, nobs = factorize(group_id)

  result = group_add(data, group_id, nobs)




                                             54
Multi-GroupBy
• Pathological, but realistic example
• 50,000 values, 1e4 unique keys x 2, key
  space 1e8
• Compress key space: 9.2 ms
• Don’t compress: 1.2s (!)
• I actually discovered this problem while
  writing this talk (!!)


                                             55
Speaking of performance
• Testing the correctness of code is easy:
  write unit tests
• How to systematically test performance?
• Need to catch performance regressions
• Being mildly performance obsessed, I got
  very tired of playing performance whack-a-
  mole with pandas


                                               56
vbench project
• http://github.com/wesm/vbench
• Run benchmarks for each version of your
  codebase
• vbench checks out each revision of your
  codebase, builds it, and runs all the
  benchmarks you define
• Results stored in a SQLite database
• Only works with git right now
                                            57
vbench
join_dataframe_index_single_key_bigger = 
    Benchmark("df.join(df_key2, on='key2')", setup,
              name='join_dataframe_index_single_key_bigger')




                                                               58
vbench
stmt3 = "df.groupby(['key1', 'key2']).sum()"
groupby_multi_cython = Benchmark(stmt3, setup,
                                 name="groupby_multi_cython",
                                 start_date=datetime(2011, 7, 1))




                                                                    59
Fast database joins
• Problem: SQL-compatible left, right, inner,
  outer joins
• Row duplication
• Join on index and / or join on columns
• Sorting vs. not sorting
• Algorithmically closely related to groupby
  etc.


                                                60
Row duplication
  left         right         outer join
key lvalue   key rvalue   key lvalue rvalue
foo   1      foo    5     foo    1     5
foo   2      foo    6     foo    1     6
bar   3      bar    7     foo    2     5
baz   4      qux    8     foo    2     6
                          bar    3     7
                          baz    4    NA
                          qux   NA     8

                                              61
Join indexers
  left         right         outer join
key lvalue   key rvalue   key lidx ridx
foo   1      foo    5     foo    0    0
foo   2      foo    6     foo    0    1
bar   3      bar    7     foo    1    0
baz   4      qux    8     foo    1    1
                          bar    2    2
                          baz    3   -1
                          qux   -1    3

                                          62
Join indexers
    left         right         outer join
  key lvalue   key rvalue   key lidx ridx
  foo   1      foo    5     foo    0    0
  foo   2      foo    6     foo    0    1
  bar   3      bar    7     foo    1    0
  baz   4      qux    8     foo    1    1
                            bar    2    2
                            baz    3   -1
Problem: factorized keys    qux   -1    3
   need to be sorted!
                                            63
An algorithmic observation

• If N values are known to be from the range
  0 through K - 1, can be sorted in O(N)
• Variant of counting sort
• For our purposes, only compute the
  sorting indexer (argsort)



                                               64
Winning join algorithm
                                 sort keys   don’t sort keys
   Factorize keys columns
                                O(K log K) or O(N)
     Compute / compress
       group indexes                  O(N)       (refactorize)


   "Sort" by group indexes
                                      O(N)      (counting sort)


    Compute left / right join
   indexers for join method      O(N_output)
   Remap indexers relative
   to original row ordering      O(N_output)

                                 O(N_output)        (this step is actually
   Move data efficiently into
     output DataFrame                                 fairly nontrivial)

                                                                             65
“You’re like CLR, I’m like CLRS”
                    - “Kill Dash Nine”, by Monzy




                                                   66
Join test case

• Left:pairs rows, 2 key columns, 8k unique
  key
        80k

• Right: 8k rows, 2 key columns, 8k unique
  key pairs
• 6k matching key pairs between the tables,
  many-to-one join
• One column of numerical values in each
                                              67
Join test case

• Many-to-many case: stack right DataFrame
  on top of itself to yield 16k rows, 2 rows
  for each key pair
• Aside: sorting the pesky O(K log K)), not
  the runtime (that
                     unique keys dominates

  included in these benchmarks



                                               68
Quick, algebra!

     Many-to-one             Many-to-many
• Left join: 80k rows    • Left join: 140k rows
• Right join: 62k rows   • Right join: 124k rows
• Inner join: 60k rows   • Inner join: 120k rows
• Outer join: 82k rows   • Outer join: 144k rows

