SlideShare a Scribd company logo
AlgorithmsAlgorithms
IntroductionIntroduction
• The methods of algorithm design form one of the core
practical technologies of computer science.
• The main aim of this lecture is to familiarize the student
with the framework we shall use through the course
about the design and analysis of algorithms.
• We start with a discussion of the algorithms needed to
solve computational problems. The problem of sorting is
used as a running example.
• We introduce a pseudocode to show how we shall
specify the algorithms.
AlgorithmsAlgorithms
• The word algorithm comes from the name of a Persian
mathematician Abu Ja’far Mohammed ibn-i Musa al
Khowarizmi.
• In computer science, this word refers to a special
method useable by a computer for solution of a problem.
The statement of the problem specifies in general terms
the desired input/output relationship.
• For example, sorting a given sequence of numbers into
nondecreasing order provides fertile ground for
introducing many standard design techniques and
analysis tools.
The problem of sortingThe problem of sorting
Insertion SortInsertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Example of Insertion SortExample of Insertion Sort
Analysis of algorithmsAnalysis of algorithms
The theoretical study of computer-program
performance and resource usage.
What’s more important than performance?
• modularity
• correctness
• maintainability
• functionality
• robustness
• user-friendliness
• programmer time
• simplicity
• extensibility
• reliability
Analysis of algorithmsAnalysis of algorithms
Why study algorithms and performance?
• Algorithms help us to understand scalability.
• Performance often draws the line between what is feasible
and what is impossible.
• Algorithmic mathematics provides a language for talking
about program behavior.
• The lessons of program performance generalize to other
computing resources.
• Speed is fun!
Running TimeRunning Time
• The running time depends on the input: an already
sorted sequence is easier to sort.
• Parameterize the running time by the size of the
input, since short sequences are easier to sort than
long ones.
• Generally, we seek upper bounds on the running
time, because everybody likes a guarantee.
Kinds of analysesKinds of analyses
Worst-case: (usually)
• T(n) = maximum time of algorithm on any input of
size n.
Average-case: (sometimes)
• T(n) = expected time of algorithm over all inputs of
size n.
• Need assumption of statistical distribution of inputs.
Best-case:
• Cheat with a slow algorithm that works fast on some
input.
Machine-Machine-IIndependent timendependent time
The RAM Model
Machine independent algorithm design depends on a
hypothetical computer called Random Acces Machine (RAM).
Assumptions:
• Each simple operation such as +, -, if ...etc takes exactly
one time step.
• Loops and subroutines are not considered simple
operations.
• Each memory acces takes exactly one time step.
Machine-independent timeMachine-independent time
What is insertion sort’s worst-case time?
• It depends on the speed of our computer,
• relative speed (on the same machine),
• absolute speed (on different machines).
BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of
“Asymptotic Analysis”
∞→nnT as)(
Machine-independent time: An exampleMachine-independent time: An example
A pseudocode for insertion sort ( INSERTION SORT ).
INSERTION-SORT(A)
1 for j ← 2 to length [A]
2 do key ← A[ j]
3 ∇ Insert A[j] into the sortted sequence A[1,..., j-1].
4 i ← j – 1
5 while i > 0 and A[i] > key
6 do A[i+1] ← A[i]
7 i ← i – 1
8 A[i +1] ← key
Analysis of INSERTION-SORT(contd.)Analysis of INSERTION-SORT(contd.)
1]1[8
)1(17
)1(][]1[6
][05
114
10]11[sequence
sortedtheinto][Insert3
1][2
][21
timescostSORT(A)-INSERTION
8
27
26
25
4
2
1
−←+
−−←
−←+
>>
−−←
−−⋅⋅
∇
−←
←
∑
∑
∑
=
=
=
nckeyiA
tcii
tciAiA
tckeyiAandi
ncji
njA
jA
ncjAkey
ncAlengthj
n
j j
n
j j
n
j j
do
while
do
tofor
Analysis of INSERTION-SORT(contd.)Analysis of INSERTION-SORT(contd.)
)1()1()1()(
2
6
2
5421 −++−+−+= ∑∑
==
n
j
j
n
j
j tctcncnccnT
).1()1( 8
2
7 −+−+ ∑
=
nctc
n
j
j
The total running time is
Analysis of INSERTION-SORT(contd.)Analysis of INSERTION-SORT(contd.)
The best case: The array is already sorted.
(tj =1 for j=2,3, ...,n)
)1()1()1()1()( 85421 −+−+−+−+= ncncncncncnT
).()( 854285421 ccccnccccc +++−++++=
Analysis of INSERTION-SORT(contd.)Analysis of INSERTION-SORT(contd.)
•The worst case: The array is reverse sorted
(tj =j for j=2,3, ...,n).
)12/)1(()1()( 521 −++−+= nncncncnT
)1()2/)1(()2/)1(( 876 −+−+−+ ncnncnnc
ncccccccnccc )2/2/2/()2/2/2/( 8765421
2
765 +−−++++++=
2
)1(
1
+
=∑
=
nn
j
n
j
cbnannT ++= 2
)(
Growth of FunctionsGrowth of Functions
Although we can sometimes determine the exact
running time of an algorithm, the extra precision is not
usually worth the effort of computing it.
For large inputs, the multiplicative constants and lower
order terms of an exact running time are dominated by
the effects of the input size itself.
Asymptotic NotationAsymptotic Notation
The notation we use to describe the asymptotic running
time of an algorithm are defined in terms of functions
whose domains are the set of natural numbers
{ }...,2,1,0=N
O-notationO-notation
• For a given function , we denote by the
set of functions
• We use O-notation to give an asymptotic upper bound of
a function, to within a constant factor.
• means that there existes some constant c
s.t. is always for large enough n.
)(ng ))(( ngO






