Automatic differentiation is a powerful tool for automatically calculating derivatives of mathematical functions and algorithms. It works by expressing the target function as a sequence of elementary operations and then applying the chain rule to differentiate each operation. This can be done using either forward or reverse mode. Forward mode calculates how changes in inputs propagate through the function to influence the outputs, while reverse mode calculates how changes in outputs backpropagate to influence the inputs. Both modes require performing the computation twice - once for the forward pass and once for the derivative pass. Careful implementation is required to make automatic differentiation efficient in terms of speed and memory usage.