SlideShare a Scribd company logo
Vortex Generation, Gas Draw Down
and Mass Transfer in Agitated
Vessels
Jason J. Giacomelli & Richard K. Grenville
AICHE – SALT LAKE CITY - 11/9/2015
AGENDA
• Motivation
• Correlation for Vortex Depth
• Mass transfer Measurements and Analysis
• Conclusions
• Future Work
2
Motivation
• Some gas-liquid reactions require draw down of gas(es) from the vessel
head space;
– 3 phase (S-L-G) – Catalytic Hydrogenations,
– Nitration of metals  Metal Nitrates
– Oxidation, Carbonylation, phosphination, chlorination
– Etc..
• Correlations relating vortex depth to agitator conditions have been
reported in the open literature and developed by PMSL (AICHE 2012 &
2013).
• In order to draw conclusions regarding process efficiency, need to relate
vortex formation to mass transfer rate achieved.  very little literature
• The purpose of this work is to make the connection between the vortex
and the mass transfer and how to scale up.
3
• Improve efficiency of gas usage by
reincorporation of gas from head
space
• Generate surface vortex
• Trim baffles and locate impeller at
trim point
• Unbaffled region will have a higher
degree of tangential swirl 
promotes vortex formation.
• Retaining baffled region promotes
axial gas/liquid circulation and solid
suspension (with additional
impellers)
Motivation – Geometry Review
Summary of previous experiments:
• Defined minimum speed for constant gas
induction
– Based visual and auditory observations
• Dependent variables were
– Impeller type
– Impeller diameter to tank diameter ratio (D/T)
– Liquid coverage to tank diameter ratio (IBC/T)
• Values of these parameters correspond to
industrially relevant ranges.
• Data correlated with Froude number
• Scale up for equal gassing vortex depth was
verified in the 2m scale.
• Scaling based on Froude number confirmed
Previous Work – Vortex Depth
• The minimum speed, NMIN, is the point at which the vortex is constantly
inducing gas without periodic oscillation of the vortex.
• Auditory helped in large tank  walls not transparent.
Background
Definition: Minimum speed for constant gas induction
NMin
• The minimum speed for constant vortexing was measured for several
common impeller types:
• The optimum impellers were the PBT, Wide Blade HF, and Rushton
• The PBT was chosen to be best choice for vortexing as it had the
optimum flow characteristics to optimize mechanical and process
characteristics:
• PBT can run slower than Wide Blade HF for equal vortexing,
• PBT suspends solids more efficiently than Rushton
•  Move forward with PBT for Mass Transfer (save MHS & RT for later)
Background – Correlation of NMIN
• Vortex depth was correlated to relevant geometry
– FrMIN is the minimum Froude for constant gas induction
– IBC/T: Impeller-Baffle Submergence to Tank Diameter
– D/T: Impeller to Tank Diameter
– A: Function of impeller type
– |  |
– A, B, and C were found to be different for each impeller.
• * The current work on mass transfer focused on Pitched
Blade Turbine
– The Regression of FrMIN for the PBT resulted in the following
relationship with the tested variables
– ∝
Background – Vortex Depth
• Purpose for draw down is to consume unreacted gas from head space
• Vortex Depth correlation/prediction gives no indication of mass transfer
coefficient
• Reactor design requires mass transfer rate (kLa*Driving force) and reaction
rate
• Need a correlation for mass transfer coefficient  at very least scale up
methodology
• Lots of literature on vortexing and vortex depth, however,
• Limited literature for submerged baffle – vortexing system for mass transfer
– Boerma & Lankester – 1968
– measured half baffles and full baffles,
– Radial turbine only, found that speed must be above NMIN in order to achieve mass
transfer
– No scale up methodology proposed (P/M? Λ/M?, Froude?. Gas Rate?.... etc?...)
Current Work - Mass Transfer Rate
• Measured mass transfer at two scales –
– 11.44”/11” and 24” diameter tanks
– partially baffled
– and impeller centered with baffle
– (same geometry as original vortex depth testing)
• Simple Air/Water system:
– Liquid  Water, Turbulent flow regime
– Gas  Air, ambient conditions (open tank)
• Varied Geometry  D/T, Impeller Coverage or Submergence (C/D or
IBC/T)
• Varied liquid coverage on impeller  Simulates changing liquid level
during semi-batch process
• Varied Speed  Increasing power input
• Correlated data taken at Fr > FrMIN
Experimental
Experimental –
Mass Transfer Rate
• 0.291m (T) Diameter Vessel
(12” Scale)
• 0.121m (D) Impeller (0.43D/T)
• Sub Surface Terminated baffles,
Baffle width = T/10
• Oxygen Probe located behind baffle
(low pressure side) so as to
not disturb flow due to size of Probe
relative to Tank internals
• 0.610m (T) Diameter Vessel
(24” Scale)
• 0.263m (D) Impeller (0.43D/T)
• Sub Surface Terminated baffles,
Baffle width = T/10
Experimental – Mass Transfer Rate
Measurement of kLa