                                                   69
Results vs. some R packages




        * relative timings
                              70
Results vs SQLite3
         Absolute timings




      * outer is LEFT   OUTER   in SQLite3

 Note: In SQLite3 doing something like




                                             71
DataFrame sort by columns
• Applied same ideas / tools to “sort by
  multiple columns op” yesterday




                                           72
The bottom line
• Just a flavor: pretty much all of pandas has
  seen the same level of design effort and
  performance scrutiny
• Make sure whoever implemented your data
  structures and algorithms care about
  performance. A lot.
• Python has amazingly powerful and
  productive tools for implementation work


                                                73
Thanks!

• Follow me on Twitter: @wesmckinn
• Blog: http://blog.wesmckinney.com
• Exciting Python things ahead in 2012


                                         74

More Related Content

What's hot (20)

PDF
Travaux Dirigés : Algorithmique et Structure de Données
Anass41
 
PDF
The Art and Science of DDS Data Modelling
Angelo Corsaro
 
PPTX
Floyd Warshall Algorithm
Imamul Kadir
 
PDF
Stuart russell and peter norvig artificial intelligence - a modern approach...
Lê Anh Đạt
 
PDF
TP C++ : Correction
L’Université Hassan 1er Settat
 
PDF
Introduction to Approximation Algorithms
Jhoirene Clemente
 
PDF
[FR] Intro aux basiques de Photoshop et Lightroom
Stéphane Baril
 
PPTX
C#.pptx
rumimamani
 
PPTX
PRIM'S ALGORITHM
garishma bhatia
 
PPTX
Maximal and minimal elements of poset.pptx
Kiran Kumar Malik
 
PPT
Introduction to CLIPS Expert System
Motaz Saad
 
PPTX
Présentation python
Sarah
 
PPTX
Unit 210 - Lesson 3 - Bandwidth
The English Martyrs School & Sixth Form College
 
PPTX
Branch and bound
kamar MEDDAH
 
PPT
Matematicas para computadoras
Salvador Rosendo
 
PPT
Uniformed tree searching
Ayaelshiwi
 
PPTX
Langage C#
Jean-Baptiste Vigneron
 
PPT
algo
Rao Khan
 
PPTX
ch2-BJTremaining.pptx
NischalBhusal1
 
PPTX
Fuzzy logic
Mahmoud Hussein
 
Travaux Dirigés : Algorithmique et Structure de Données
Anass41
 
The Art and Science of DDS Data Modelling
Angelo Corsaro
 
Floyd Warshall Algorithm
Imamul Kadir
 
Stuart russell and peter norvig artificial intelligence - a modern approach...
Lê Anh Đạt
 
Introduction to Approximation Algorithms
Jhoirene Clemente
 
[FR] Intro aux basiques de Photoshop et Lightroom
Stéphane Baril
 
C#.pptx
rumimamani
 
PRIM'S ALGORITHM
garishma bhatia
 
Maximal and minimal elements of poset.pptx
Kiran Kumar Malik
 
Introduction to CLIPS Expert System
Motaz Saad
 
Présentation python
Sarah
 
Unit 210 - Lesson 3 - Bandwidth
The English Martyrs School & Sixth Form College
 
Branch and bound
kamar MEDDAH
 
Matematicas para computadoras
Salvador Rosendo
 
Uniformed tree searching
Ayaelshiwi
 
algo
Rao Khan
 
ch2-BJTremaining.pptx
NischalBhusal1
 
Fuzzy logic
Mahmoud Hussein
 

Viewers also liked (20)

PDF
pandas: Powerful data analysis tools for Python
Wes McKinney
 
PDF
Python for Financial Data Analysis with pandas
Wes McKinney
 
PDF
Python Data Wrangling: Preparing for the Future
Wes McKinney
 
PDF
pandas: a Foundational Python Library for Data Analysis and Statistics
Wes McKinney
 
PDF
Practical Medium Data Analytics with Python (10 Things I Hate About pandas, P...
Wes McKinney
 
PDF
vbench: lightweight performance testing for Python
Wes McKinney
 
PDF
Memory Pools for C and C++
Pathfinder Solutions
 
KEY
NumPy/SciPy Statistics
Enthought, Inc.
 