≥≤≤
=
0
0
allfor)()(0
s.t.andconstantspositiveexistthere:)(
))((
nnncgnf
ncnf
ngO
))(()( ngOnf =
)(ncg≤)(nf
ΩΩ--OmegaOmega notationnotation
• For a given function , we denote by the
set of functions
• We use Ω-notation to give an asymptotic lower bound on
a function, to within a constant factor.
• means that there exists some constant c s.t.
is always for large enough n.
)(ng ))(( ngΩ






≥≤≤
=Ω
0
0
allfor)()(0
s.t.andconstantspositiveexistthere:)(
))((
nnnfncg
ncnf
ng
))(()( ngnf Ω=
)(nf )(ncg≥
--ThetaTheta notationnotation
• For a given function , we denote by the
set of functions
• A function belongs to the set if there
exist positive constants and such that it can be
“sand- wiched” between and or sufficienly
large n.
• means that there exists some constant c1
and c2 s.t. for large enough n.
)(ng ))(( ngΘ






≥≤≤≤
=Θ
021
021
allfor)()()(c0
s.t.and,,constantspositiveexistthere:)(
))((
nnngcnfng
nccnf
ng
)(nf ))(( ngΘ
1c 2c
)(1 ngc )(2 ngc
Θ
))(()( ngnf Θ=
)()()( 21 ngcnfngc ≤≤
Asymptotic notationAsymptotic notation
Graphic examples of and .ΩΘ ,, O
2
2
22
1 3
2
1
ncnnnc ≤−≤
21
3
2
1
c
n
c ≤−≤
Example 1.Example 1.
Show that
We must find c1 and c2 such that
Dividing bothsides by n2 yields
For
)(3
2
1
)( 22
nnnnf Θ=−=
)(3
2
1
,7 22
0 nnnn Θ=−≥
TheoremTheorem
• For any two functions and , we have
if and only if
)(ng
))(()( ngnf Θ=
)(nf
)).(()(and))(()( ngnfngOnf Ω==
Because :
)2(5223 nnn Ω=+−
Example 2.Example 2.
)2(5223)( nnnnf Θ=+−=
)2(5223 nOnn =+−
Example 3.Example 3.
610033,3forsince)(61003 2222
+−>==+− nnncnOnn
Example 3.Example 3.
3when61003,1forsince)(61003
610033,3forsince)(61003
2332
2222
>+−>==+−
+−>==+−
nnnncnOnn
nnncnOnn
Example 3.Example 3.
cnncncnOnn
nnnncnOnn
nnncnOnn
><≠+−
>+−>==+−
+−>==+−
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
22
2332
2222
Example 3.Example 3.
100when610032,2forsince)(61003
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
2222
22
2332
2222
>+−<=Ω=+−
><≠+−
>+−>==+−
+−>==+−
nnnncnnn
cnncncnOnn
nnnncnOnn
nnncnOnn
Example 3.Example 3.
3when61003,3forsince)(61003
100when610032,2forsince)(61003
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
3232
2222
22
2332
2222
><+−=Ω≠+−
>+−<=Ω=+−
><≠+−
>+−>==+−
+−>==+−
nnnncnnn
nnnncnnn
cnncncnOnn
nnnncnOnn
nnncnOnn
Example 3.Example 3.
100when61003,anyforsince)(61003