• Catalyzed Sulfite oxidation method is utilized.
• Despite issues with this method, it is well suited for larger scale testing
• Experiments are randomized such that any effect of TDS on kLa is absorbed into
the statistics.
• The re-oxygenation process is recorded with a YSI optical probe which the
response time has been measured to be ~5s.
• Data is acquired at 1 second intervals.
0%
20%
40%
60%
80%
100%
120%
0 5 10 15 20 25
DissolvedOxygenConcentration[%C*]
Time [min]
Sulfite Charge
90%C*
10%C*
13
∗
Data Analysis
• The data is filtered to isolate the 10%C* to 90%C* portion and then
regressed determine the mass transfer coefficient
– Compensate for lag time of probe:
– TauP = 1/kla (process time constant), Tau0 is probe time constant (5s).
14
-2.50
-2.00
-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50
2.00
2.50
3.00
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
0 20 40 60 80 100 120
ln[C*-C(t)]
DissolvedOxygen[mg/L]
Time [s]
Model 1
Model 2
Measured Data
Data
Model 1
Model 2
Slope = kLa
Results – Constant Speed
Semi-Batch Process – Increasing Liquid Level
15
Radial splashing C/D < 0.25 - 0.5 Vortexing C/D > 0.5
0
20
40
60
80
100
120
140
160
0.00 0.20 0.40 0.60 0.80 1.00 1.20
MassTransferCoef.[hr-1]
Impeller Coverage to Diameter Ratio
Mass Transfer vs.
Speed
NMIN at C/D = 0.5
Surface Aeration -
No Vortexing
> NMIN < NMIN
Mass Transfer Coefficient:
Effect of Scale & Geometry
•  Only Correlate Data Above Minimum Froude Number
• KLa trend changes below FrMIN as gassing rate becomes
periodic
• Model chosen to regress mass transfer data to establish
effect of scale:
– ′|
• Range of Variables:
– 0.25 < C/D < 1.0
– 0.3 < D/T < 0.5
– N ≥ NMIN
16
Results: Regression of Data
• Empirical Model:
′
• Refined Model:
′
• N & D have matching exponent of 3
 Tip speed Cubed
17
0
25
50
75
100
125
150
175
200
225
0 25 50 75 100 125 150 175 200 225
CALCULATEDKLA[HR-1]
MEASURED KLA [HR-1]
Y=X +20%
-20% 0.5D/T, 24"Scale
0.4D/T, 24"Scale 0.4D/T, 24"Scale
0.43D/T, 24"Scale 0.43D/T, 11.44"Scale
0.3D/T, 24"Scale 0.4D/T, 24"Scale
0.5D/T, 24"Scale 0.45D/T, 11"Scale
Regression Statistics
Multiple R 0.98
R Square 0.95
Adjusted R Square 0.95
Standard Error 0.12
Observations 44
Coefficients
Standard 
Error t Stat P‐value
Lower 
95%
Upper 
95%
A’ 5.44 0.167 32.66 6.14E‐30 5.11 5.78
N 2.99 0.209 14.29 4.31E‐17 2.57 3.41
D 3.03 0.130 23.37 1.52E‐24 2.77 3.29
C/D ‐1.16 0.153 ‐7.60 3.26E‐09 ‐1.47 ‐0.85
D/T 1.90 0.156 12.21 6.79E‐15 1.59 2.22
Results - Physical Explanation of Correlation
• Mass Transfer is a function of power input
per vortex surface area.
– The vortex surface area is proportional to the
tank diameter squared.
• The mass transfer rate is dependent on the
impeller type and liquid coverage
Scaling up maintaining FrMIN & Geometry:
•  Tip speed and power/area increase
•  mass transfer coefficient increases on
scale up
• ∝
• ∝ ∙  ∙
• Surface	Area	of	Vortex	∝
• 	 	
• 	∝ ∙
18
• Measured kLa and related to vortex depth and geometry
• Provided Fr > FrMIN  mass transfer increases with scale
• Exponents on D/T and C/D (IBC/T) are the same for FrMIN
and kLa
• 				is constant for a given geometry
• P Tau is Energy  Energy/Length² is Force/Length (or
Interfacial tension)
• Describes more general mechanism?
• Is this impeller specific?
Conclusions
Future Work
• Test Mass Transfer Rate in 6 ft vessel
– Adds third scale
• Test Different impeller types
– Wide Blade Hydrofoil
– Rushton Turbine
• Goal:
– Confirm scale up metric of power/surface
area.
– Most Efficient Impeller ? …Flow vs. Shear ?
20
References
[1]  E. L. Paul, V. A. Atieno‐Obeng and S. M. Kresta, Handbook of Industrial Mixing, Hoboken : Wiley & Sons, INC, 
2004. 
[2]  S. Bhattacharya, D. Hebert and S. M. Kresta, "Air Entrainment in Baffled Stirred Tanks," I Chem E, vol. 85, pp. 
654‐664, 2007. 
[3]  O. Khazam and M. S. Kresta, "A novel geometry for solids drawdown in stirred tanks," Chemical Engineering 
Research and Design, pp. 280‐290, 2009. 
[4]  J. Markopoulos and E. Kontogeorgaki, "Vortex Depth in Unbaffled Single and Multiple Impeller Agitated 
Vessels," Chemical Engineering Technology, pp. 68‐74, 1995. 
[5]  G. Özcan‐Taskin and G. McGrath, "Draw down of light particles in stirred tanks," Trans IChemE, vol. 79, 2001. 
[6]  G. Özcan‐Taskin, "Effect of scale on the drawdown of floating solids," Chemical Eng Sci, pp. 2871‐2879, 2006. 
[7]  G. Özcan‐Taskin and H. Wei, "The effect of impeller‐to‐tank diameter ratio on draw down of solids," Chem. 
Eng. Sci., pp. 2011‐2022, 2003. 
[8]  A. Patwardhan and J. Joshi, "Hydrodynamics of a Stirred Vessel Equipped with a Gas‐Inducing Impeller," Ind. 
Eng. Chem. Res., vol. 36, pp. 3904‐3914, 1997. 
[9]  R. H. Perry and D. W. Green, Perry's Chemical Engineers' Handbook, New York: McGraw‐Hill, 2008. 
[10]  H. Boerma and J. H. Lankester, "The Occurrence of Minimum Stirring Rates in Gas‐Liquid Reactors," Chem. 
Eng. Sci., pp. 799‐801, 1968. 
21