PDF
What's new in pandas and the SciPy stack for financial users
Wes McKinney
 
PDF
Ibis: Scaling the Python Data Experience
Wes McKinney
 
PDF
Structured Data Challenges in Finance and Statistics
Wes McKinney
 
PDF
My Data Journey with Python (SciPy 2015 Keynote)
Wes McKinney
 
PDF
DataFrames: The Good, Bad, and Ugly
Wes McKinney
 
PDF
Data pipelines from zero to solid
Lars Albertsson
 
PDF
DataFrames: The Extended Cut
Wes McKinney
 
PDF
Luigi presentation NYC Data Science
Erik Bernhardsson
 
PDF
Data Analytics with Pandas and Numpy - Python
Chetan Khatri
 
PPTX
A Beginner's Guide to Building Data Pipelines with Luigi
Growth Intelligence
 
PDF
Data Analysis and Statistics in Python using pandas and statsmodels
Wes McKinney
 
PDF
Python Data Ecosystem: Thoughts on Building for the Future
Wes McKinney
 
pandas: Powerful data analysis tools for Python
Wes McKinney
 
Python for Financial Data Analysis with pandas
Wes McKinney
 
Python Data Wrangling: Preparing for the Future
Wes McKinney
 
pandas: a Foundational Python Library for Data Analysis and Statistics
Wes McKinney
 
Practical Medium Data Analytics with Python (10 Things I Hate About pandas, P...
Wes McKinney
 
vbench: lightweight performance testing for Python
Wes McKinney
 
Memory Pools for C and C++
Pathfinder Solutions
 
NumPy/SciPy Statistics
Enthought, Inc.
 
What's new in pandas and the SciPy stack for financial users
Wes McKinney
 
Ibis: Scaling the Python Data Experience
Wes McKinney
 
Structured Data Challenges in Finance and Statistics
Wes McKinney
 
My Data Journey with Python (SciPy 2015 Keynote)
Wes McKinney
 
DataFrames: The Good, Bad, and Ugly
Wes McKinney
 
Data pipelines from zero to solid
Lars Albertsson
 
DataFrames: The Extended Cut
Wes McKinney
 
Luigi presentation NYC Data Science
Erik Bernhardsson
 
Data Analytics with Pandas and Numpy - Python
Chetan Khatri
 
A Beginner's Guide to Building Data Pipelines with Luigi
Growth Intelligence
 
Data Analysis and Statistics in Python using pandas and statsmodels
Wes McKinney
 
Python Data Ecosystem: Thoughts on Building for the Future
Wes McKinney
 
Ad

Similar to A look inside pandas design and development (20)

PDF
Slides 111017220255-phpapp01
Ken Mwai
 
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
PDF
SciPy 2011 pandas lightning talk
Wes McKinney
 
PPTX
data science for engineering reference pdf
fatehiaryaa
 
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
kalai75
 
PPTX
DATA ANALYSIS AND VISUALISATION using python
ChiragNahata2
 
PDF
Wes McKinney - Python for Data Analysis-O'Reilly Media (2012).pdf
Blue Sea
 
PPTX
Meetup Junio Data Analysis with python 2018
DataLab Community
 
PDF
Python for Data Analysis Data Wrangling with Pandas NumPy and IPython Wes Mck...
arianmutchpp
 
PDF
Getting started with pandas
maikroeder
 
PDF
Python for Data Analysis_ Data Wrangling with Pandas, Numpy, and Ipython ( PD...
R.K.College of engg & Tech
 
PPTX
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
PDF
Pandas
maikroeder
 
PDF
Migrating from matlab to python
ActiveState
 
PPTX
Presentation on the basic of numpy and Pandas
ipazhaniraj
 
PPTX
Unit 3_Numpy_VP.pptx
vishnupriyapm4
 
PPTX
Dc python meetup
Jeffrey Clark
 
PDF
Python pandas I .pdf gugugigg88iggigigih
rajveerpersonal21
 
PDF
Python for Data Analysis Data Wrangling with Pandas NumPy and IPython 1st Edi...
morvehnobbe
 