3when61003,3forsince)(61003
100when610032,2forsince)(61003
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
22
3232
2222
22
2332
2222
>+−<Ω=+−
><+−=Ω≠+−
>+−<=Ω=+−
><≠+−
>+−>==+−
+−>==+−
nnncncnnn
nnnncnnn
nnnncnnn
cnncncnOnn
nnnncnOnn
nnncnOnn
Example 3.Example 3.
apply.andbothsince)(61003
100when61003,anyforsince)(61003
3when61003,3forsince)(61003
100when610032,2forsince)(61003
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
22
22
3232
2222
22
2332
2222
ΩΘ=+−
>+−<Ω=+−
><+−=Ω≠+−
>+−<=Ω=+−
><≠+−
>+−>==+−
+−>==+−
Onnn
nnncncnnn
nnnncnnn
nnnncnnn
cnncncnOnn
nnnncnOnn
nnncnOnn
Example 3.Example 3.
applies.onlysince)(61003
apply.andbothsince)(61003
100when61003,anyforsince)(61003
3when61003,3forsince)(61003
100when610032,2forsince)(61003
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
32
22
22
3232
2222
22
2332
2222
Onnn
Onnn
nnncncnnn
nnnncnnn
nnnncnnn
cnncncnOnn
nnnncnOnn
nnncnOnn
Θ≠+−
ΩΘ=+−
>+−<Ω=+−
><+−=Ω≠+−
>+−<=Ω=+−
><≠+−
>+−>==+−
+−>==+−
Example 3.Example 3.
applies.onlysince)(61003
applies.onlysince)(61003
apply.andbothsince)(61003
100when61003,anyforsince)(61003
3when61003,3forsince)(61003
100when610032,2forsince)(61003
when3,anyforsince)(61003
3when61003,1forsince)(61003
610033,3forsince)(61003
2
32
22
22
3232
2222
22
2332
2222
ΩΘ≠+−
Θ≠+−
ΩΘ=+−
>+−<Ω=+−
><+−=Ω≠+−
>+−<=Ω=+−
><≠+−
>+−>==+−
+−>==+−
nnn
Onnn
Onnn
nnncncnnn
nnnncnnn
nnnncnnn
cnncncnOnn
nnnncnOnn
nnncnOnn
Standard notations and common functionsStandard notations and common functions
• Floors and ceilings
    11 +<≤≤<− xxxxx
Standard notations and common functionsStandard notations and common functions
• Logarithms:
)lg(lglglg
)(loglog
logln
loglg 2
nn
nn
nn
nn
kk
e
=
=
=
=
Standard notations and common functionsStandard notations and common functions
• Logarithms:
For all real a>0, b>0, c>0, and n
b
a
a
ana
baab
ba
c
c
b
b
n
b
ccc
ab
log
log
log
loglog
loglog)(log
log
=
=
+=
=
Standard notations and common functionsStandard notations and common functions
• Logarithms:
b
a
ca
aa
a
b
ac
bb
bb
log
1
log
log)/1(log
loglog
=
=
−=
Standard notations and common functionsStandard notations and common functions
• Factorials
For the Stirling approximation:












Θ+





π=
ne
n
nn
n
1
12!
0≥n
)lg()!lg(
)2(!
)(!
nnn
n
non
n
n
Θ=
ω=
=

More Related Content

What's hot (19)