More Related Content

PPTX
The Remarkable Benefits and Grave Dangers of using Artificial Intelligence in...
Steve Cuddy
 
PPTX
McGill Ozone Contactor Design Project
Nicholas Mead-Fox
 
PPTX
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Narayan Nair
 
PPTX
RJ Presentation plus notes
Richard Jachnik
 
PPTX
Advanced Techniques
Tom Arnold
 
PPTX
The Importance of Contact, Conductivity, and Connectivity in Multifractured ...
Society of Petroleum Engineers
 
PDF
GAS READING WHILE DRILLING
jeanboumsong
 
PPTX
Net pay and Net reservoir
Steve Cuddy
 
The Remarkable Benefits and Grave Dangers of using Artificial Intelligence in...
Steve Cuddy
 
McGill Ozone Contactor Design Project
Nicholas Mead-Fox
 
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Narayan Nair
 
RJ Presentation plus notes
Richard Jachnik
 
Advanced Techniques
Tom Arnold
 
The Importance of Contact, Conductivity, and Connectivity in Multifractured ...
Society of Petroleum Engineers
 
GAS READING WHILE DRILLING
jeanboumsong
 
Net pay and Net reservoir
Steve Cuddy
 

What's hot (20)

PDF
Real Time Downhole Flow Measurement Sensors
Surajit Haldar
 
PPTX
Swh SPWLA distinguished lecturer
Steve Cuddy
 
PDF
Emmanuel hydrometrie
Waterbouwkundig Laboratorium
 
PDF
Download-manuals-surface water-manual-sw-volume5referencemanualsediment
hydrologyproject001
 