Slides 111017220255-phpapp01
Ken Mwai
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
SciPy 2011 pandas lightning talk
Wes McKinney
 
data science for engineering reference pdf
fatehiaryaa
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
kalai75
 
DATA ANALYSIS AND VISUALISATION using python
ChiragNahata2
 
Wes McKinney - Python for Data Analysis-O'Reilly Media (2012).pdf
Blue Sea
 
Meetup Junio Data Analysis with python 2018
DataLab Community
 
Python for Data Analysis Data Wrangling with Pandas NumPy and IPython Wes Mck...
arianmutchpp
 
Getting started with pandas
maikroeder
 
Python for Data Analysis_ Data Wrangling with Pandas, Numpy, and Ipython ( PD...
R.K.College of engg & Tech
 
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
Pandas
maikroeder
 
Migrating from matlab to python
ActiveState
 
Presentation on the basic of numpy and Pandas
ipazhaniraj
 
Unit 3_Numpy_VP.pptx
vishnupriyapm4
 
Dc python meetup
Jeffrey Clark
 
Python pandas I .pdf gugugigg88iggigigih
rajveerpersonal21
 
Python for Data Analysis Data Wrangling with Pandas NumPy and IPython 1st Edi...
morvehnobbe
 
Ad

More from Wes McKinney (20)

PDF
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
Wes McKinney
 
PDF
Solving Enterprise Data Challenges with Apache Arrow
Wes McKinney
 
PDF
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
PDF
Apache Arrow: High Performance Columnar Data Framework
Wes McKinney
 
PDF
New Directions for Apache Arrow
Wes McKinney
 
PDF
Apache Arrow Flight: A New Gold Standard for Data Transport
Wes McKinney
 
PDF
ACM TechTalks : Apache Arrow and the Future of Data Frames
Wes McKinney
 
PDF
Apache Arrow: Present and Future @ ScaledML 2020
Wes McKinney
 
PDF
PyCon Colombia 2020 Python for Data Analysis: Past, Present, and Future
Wes McKinney
 
PDF
Apache Arrow: Leveling Up the Analytics Stack
Wes McKinney
 
PDF
Apache Arrow Workshop at VLDB 2019 / BOSS Session
Wes McKinney
 
PDF
Apache Arrow: Leveling Up the Data Science Stack
Wes McKinney
 
PDF
Ursa Labs and Apache Arrow in 2019
Wes McKinney
 
PDF
PyCon.DE / PyData Karlsruhe keynote: "Looking backward, looking forward"
Wes McKinney
 
PDF
Apache Arrow at DataEngConf Barcelona 2018
Wes McKinney
 
PDF
Apache Arrow: Cross-language Development Platform for In-memory Data
Wes McKinney
 
PDF
Apache Arrow -- Cross-language development platform for in-memory data
Wes McKinney
 
PPTX
Shared Infrastructure for Data Science
Wes McKinney
 
PDF
Data Science Without Borders (JupyterCon 2017)
Wes McKinney
 
PPTX
Memory Interoperability in Analytics and Machine Learning
Wes McKinney
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
Wes McKinney
 
Solving Enterprise Data Challenges with Apache Arrow
Wes McKinney
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
Apache Arrow: High Performance Columnar Data Framework
Wes McKinney
 
New Directions for Apache Arrow
Wes McKinney
 
Apache Arrow Flight: A New Gold Standard for Data Transport
Wes McKinney
 
ACM TechTalks : Apache Arrow and the Future of Data Frames
Wes McKinney
 
Apache Arrow: Present and Future @ ScaledML 2020
Wes McKinney
 
PyCon Colombia 2020 Python for Data Analysis: Past, Present, and Future
Wes McKinney
 
Apache Arrow: Leveling Up the Analytics Stack
Wes McKinney
 
Apache Arrow Workshop at VLDB 2019 / BOSS Session
Wes McKinney
 
Apache Arrow: Leveling Up the Data Science Stack
Wes McKinney
 
Ursa Labs and Apache Arrow in 2019
Wes McKinney
 
PyCon.DE / PyData Karlsruhe keynote: "Looking backward, looking forward"
Wes McKinney
 