PDF
Algorithms Lecture 2: Analysis of Algorithms I
Mohamed Loey
 
PDF
Algorithm chapter 2
chidabdu
 
PDF
Algorithem complexity in data sructure
Kumar
 
PPT
Fundamentals of the Analysis of Algorithm Efficiency
Saranya Natarajan
 
PDF
Algorithms lecture 3
Mimi Haque
 
PPT
chapter 1
yatheesha
 
PPT
Design and Analysis of Algorithms
Swapnil Agrawal
 
PPT
Analysis of Algorithms
Mubariz Hamza Aslam
 
PPT
Cis435 week01
ashish bansal
 
PPTX
Complexity analysis in Algorithms
Daffodil International University
 
PPT
Algorithm analysis
sumitbardhan
 
PPT
Basic terminologies & asymptotic notations
Rajendran
 
PPT
Data Structures and Algorithm Analysis
Mary Margarat
 
PPT
Introducción al Análisis y diseño de algoritmos
luzenith_g
 
PPT
Alg1
luzenith_g
 
PDF
Daa notes 2
smruti sarangi
 
PDF
01 Analysis of Algorithms: Introduction
Andres Mendez-Vazquez
 
PPT
Analysis Of Algorithms I
Sri Prasanna
 
PPT
Kk20503 1 introduction
Low Ying Hao
 
Algorithms Lecture 2: Analysis of Algorithms I
Mohamed Loey
 
Algorithm chapter 2
chidabdu
 
Algorithem complexity in data sructure
Kumar
 
Fundamentals of the Analysis of Algorithm Efficiency
Saranya Natarajan
 
Algorithms lecture 3
Mimi Haque
 
chapter 1
yatheesha
 
Design and Analysis of Algorithms
Swapnil Agrawal
 
Analysis of Algorithms
Mubariz Hamza Aslam
 
Cis435 week01
ashish bansal
 
Complexity analysis in Algorithms
Daffodil International University
 
Algorithm analysis
sumitbardhan
 
Basic terminologies & asymptotic notations
Rajendran
 
Data Structures and Algorithm Analysis
Mary Margarat
 
Introducción al Análisis y diseño de algoritmos
luzenith_g
 
Daa notes 2
smruti sarangi
 
01 Analysis of Algorithms: Introduction
Andres Mendez-Vazquez
 
Analysis Of Algorithms I
Sri Prasanna
 
Kk20503 1 introduction
Low Ying Hao
 

Similar to Algorithm (20)

PPT
algorithm_lec_1eregdsgdfgdgdfgdfgdfg.ppt
partho5958
 
PDF
Algorithm analysis insertion sort and asymptotic notations
Amit Kumar Rathi
 
PPTX
Algorithms & Complexity Calculation
Akhil Kaushik
 
PDF
Data Structure & Algorithms - Introduction
babuk110
 
PDF
Analysis and Algorithms: basic Introduction
ssuseraf8b2f
 
PPTX
Searching Algorithms
Afaq Mansoor Khan
 
PPTX
complexity big oh notation notation.pptx
narifmsit18seecs
 
PPTX
Introducction to Algorithm
Rajamanickam Gomathijayam
 
PDF
DSA
rrupa2
 
PPTX
FALLSEM2022-23_BCSE202L_TH_VL2022230103292_Reference_Material_I_25-07-2022_Fu...
AntareepMajumder
 
PDF
Advanced Datastructures and algorithms CP4151unit1b.pdf
Sheba41
 
PPTX
Unit 1.pptx
DeepakYadav656387
 
PPTX
asymptotic analysis and insertion sort analysis
Anindita Kundu
 
PPTX
Design Analysis of Alogorithm 1 ppt 2024.pptx
rajesshs31r
 
PPTX
Analysis of Algorithm full version 2024.pptx
rajesshs31r
 
PDF
Unit 1_final DESIGN AND ANALYSIS OF ALGORITHM.pdf
saiscount01
 
PPTX
complex computer systems and its applications.pptx
narifmsit18seecs
 
PPTX
2. Introduction to Algorithm.pptx
RahikAhmed1
 
PPTX
Algorithm for the DAA agscsnak javausmagagah
RaviPandey598038
 
algorithm_lec_1eregdsgdfgdgdfgdfgdfg.ppt
partho5958
 
Algorithm analysis insertion sort and asymptotic notations
Amit Kumar Rathi
 
Algorithms & Complexity Calculation
Akhil Kaushik
 
Data Structure & Algorithms - Introduction
babuk110
 
Analysis and Algorithms: basic Introduction
ssuseraf8b2f
 
Searching Algorithms
Afaq Mansoor Khan
 
complexity big oh notation notation.pptx
narifmsit18seecs
 
Introducction to Algorithm
Rajamanickam Gomathijayam
 
DSA
rrupa2
 
FALLSEM2022-23_BCSE202L_TH_VL2022230103292_Reference_Material_I_25-07-2022_Fu...
AntareepMajumder
 