DOCX
Fluid Mechanics report
Almoutaz Alsaeed
 
PDF
Tomographic inverse estimation of aquifer properties based on pressure varia...
Velimir (monty) Vesselinov
 
PPTX
Using Fractals To Determine a Reservoir's Hydrocarbon Distribution
Society of Petroleum Engineers
 
PDF
Download-manuals-surface water-manual-sw-volume5fieldmanualsediment
hydrologyproject001
 
PDF
Fluid+flow
MidoOoz
 
PPTX
CFD evaluation of lime addition in AMD
Nabin Khadka
 
PDF
DSD-INT 2018 Implementation and verification of 2D coastal morphodynamic modu...
Deltares
 
PDF
Deck drainage design
Sarita Joshi
 
PDF
Surface runoff
Mohsin Siddique
 
PDF
Graphical Method to Determine Minimum Cutting Fluid Velocity for Effective Ho...
IRJET Journal
 
PDF
05 zeraatgar indd
Pierluigi Busetto
 
PDF
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
Rodolfo Gonçalves
 
DOCX
Dc lab 5
ykhan60
 
PPT
Mod10 11 part1
Sri Ram
 
PPTX
Kevin Kraus, Saint Francis University Environmental Engineering Department, “...
Michael Hewitt, GISP
 
PDF
Q922+rfp+l08 v1
AFATous
 
Real Time Downhole Flow Measurement Sensors
Surajit Haldar
 
Swh SPWLA distinguished lecturer
Steve Cuddy
 
Emmanuel hydrometrie
Waterbouwkundig Laboratorium
 
Download-manuals-surface water-manual-sw-volume5referencemanualsediment
hydrologyproject001
 
Fluid Mechanics report
Almoutaz Alsaeed
 
Tomographic inverse estimation of aquifer properties based on pressure varia...
Velimir (monty) Vesselinov
 
Using Fractals To Determine a Reservoir's Hydrocarbon Distribution
Society of Petroleum Engineers
 
Download-manuals-surface water-manual-sw-volume5fieldmanualsediment
hydrologyproject001
 
Fluid+flow
MidoOoz
 
CFD evaluation of lime addition in AMD
Nabin Khadka
 
DSD-INT 2018 Implementation and verification of 2D coastal morphodynamic modu...
Deltares
 
Deck drainage design
Sarita Joshi
 
Surface runoff
Mohsin Siddique
 
Graphical Method to Determine Minimum Cutting Fluid Velocity for Effective Ho...
IRJET Journal
 
05 zeraatgar indd
Pierluigi Busetto
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
Rodolfo Gonçalves
 
Dc lab 5
ykhan60
 
Mod10 11 part1
Sri Ram
 
Kevin Kraus, Saint Francis University Environmental Engineering Department, “...
Michael Hewitt, GISP
 
Q922+rfp+l08 v1
AFATous
 
Ad

Viewers also liked (19)

DOCX
Summary of WBR as of November 16, 2015
Bryan Soledad
 
PPTX
Legally blonde
JackyBoi1998
 
PPT
Access control basics-7
grantlerc
 
PPTX
My household duties
Julia_39
 
PPTX
Threats
Larry Nelson
 
PPTX
Associazione Italiana Bubble Football (AIBF)
Simone Valerio Corrado
 
PDF
genomics upenn publication 1
Eyas Mukhtar, MBA-HCM
 
PPTX
All About Me Final Project
Daja_Lynch
 
PDF
NOV CV of Ahmad Barkati
ahmad barkati
 
PDF
EL SISTEMA RESOCIALIZADOR
luisgermancanales
 
DOCX
Rishav_QA
Rishav Singh
 
DOCX
(482975257) raza_cv1 -1- -1-_2 -1- (1)
Raza hashmi
 
PPTX
Etwinning Workshop for Young Tourism
Youngtourismtr
 
PDF
Macroeconomics
anand thakur
 
PDF
Alcohol related liver disease: prevention and prediction by Professor Nick Sh...
Health Innovation Wessex
 