Apache Arrow at DataEngConf Barcelona 2018
Wes McKinney
 
Apache Arrow: Cross-language Development Platform for In-memory Data
Wes McKinney
 
Apache Arrow -- Cross-language development platform for in-memory data
Wes McKinney
 
Shared Infrastructure for Data Science
Wes McKinney
 
Data Science Without Borders (JupyterCon 2017)
Wes McKinney
 
Memory Interoperability in Analytics and Machine Learning
Wes McKinney
 

Recently uploaded (20)

PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PPTX
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
PPTX
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
PDF
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PPTX
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PPTX
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PDF
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 

A look inside pandas design and development

  • 1. A look inside pandas design and development Wes McKinney Lambda Foundry, Inc. @wesmckinn NYC Python Meetup, 1/10/2012 1
  • 2. a.k.a. “Pragmatic Python for high performance data analysis” 2
  • 3. a.k.a. “Rise of the pandas” 3
  • 4. Me 4
  • 7. Me • Mathematician at heart • 3 years in the quant finance industry • Last 2: statistics + freelance + open source • My new company: Lambda Foundry • Building analytics and tools for finance and other domains 7
  • 8. Me • Blog: http://blog.wesmckinney.com • GitHub: http://github.com/wesm • Twitter: @wesmckinn • Working on “Python for Data Analysis” for O’Reilly Media • Giving PyCon tutorial on pandas (!) 8
  • 9. pandas? • http://pandas.sf.net • Swiss-army knife of (in-memory) data manipulation in Python • Like R’s data.frame on steroids • Excellent performance • Easy-to-use, highly consistent API • A foundation for data analysis in Python 9
  • 10. pandas • In heavy production use in the financial industry • Generally much better performance than other open source alternatives (e.g. R) • Hope: basis for the “next generation” data analytical environment in Python 10
  • 11. Simplifying data wrangling • Data munging / preparation / cleaning / integration is slow, error prone, and time consuming • Everyone already <3’s Python for data wrangling: pandas takes it to the next level 11
  • 12. Explosive pandas growth • Last 6 months: 240 files changed 49428 insertions(+), 15358 deletions(-) Cython-generated C removed 12
  • 13. Rigorous unit testing • Need to be able to trust your $1e3/e6/e9s to pandas • > 98% line coverage as measured by coverage.py • v0.3.0 (2/19/2011): 533 test functions • v0.7.0 (1/09/2012): 1272 test functions 13
  • 14. Some development asides • I get a lot of questions about my dev env • Emacs + IPython FTW • Indispensible development tools • pdb (and IPython-enhanced pdb) • pylint / pyflakes (integrated with Emacs) • nose • coverage.py • grin, for searching code. >> ack/grep IMHO 14
  • 15. IPython • Matthew Goodman: “If you are not using this tool, you are doing it wrong!” • Tab completion, introspection, interactive debugger, command history • Designed to enhance your productivity in every way. I can’t live without it • IPython HTML notebook is a game changer 15
  • 16. Profiling and optimization • %time, %timeit in IPython • %prun, to profile a statement with cProfile • %run -p to profile whole programs • line_profiler module, for line-by-line timing • Optimization: find right algorithm first. Cython-ize the bottlenecks (if need be) 16
  • 17. Other things that matter • Follow PEP8 religiously • Naming conventions, other code style • 80 character per line hard limit • Test more than you think you need to, aim for 100% line coverage • Avoid long functions (> 50 lines), refactor aggressively 17
  • 18. I’m serious about function length http://gist.github.com/1580880 18
  • 19. Don’t make a mess Uncle Bob YouTube: “What killed Smalltalk could kill s/Ruby/Python, too” 19
  • 20. Other stuff • Good keyboard 20