Advanced Datastructures and algorithms CP4151unit1b.pdf
Sheba41
 
Unit 1.pptx
DeepakYadav656387
 
asymptotic analysis and insertion sort analysis
Anindita Kundu
 
Design Analysis of Alogorithm 1 ppt 2024.pptx
rajesshs31r
 
Analysis of Algorithm full version 2024.pptx
rajesshs31r
 
Unit 1_final DESIGN AND ANALYSIS OF ALGORITHM.pdf
saiscount01
 
complex computer systems and its applications.pptx
narifmsit18seecs
 
2. Introduction to Algorithm.pptx
RahikAhmed1
 
Algorithm for the DAA agscsnak javausmagagah
RaviPandey598038
 
Ad

Recently uploaded (20)

PDF
AN EMPIRICAL STUDY ON THE USAGE OF SOCIAL MEDIA IN GERMAN B2C-ONLINE STORES
ijait
 
PDF
AI TECHNIQUES FOR IDENTIFYING ALTERATIONS IN THE HUMAN GUT MICROBIOME IN MULT...
vidyalalltv1
 
PPTX
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
PPT
New_school_Engineering_presentation_011707.ppt
VinayKumar304579
 
PPTX
Water Resources Engineering (CVE 728)--Slide 3.pptx
mohammedado3
 
PDF
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
PPTX
How Industrial Project Management Differs From Construction.pptx
jamespit799
 
PDF
Water Industry Process Automation & Control Monthly July 2025
Water Industry Process Automation & Control
 
PPTX
MODULE 04 - CLOUD COMPUTING AND SECURITY.pptx
Alvas Institute of Engineering and technology, Moodabidri
 
PDF
mbse_An_Introduction_to_Arcadia_20150115.pdf
henriqueltorres1
 
PDF
Submit Your Papers-International Journal on Cybernetics & Informatics ( IJCI)
IJCI JOURNAL
 
PDF
Halide Perovskites’ Multifunctional Properties: Coordination Engineering, Coo...
TaameBerhe2
 
PDF
Electrical Machines and Their Protection.pdf
Nabajyoti Banik
 
PPTX
Mechanical Design of shell and tube heat exchangers as per ASME Sec VIII Divi...
shahveer210504
 
PPTX
What is Shot Peening | Shot Peening is a Surface Treatment Process
Vibra Finish
 
PPT
Footbinding.pptmnmkjkjkknmnnjkkkkkkkkkkkkkk
mamadoundiaye42742
 
PPTX
Knowledge Representation : Semantic Networks
Amity University, Patna
 
PPTX
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
PDF
3rd International Conference on Machine Learning and IoT (MLIoT 2025)
ClaraZara1
 
PDF
Digital water marking system project report
Kamal Acharya
 
AN EMPIRICAL STUDY ON THE USAGE OF SOCIAL MEDIA IN GERMAN B2C-ONLINE STORES
ijait
 
AI TECHNIQUES FOR IDENTIFYING ALTERATIONS IN THE HUMAN GUT MICROBIOME IN MULT...
vidyalalltv1
 
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
New_school_Engineering_presentation_011707.ppt
VinayKumar304579
 
Water Resources Engineering (CVE 728)--Slide 3.pptx
mohammedado3
 
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
How Industrial Project Management Differs From Construction.pptx
jamespit799
 
Water Industry Process Automation & Control Monthly July 2025
Water Industry Process Automation & Control
 
MODULE 04 - CLOUD COMPUTING AND SECURITY.pptx
Alvas Institute of Engineering and technology, Moodabidri
 
mbse_An_Introduction_to_Arcadia_20150115.pdf
henriqueltorres1
 
Submit Your Papers-International Journal on Cybernetics & Informatics ( IJCI)
IJCI JOURNAL
 
Halide Perovskites’ Multifunctional Properties: Coordination Engineering, Coo...
TaameBerhe2
 
Electrical Machines and Their Protection.pdf
Nabajyoti Banik
 
Mechanical Design of shell and tube heat exchangers as per ASME Sec VIII Divi...
shahveer210504
 
What is Shot Peening | Shot Peening is a Surface Treatment Process
Vibra Finish
 
Footbinding.pptmnmkjkjkknmnnjkkkkkkkkkkkkkk
mamadoundiaye42742
 
Knowledge Representation : Semantic Networks
Amity University, Patna
 
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
3rd International Conference on Machine Learning and IoT (MLIoT 2025)
ClaraZara1
 
Digital water marking system project report
Kamal Acharya
 
Ad

Algorithm