PPT
Access control basics-4
grantlerc
 
PPTX
Hdieet retreat 2015 dr abrolat
Marla Law Abrolat
 
PPTX
Nowości czytelnicze cz.2
biblioteka1lo
 
PDF
LamceBoxer_Mirvjena_Dissertation_Hood (2) (1)
Mira Boxer
 
Summary of WBR as of November 16, 2015
Bryan Soledad
 
Legally blonde
JackyBoi1998
 
Access control basics-7
grantlerc
 
My household duties
Julia_39
 
Threats
Larry Nelson
 
Associazione Italiana Bubble Football (AIBF)
Simone Valerio Corrado
 
genomics upenn publication 1
Eyas Mukhtar, MBA-HCM
 
All About Me Final Project
Daja_Lynch
 
NOV CV of Ahmad Barkati
ahmad barkati
 
EL SISTEMA RESOCIALIZADOR
luisgermancanales
 
Rishav_QA
Rishav Singh
 
(482975257) raza_cv1 -1- -1-_2 -1- (1)
Raza hashmi
 
Etwinning Workshop for Young Tourism
Youngtourismtr
 
Macroeconomics
anand thakur
 
Alcohol related liver disease: prevention and prediction by Professor Nick Sh...
Health Innovation Wessex
 
Access control basics-4
grantlerc
 
Hdieet retreat 2015 dr abrolat
Marla Law Abrolat
 
Nowości czytelnicze cz.2
biblioteka1lo
 
LamceBoxer_Mirvjena_Dissertation_Hood (2) (1)
Mira Boxer
 
Ad

Similar to AICHE 15 VORTEX + MASS TRANSFER (20)

PDF
Chato low gravity cryogenic liquid acquisition for space exploration 2014
David Chato
 
PPTX
15a considerations for performing flowing fluid electrical conductivity (ffec...
leann_mays
 
PPTX
SIMULATION OF VON KARMAN STREET IN A FLOW
Mohammed Hamza, M.Eng.
 
PPTX
Oil gas water metering
Hassan Awedan
 
PPT
Measurement of flow in metrology & Measurement.ppt
Bikash Choudhuri
 
PDF
Key aspects of reservoir evaluation for deep water reservoirs
M.T.H Group
 
PPTX
radial flow pumping test
Fatonah Munsai
 
PPT
Flow dynamics for different fluids behaviour
NavalKoralkar2
 
PPT
Mathematics of Flow Rate and flow measurement
ghasaqalrezage1
 
PPT
mel705-27.ppt
DrPalpandiMurugesan
 
PDF
Analytical modelling of groundwater wells and well systems: how to get it r...
Anton Nikulenkov
 
PDF
Basic Well Logging Design.pdf
SeyedAbolfazlHossein4
 
PDF
exp.9 flow meter demonstration
Muhammed Fuad Al-Barznji
 
PDF
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Salman Sadeg Deumah
 
PPT
Treatment of wastewater
Arpit Budania
 
PPT
Present buk
Bukhari Manshoor
 
PPTX
Presentation- thesis- Chaofan ZHANG
Chaofan ZHANG
 
PDF
Boiler doc 04 flowmetering
Mars Tsani
 
PDF
Compressed hydrogen2011 11_chato
David Chato
 
PDF
well testing in oil and gas engineering .pdf
KhaledYassin19
 
Chato low gravity cryogenic liquid acquisition for space exploration 2014
David Chato
 
15a considerations for performing flowing fluid electrical conductivity (ffec...
leann_mays
 
SIMULATION OF VON KARMAN STREET IN A FLOW
Mohammed Hamza, M.Eng.
 
Oil gas water metering
Hassan Awedan
 
Measurement of flow in metrology & Measurement.ppt
Bikash Choudhuri
 
Key aspects of reservoir evaluation for deep water reservoirs
M.T.H Group
 
radial flow pumping test
Fatonah Munsai
 
Flow dynamics for different fluids behaviour
NavalKoralkar2
 
Mathematics of Flow Rate and flow measurement
ghasaqalrezage1
 
mel705-27.ppt
DrPalpandiMurugesan
 
Analytical modelling of groundwater wells and well systems: how to get it r...
Anton Nikulenkov
 
Basic Well Logging Design.pdf
SeyedAbolfazlHossein4
 
exp.9 flow meter demonstration
Muhammed Fuad Al-Barznji
 
Survey on Declining Curves of Unconventional Wells and Correlation with Key ...
Salman Sadeg Deumah
 
Treatment of wastewater
Arpit Budania
 
Present buk
Bukhari Manshoor
 
Presentation- thesis- Chaofan ZHANG
Chaofan ZHANG
 
Boiler doc 04 flowmetering
Mars Tsani
 
Compressed hydrogen2011 11_chato
David Chato
 
well testing in oil and gas engineering .pdf
KhaledYassin19
 

Recently uploaded (20)