  • 21. Other stuff • Big monitors 21
  • 22. Other stuff • Ergonomic chair (good hacking posture) 22
  • 23. pandas DataFrame • Jack-of-trades tabular data structure In [10]: tips[:10] Out[10]: total_bill tip sex smoker day time size 1 16.99 1.01 Female No Sun Dinner 2 2 10.34 1.66 Male No Sun Dinner 3 3 21.01 3.50 Male No Sun Dinner 3 4 23.68 3.31 Male No Sun Dinner 2 5 24.59 3.61 Female No Sun Dinner 4 6 25.29 4.71 Male No Sun Dinner 4 7 8.770 2.00 Male No Sun Dinner 2 8 26.88 3.12 Male No Sun Dinner 4 9 15.04 1.96 Male No Sun Dinner 2 10 14.78 3.23 Male No Sun Dinner 2 23
  • 24. DataFrame • Heterogeneous columns • Data alignment and axis indexing • No-copy data selection (!) • Agile reshaping • Fast joining, merging, concatenation 24
  • 25. DataFrame • Axis indexing enable rich data alignment, joins / merges, reshaping, selection, etc. day Fri Sat Sun Thur sex smoker Female No 3.125 2.725 3.329 2.460 Yes 2.683 2.869 3.500 2.990 Male No 2.500 3.257 3.115 2.942 Yes 2.741 2.879 3.521 3.058 25
  • 26. Let’s have a little fun To the IPython Notebook, Batman http://ashleyw.co.uk/project/food-nutrient-database 26
  • 27. Axis indexing, the special pandas-flavored sauce • Enables “alignment-free” programming • Prevents major source of data munging frustration and errors • Fast (O(1) or O(log n)) selecting data • Powerful way of describing reshape / join / merge / pivot-table operations 27
  • 28. Data alignment, join ops • The brains live in the axis index • Indexes know how to do set logic • Join/align ops: produce “indexers” • Mapping between source/output • Indexer passed to fast “take” function 28
  • 29. Index join example left right joined lidx ridx a -1 0 d a b 1 1 b JOIN b c 2 2 c c d 0 -1 e e 3 -1 left_values.take(lidx, axis) reindexed data 29
  • 30. Implementing index joins • Completely irregular case: use hash tables • Monotonic / increasing values • Faster specialized left/right/inner/outer join routines, especially for native types (int32/64, datetime64) • Lookup hash table is persisted inside the Index object! 30
  • 31. Um, hash table? left joined indexer { } a -1 d 0 b 1 b 1 map c 2 c 2 d 0 e 3 e 3 31
  • 32. Hash tables • Form the core of many critical pandas algorithms • unique (for set intersection / union) • “factor”ize • groupby • join / merge / align 32
  • 33. GroupBy, a brief algorithmic exploration • Simple problem: compute group sums for a vector given group identifications labels values b -1 unique group b 3 labels sums a 2 a 2 a 3 b 4 b 2 a -4 a 1 33
  • 34. GroupBy: Algo #1 unique_labels = np.unique(labels) results = np.empty(len(unique_labels)) for i, label in enumerate(unique_labels): results[i] = values[labels == label].sum() For all these examples, assume N data points and K unique groups 34
  • 35. GroupBy: Algo #1, don’t do this unique_labels = np.unique(labels) results = np.empty(len(unique_labels)) for i, label in enumerate(unique_labels): results[i] = values[labels == label].sum() Some obvious problems • O(N * K) comparisons. Slow for large K • K passes through values • numpy.unique is pretty slow (more on this later) 35
  • 36. GroupBy: Algo #2 Make this dict in O(N) (pseudocode) g_inds = {label : [i where labels[i] == label]} Now for i, label in enumerate(unique_labels): indices = g_inds[label] label_values = values.take(indices) result[i] = label_values.sum() Pros: one pass through values. ~O(N) for N >> K Cons: g_inds can be built in O(N), but too many list/dict API calls, even using Cython 36
  • 37. GroupBy: Algo #3, much faster • “Factorize” labels • Produce vectorto the unique observedK-1 corresponding of integers from 0, ..., values (use a hash table) result = np.zeros(k) for i, j in enumerate(factorized_labels): result[j] += values[i] Pros: avoid expensive dict-of-lists creation. Avoid numpy.unique and have option to not to sort the unique labels, skipping O(K lg K) work 37