PDF
2025 Laurence Sigler - Advancing Decision Support. Content Management Ecommer...
Francisco Javier Mora Serrano
 
PDF
dse_final_merit_2025_26 gtgfffffcjjjuuyy
rushabhjain127
 
PDF
July 2025: Top 10 Read Articles Advanced Information Technology
ijait
 
PDF
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
PDF
Unit I Part II.pdf : Security Fundamentals
Dr. Madhuri Jawale
 
PPTX
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PDF
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
PDF
Traditional Exams vs Continuous Assessment in Boarding Schools.pdf
The Asian School
 
PDF
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
PDF
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
PDF
Top 10 read articles In Managing Information Technology.pdf
IJMIT JOURNAL
 
PPTX
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
PPT
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
PDF
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
 
PPTX
22PCOAM21 Session 2 Understanding Data Source.pptx
Guru Nanak Technical Institutions
 
PPTX
Inventory management chapter in automation and robotics.
atisht0104
 
PDF
LEAP-1B presedntation xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
hatem173148
 
2025 Laurence Sigler - Advancing Decision Support. Content Management Ecommer...
Francisco Javier Mora Serrano
 
dse_final_merit_2025_26 gtgfffffcjjjuuyy
rushabhjain127
 
July 2025: Top 10 Read Articles Advanced Information Technology
ijait
 
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
Unit I Part II.pdf : Security Fundamentals
Dr. Madhuri Jawale
 
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
Traditional Exams vs Continuous Assessment in Boarding Schools.pdf
The Asian School
 
Biodegradable Plastics: Innovations and Market Potential (www.kiu.ac.ug)
publication11
 
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
Top 10 read articles In Managing Information Technology.pdf
IJMIT JOURNAL
 
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
1. SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES.ppt
zilow058
 
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
Zero carbon Building Design Guidelines V4
BassemOsman1
 
22PCOAM21 Session 2 Understanding Data Source.pptx
Guru Nanak Technical Institutions
 
Inventory management chapter in automation and robotics.
atisht0104
 
LEAP-1B presedntation xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
hatem173148
 