  • 38. Speed comparisons • Test case: 100,000 data points, 5,000 groups • Algo 3, don’t sort groups: 5.46 ms • Algo 3, sort groups: 10.6 ms • Algo 2: 155 ms (14.6x slower) • Algo 1: 10.49 seconds (990x slower) • Algos 2/3 implemented in Cython 38
  • 39. GroupBy • Situation is significantly more complicated in the multi-key case. • More on this later 39
  • 40. Algo 3, profiled In [32]: %prun for _ in xrange(100) algo3_nosort() cumtime filename:lineno(function) 0.592 <string>:1(<module>) 0.584 groupby_ex.py:37(algo3_nosort) 0.535 {method 'factorize' of DictFactorizer' objects} 0.047 {pandas._tseries.group_add} 0.002 numeric.py:65(zeros_like) 0.001 {method 'fill' of 'numpy.ndarray' objects} 0.000 {numpy.core.multiarray.empty_like} 0.000 {numpy.core.multiarray.empty} Curious 40
  • 41. Slaves to algorithms • Turns out that numpy.unique works by sorting, not a hash table. Thus O(N log N) versus O(N) • Takes > 70% of the runtime of Algo #2 • Factorize is the new bottleneck, possible to go faster?! 41
  • 42. Unique-ing faster Basic algorithm using a dict, do this in Cython table = {} uniques = [] for value in values: if value not in table: table[value] = None # dummy uniques.append(value) if sort: uniques.sort() Performance may depend on the number of unique groups (due to dict resizing) 42
  • 43. Unique-ing faster No Sort: at best ~70x faster, worst 6.5x faster Sort: at best ~70x faster, worst 1.7x faster 43
  • 44. Remember 44
  • 45. Can we go faster? • Python dictimplementations one of the best hash table is renowned as anywhere • But: • No abilityresizings arbitrary to preallocate, subject to • We don’t care about reference counting, throw away table once done • Hm, what to do, what to do? 45
  • 46. Enter klib • http://github.com/attractivechaos/klib • Small, portable C data structures and algorithms • khash: fast, memory-efficient hash table • Hack a Cython interface (pxd file) and we’re in business 46
  • 47. khash Cython interface cdef extern from "khash.h": ctypedef struct kh_pymap_t: khint_t n_buckets, size, n_occupied, upper_bound uint32_t *flags PyObject **keys Py_ssize_t *vals inline kh_pymap_t* kh_init_pymap() inline void kh_destroy_pymap(kh_pymap_t*) inline khint_t kh_get_pymap(kh_pymap_t*, PyObject*) inline khint_t kh_put_pymap(kh_pymap_t*, PyObject*, int*) inline void kh_clear_pymap(kh_pymap_t*) inline void kh_resize_pymap(kh_pymap_t*, khint_t) inline void kh_del_pymap(kh_pymap_t*, khint_t) bint kh_exist_pymap(kh_pymap_t*, khiter_t) 47
  • 48. PyDict vs. khash unique Conclusions: dict resizing makes a big impact 48
  • 50. Gloves come off with int64 PyObject* boxing / PyRichCompare obvious culprit 50
  • 51. Some NumPy-fu • Think about the sorted factorize algorithm • Want to compute sorted unique labels • Also compute integer ids relative to the unique values, without making 2 passes through a hash table! sorter = uniques.argsort() reverse_indexer = np.empty(len(sorter)) reverse_indexer.put(sorter, np.arange(len(sorter))) labels = reverse_indexer.take(labels) 51
  • 52. Aside, for the R community • R’s factor function is suboptimal • Makes two hash table passes • unique uniquify and sort • match ids relative to unique labels • This is highly fixable • R’s integer unique is about 40% slower than my khash_int64 unique 52
  • 53. Multi-key GroupBy • Significantly more complicated because the number of possible key combinations may be very large • Example, group by two sets of labels • 1000 unique values in each • “Key space”: 1,000,000, even though observed key pairs may be small 53
  • 54. Multi-key GroupBy Simplified Algorithm id1, count1 = factorize(label1) id2, count2 = factorize(label2) group_id = id1 * count2 + id2 nobs = count1 * count2 if nobs > LARGE_NUMBER: group_id, nobs = factorize(group_id) result = group_add(data, group_id, nobs) 54
  • 55. Multi-GroupBy • Pathological, but realistic example • 50,000 values, 1e4 unique keys x 2, key space 1e8 • Compress key space: 9.2 ms • Don’t compress: 1.2s (!) • I actually discovered this problem while writing this talk (!!) 55
  • 56. Speaking of performance • Testing the correctness of code is easy: write unit tests • How to systematically test performance? • Need to catch performance regressions • Being mildly performance obsessed, I got very tired of playing performance whack-a- mole with pandas 56
  • 57. vbench project • http://github.com/wesm/vbench • Run benchmarks for each version of your codebase • vbench checks out each revision of your codebase, builds it, and runs all the benchmarks you define • Results stored in a SQLite database • Only works with git right now 57
  • 58. vbench join_dataframe_index_single_key_bigger = Benchmark("df.join(df_key2, on='key2')", setup, name='join_dataframe_index_single_key_bigger') 58
  • 59. vbench stmt3 = "df.groupby(['key1', 'key2']).sum()" groupby_multi_cython = Benchmark(stmt3, setup, name="groupby_multi_cython", start_date=datetime(2011, 7, 1)) 59
  • 60. Fast database joins • Problem: SQL-compatible left, right, inner, outer joins • Row duplication • Join on index and / or join on columns • Sorting vs. not sorting • Algorithmically closely related to groupby etc. 60
  • 61. Row duplication left right outer join key lvalue key rvalue key lvalue rvalue foo 1 foo 5 foo 1 5 foo 2 foo 6 foo 1 6 bar 3 bar 7 foo 2 5 baz 4 qux 8 foo 2 6 bar 3 7 baz 4 NA qux NA 8 61
  • 62. Join indexers left right outer join key lvalue key rvalue key lidx ridx foo 1 foo 5 foo 0 0 foo 2 foo 6 foo 0 1 bar 3 bar 7 foo 1 0 baz 4 qux 8 foo 1 1 bar 2 2 baz 3 -1 qux -1 3 62
  • 63. Join indexers left right outer join key lvalue key rvalue key lidx ridx foo 1 foo 5 foo 0 0 foo 2 foo 6 foo 0 1 bar 3 bar 7 foo 1 0 baz 4 qux 8 foo 1 1 bar 2 2 baz 3 -1 Problem: factorized keys qux -1 3 need to be sorted! 63
  • 64. An algorithmic observation • If N values are known to be from the range 0 through K - 1, can be sorted in O(N) • Variant of counting sort • For our purposes, only compute the sorting indexer (argsort) 64
  • 65. Winning join algorithm sort keys don’t sort keys Factorize keys columns O(K log K) or O(N) Compute / compress group indexes O(N) (refactorize) "Sort" by group indexes O(N) (counting sort) Compute left / right join indexers for join method O(N_output) Remap indexers relative to original row ordering O(N_output) O(N_output) (this step is actually Move data efficiently into output DataFrame fairly nontrivial) 65
  • 66. “You’re like CLR, I’m like CLRS” - “Kill Dash Nine”, by Monzy 66
  • 67. Join test case • Left:pairs rows, 2 key columns, 8k unique key 80k • Right: 8k rows, 2 key columns, 8k unique key pairs • 6k matching key pairs between the tables, many-to-one join • One column of numerical values in each 67
  • 68. Join test case • Many-to-many case: stack right DataFrame on top of itself to yield 16k rows, 2 rows for each key pair • Aside: sorting the pesky O(K log K)), not the runtime (that unique keys dominates included in these benchmarks 68
  • 69. Quick, algebra! Many-to-one Many-to-many • Left join: 80k rows • Left join: 140k rows • Right join: 62k rows • Right join: 124k rows • Inner join: 60k rows • Inner join: 120k rows • Outer join: 82k rows • Outer join: 144k rows 69
  • 70. Results vs. some R packages * relative timings 70
  • 71. Results vs SQLite3 Absolute timings * outer is LEFT OUTER in SQLite3 Note: In SQLite3 doing something like 71
  • 72. DataFrame sort by columns • Applied same ideas / tools to “sort by multiple columns op” yesterday 72
  • 73. The bottom line • Just a flavor: pretty much all of pandas has seen the same level of design effort and performance scrutiny • Make sure whoever implemented your data structures and algorithms care about performance. A lot. • Python has amazingly powerful and productive tools for implementation work 73
  • 74. Thanks! • Follow me on Twitter: @wesmckinn • Blog: http://blog.wesmckinney.com • Exciting Python things ahead in 2012 74