AICHE 15 VORTEX + MASS TRANSFER

  • 1. Vortex Generation, Gas Draw Down and Mass Transfer in Agitated Vessels Jason J. Giacomelli & Richard K. Grenville AICHE – SALT LAKE CITY - 11/9/2015
  • 2. AGENDA • Motivation • Correlation for Vortex Depth • Mass transfer Measurements and Analysis • Conclusions • Future Work 2
  • 3. Motivation • Some gas-liquid reactions require draw down of gas(es) from the vessel head space; – 3 phase (S-L-G) – Catalytic Hydrogenations, – Nitration of metals  Metal Nitrates – Oxidation, Carbonylation, phosphination, chlorination – Etc.. • Correlations relating vortex depth to agitator conditions have been reported in the open literature and developed by PMSL (AICHE 2012 & 2013). • In order to draw conclusions regarding process efficiency, need to relate vortex formation to mass transfer rate achieved.  very little literature • The purpose of this work is to make the connection between the vortex and the mass transfer and how to scale up. 3
  • 4. • Improve efficiency of gas usage by reincorporation of gas from head space • Generate surface vortex • Trim baffles and locate impeller at trim point • Unbaffled region will have a higher degree of tangential swirl  promotes vortex formation. • Retaining baffled region promotes axial gas/liquid circulation and solid suspension (with additional impellers) Motivation – Geometry Review
  • 5. Summary of previous experiments: • Defined minimum speed for constant gas induction – Based visual and auditory observations • Dependent variables were – Impeller type – Impeller diameter to tank diameter ratio (D/T) – Liquid coverage to tank diameter ratio (IBC/T) • Values of these parameters correspond to industrially relevant ranges. • Data correlated with Froude number • Scale up for equal gassing vortex depth was verified in the 2m scale. • Scaling based on Froude number confirmed Previous Work – Vortex Depth
  • 6. • The minimum speed, NMIN, is the point at which the vortex is constantly inducing gas without periodic oscillation of the vortex. • Auditory helped in large tank  walls not transparent. Background Definition: Minimum speed for constant gas induction NMin
  • 7. • The minimum speed for constant vortexing was measured for several common impeller types: • The optimum impellers were the PBT, Wide Blade HF, and Rushton • The PBT was chosen to be best choice for vortexing as it had the optimum flow characteristics to optimize mechanical and process characteristics: • PBT can run slower than Wide Blade HF for equal vortexing, • PBT suspends solids more efficiently than Rushton •  Move forward with PBT for Mass Transfer (save MHS & RT for later) Background – Correlation of NMIN
  • 8. • Vortex depth was correlated to relevant geometry – FrMIN is the minimum Froude for constant gas induction – IBC/T: Impeller-Baffle Submergence to Tank Diameter – D/T: Impeller to Tank Diameter – A: Function of impeller type – |  | – A, B, and C were found to be different for each impeller. • * The current work on mass transfer focused on Pitched Blade Turbine – The Regression of FrMIN for the PBT resulted in the following relationship with the tested variables – ∝ Background – Vortex Depth
  • 9. • Purpose for draw down is to consume unreacted gas from head space • Vortex Depth correlation/prediction gives no indication of mass transfer coefficient • Reactor design requires mass transfer rate (kLa*Driving force) and reaction rate • Need a correlation for mass transfer coefficient  at very least scale up methodology • Lots of literature on vortexing and vortex depth, however, • Limited literature for submerged baffle – vortexing system for mass transfer – Boerma & Lankester – 1968 – measured half baffles and full baffles, – Radial turbine only, found that speed must be above NMIN in order to achieve mass transfer – No scale up methodology proposed (P/M? Λ/M?, Froude?. Gas Rate?.... etc?...) Current Work - Mass Transfer Rate
  • 10. • Measured mass transfer at two scales – – 11.44”/11” and 24” diameter tanks – partially baffled – and impeller centered with baffle – (same geometry as original vortex depth testing) • Simple Air/Water system: – Liquid  Water, Turbulent flow regime – Gas  Air, ambient conditions (open tank) • Varied Geometry  D/T, Impeller Coverage or Submergence (C/D or IBC/T) • Varied liquid coverage on impeller  Simulates changing liquid level during semi-batch process • Varied Speed  Increasing power input • Correlated data taken at Fr > FrMIN Experimental
  • 11. Experimental – Mass Transfer Rate • 0.291m (T) Diameter Vessel (12” Scale) • 0.121m (D) Impeller (0.43D/T) • Sub Surface Terminated baffles, Baffle width = T/10 • Oxygen Probe located behind baffle (low pressure side) so as to not disturb flow due to size of Probe relative to Tank internals
  • 12. • 0.610m (T) Diameter Vessel (24” Scale) • 0.263m (D) Impeller (0.43D/T) • Sub Surface Terminated baffles, Baffle width = T/10 Experimental – Mass Transfer Rate
  • 13. Measurement of kLa • Catalyzed Sulfite oxidation method is utilized. • Despite issues with this method, it is well suited for larger scale testing • Experiments are randomized such that any effect of TDS on kLa is absorbed into the statistics. • The re-oxygenation process is recorded with a YSI optical probe which the response time has been measured to be ~5s. • Data is acquired at 1 second intervals. 0% 20% 40% 60% 80% 100% 120% 0 5 10 15 20 25 DissolvedOxygenConcentration[%C*] Time [min] Sulfite Charge 90%C* 10%C* 13 ∗
  • 14. Data Analysis • The data is filtered to isolate the 10%C* to 90%C* portion and then regressed determine the mass transfer coefficient – Compensate for lag time of probe: – TauP = 1/kla (process time constant), Tau0 is probe time constant (5s). 14 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 0 20 40 60 80 100 120 ln[C*-C(t)] DissolvedOxygen[mg/L] Time [s] Model 1 Model 2 Measured Data Data Model 1 Model 2 Slope = kLa
  • 15. Results – Constant Speed Semi-Batch Process – Increasing Liquid Level 15 Radial splashing C/D < 0.25 - 0.5 Vortexing C/D > 0.5 0 20 40 60 80 100 120 140 160 0.00 0.20 0.40 0.60 0.80 1.00 1.20 MassTransferCoef.[hr-1] Impeller Coverage to Diameter Ratio Mass Transfer vs. Speed NMIN at C/D = 0.5 Surface Aeration - No Vortexing > NMIN < NMIN
  • 16. Mass Transfer Coefficient: Effect of Scale & Geometry •  Only Correlate Data Above Minimum Froude Number • KLa trend changes below FrMIN as gassing rate becomes periodic • Model chosen to regress mass transfer data to establish effect of scale: – ′| • Range of Variables: – 0.25 < C/D < 1.0 – 0.3 < D/T < 0.5 – N ≥ NMIN 16
  • 17. Results: Regression of Data • Empirical Model: ′ • Refined Model: ′ • N & D have matching exponent of 3  Tip speed Cubed 17 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 CALCULATEDKLA[HR-1] MEASURED KLA [HR-1] Y=X +20% -20% 0.5D/T, 24"Scale 0.4D/T, 24"Scale 0.4D/T, 24"Scale 0.43D/T, 24"Scale 0.43D/T, 11.44"Scale 0.3D/T, 24"Scale 0.4D/T, 24"Scale 0.5D/T, 24"Scale 0.45D/T, 11"Scale Regression Statistics Multiple R 0.98 R Square 0.95 Adjusted R Square 0.95 Standard Error 0.12 Observations 44 Coefficients Standard  Error t Stat P‐value Lower  95% Upper  95% A’ 5.44 0.167 32.66 6.14E‐30 5.11 5.78 N 2.99 0.209 14.29 4.31E‐17 2.57 3.41 D 3.03 0.130 23.37 1.52E‐24 2.77 3.29 C/D ‐1.16 0.153 ‐7.60 3.26E‐09 ‐1.47 ‐0.85 D/T 1.90 0.156 12.21 6.79E‐15 1.59 2.22
  • 18. Results - Physical Explanation of Correlation • Mass Transfer is a function of power input per vortex surface area. – The vortex surface area is proportional to the tank diameter squared. • The mass transfer rate is dependent on the impeller type and liquid coverage Scaling up maintaining FrMIN & Geometry: •  Tip speed and power/area increase •  mass transfer coefficient increases on scale up • ∝ • ∝ ∙  ∙ • Surface Area of Vortex ∝ • • ∝ ∙ 18
  • 19. • Measured kLa and related to vortex depth and geometry • Provided Fr > FrMIN  mass transfer increases with scale • Exponents on D/T and C/D (IBC/T) are the same for FrMIN and kLa • is constant for a given geometry • P Tau is Energy  Energy/Length² is Force/Length (or Interfacial tension) • Describes more general mechanism? • Is this impeller specific? Conclusions
  • 20. Future Work • Test Mass Transfer Rate in 6 ft vessel – Adds third scale • Test Different impeller types – Wide Blade Hydrofoil – Rushton Turbine • Goal: – Confirm scale up metric of power/surface area. – Most Efficient Impeller ? …Flow vs. Shear ? 20
  • 21. References [1]  E. L. Paul, V. A. Atieno‐Obeng and S. M. Kresta, Handbook of Industrial Mixing, Hoboken : Wiley & Sons, INC,  2004.  [2]  S. Bhattacharya, D. Hebert and S. M. Kresta, "Air Entrainment in Baffled Stirred Tanks," I Chem E, vol. 85, pp.  654‐664, 2007.  [3]  O. Khazam and M. S. Kresta, "A novel geometry for solids drawdown in stirred tanks," Chemical Engineering  Research and Design, pp. 280‐290, 2009.  [4]  J. Markopoulos and E. Kontogeorgaki, "Vortex Depth in Unbaffled Single and Multiple Impeller Agitated  Vessels," Chemical Engineering Technology, pp. 68‐74, 1995.  [5]  G. Özcan‐Taskin and G. McGrath, "Draw down of light particles in stirred tanks," Trans IChemE, vol. 79, 2001.  [6]  G. Özcan‐Taskin, "Effect of scale on the drawdown of floating solids," Chemical Eng Sci, pp. 2871‐2879, 2006.  [7]  G. Özcan‐Taskin and H. Wei, "The effect of impeller‐to‐tank diameter ratio on draw down of solids," Chem.  Eng. Sci., pp. 2011‐2022, 2003.  [8]  A. Patwardhan and J. Joshi, "Hydrodynamics of a Stirred Vessel Equipped with a Gas‐Inducing Impeller," Ind.  Eng. Chem. Res., vol. 36, pp. 3904‐3914, 1997.  [9]  R. H. Perry and D. W. Green, Perry's Chemical Engineers' Handbook, New York: McGraw‐Hill, 2008.  [10]  H. Boerma and J. H. Lankester, "The Occurrence of Minimum Stirring Rates in Gas‐Liquid Reactors," Chem.  Eng. Sci., pp. 799‐801, 1968.  21