SlideShare a Scribd company logo
Improving the Sentiment Analysis ...
DeustoTech - Deusto Institute of Technology, University of Deusto
http://www.morelab.deusto.es
September 28, 2016
An Approach to Subjectivity Detection on Twitter
Using the Structured Information
ICCCI 2016 - 8th International Conference on Computational Collective Intelligence
Juan Sixto, Aitor Almeida and Diego López-de-Ipiña
1
Improving the Sentiment Analysis ...
Overview
Introduction & Motivation
Related Work
Sentiment Analysis of Twitter Data
Structured and Unstructured Information
Experiments
Conclusions & Future Work
2/15
Improving the Sentiment Analysis ...
Introduction & Motivation
► User-generated information of social networks
► New algorithms and methods for their classification.
► The Sentiment Analysis (SA) methods.
► Ranking algorithms as resources.
► Microblogging and Twitter
► One of the largest textual data sources.
► Specific characteristics.
Introduction & Motivation 33/15
Improving the Sentiment Analysis ...
Introduction & Motivation
► Can the Structured Information of Twitter be
used for sentiment analysis at global level?
► How the Structured Information of Twitter is
classified?
► What Structural features are useful to
subjectivity detection task?
Introduction & Motivation 44/15
Improving the Sentiment Analysis ...
Related Work
► Contextual Applications in Sentiment Analysis
► [Pennacchiotti and Popescu, 2011] Linguistic and social network.
► [De Choudhury et al., 2013] User behavior to predict emotional states.
► Classification algorithms
► [Cortes and Vapnik, 1995] Support Vector Machine (SVM)
► [Cox, 1958] Logistic Regression (LR)
► [Friedman, 2001] Gradient Boosting Classifier (GBC)
► Train and Test Dataset
► [Villena-Román et al., 2015] TASS’15 General Corpus.
► 7.219 (11%) Train / 60.798 (89%) Test.
► Six different polarity labels: P+, P, N+, N, NEU, NONE
Related Work 55/15
Improving the Sentiment Analysis ...
Sentiment Analysis of Twitter Data
Okapi BM25 ranking function 66/15
► Sentiment Analysis (or Opinion Mining) is defined as the task
of finding the opinions of authors about specific entities.
► Feldman, 2013
► Twitter text corpora
► Heterogeneous user-generated corpora
► Open Domain
► Noisy Text
Improving the Sentiment Analysis ...
Structured and Unstructured Information
Okapi BM25 ranking function 77/15
Improving the Sentiment Analysis ...
Adaptation of the algorithm
► Four categories of attributes.
► Text attributes
► Hashtags, Links, Emoticons, Punctuation, Retweet,...
► Tweet attributes
► Quantity of retweets, creation date/time, associated
place,...
► User attributes
► Location, political affiliation, post habits,...
► Topographic attributes
► Modularity class of user, In-degree, Out-degree,
Communities,...
Okapi BM25 ranking function 88/15
Improving the Sentiment Analysis ...
Adaptation of the algorithm
► Four categories of attributes.
► Text attributes
► Hashtags, Links, Emoticons, Punctuation, Retweet,...
► Tweet attributes
► Quantity of retweets, creation date/time, associated
place,...
► User attributes
► Location, political affiliation, post habits,...
► Topographic attributes
► Modularity class of user, In-degree, Out-degree,
Communities,...
Okapi BM25 ranking function 99/15
Improving the Sentiment Analysis ...
Experiments
Experiments 1010/15
► Selected features to train a classifier
► [Barbosa and Feng, 2010]
► URL
► Exclamation marks
► Emoticons
► Uppercase words
► Uppercase Percent
► Favorites
► Modularity Class
► Directed graph relations based on “Follow”
► Three communities formed by left/right/neutral ideologies.
► Graph Degrees (In-Degree - Out-Degree)
► Retweets (RTs)
► Ellipsis
Improving the Sentiment Analysis ...
Experiments
● Meta-Information classifier
○ GradientBoosting model
● Bag-of-Words classifier
○ Logistic Regression model
● Meta-Information and Bag-of-Words classifier
○ Matrix representation of structural features
○ GradientBoosting model
● Meta-Information and Bag-of-Words Stacking Classifier
○ Both models.
○ Array of level-0 models.
○ Logistic Regression model
Experiments 1111/15
Improving the Sentiment Analysis ...
Experiments
► Test datasets : 60.798 items.
► 6 categories: NONE,NEU,P,N,P+,N+
► NONE: 20.54 % (Train) and 12,30 % (Test).
► Performance measures:
► Accuracy: true results / total dataset.
► Macro averaged-F1: precision and recall.
► NONE-F1: micro averaged F1 of the True labels.
Experiments 1212/15
Improving the Sentiment Analysis ...
Conclusions
Conclusions 1313/15
► We have proposed a method which:
► Adapt the contextual data to the global polarity detection
task.
► Add new ways to use the contextual information.
► We presented a contextual data classification.
► We combined the structured and unstructured
information to complement the classification task.
Improving the Sentiment Analysis ...
Future Work
Future Work 1414/15
► Improve the present system including:
► More Twitter components and their relation with polarity.
► Lexicons and semantic resources.
► Extend the classifier to a global polarity task
► Study the relation between structural data and other user
features.
Improving the Sentiment Analysis ...
Thank You
1515/15
Improving the Sentiment Analysis ...
All rights of images are reserved by the original
owners*, the rest of the content is licensed under a
Creative Commons by-sa 3.0 license.
Improving the Sentiment Analysis ...
DeustoTech - Deusto Institute of Technology, University of Deusto
http://www.morelab.deusto.es
An Approach to Subjectivity Detection on Twitter
Using the Structured Information
Juan Sixto, Aitor Almeida and Diego López-de-Ipiña
{jsixto, aitor.almeida, dipina }@deusto.es

More Related Content

Viewers also liked (7)

PPTX
Sentiment analyzer and opinion mining
Ankush Mehta
 
PDF
Hashtag Conversations,Eventgraphs, and User Ego Neighborhoods: Extracting So...
Shalin Hai-Jew
 
PPTX
On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter
Knowledge Media Institute - The Open University
 
PPTX
Twitter sentiment analysis
Sunil Kandari
 
PDF
Sentiment analysis of Twitter Data
Nurendra Choudhary
 
PPTX
Sentiment analysis of twitter data
Bhagyashree Deokar
 
PPT
How Sentiment Analysis works
CJ Jenkins
 
Sentiment analyzer and opinion mining
Ankush Mehta
 
Hashtag Conversations,Eventgraphs, and User Ego Neighborhoods: Extracting So...
Shalin Hai-Jew
 
On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter
Knowledge Media Institute - The Open University
 
Twitter sentiment analysis
Sunil Kandari
 
Sentiment analysis of Twitter Data
Nurendra Choudhary
 
Sentiment analysis of twitter data
Bhagyashree Deokar
 
How Sentiment Analysis works
CJ Jenkins
 

Similar to An Approach to Subjectivity Detection on Twitter Using the Structured Information (20)

PPTX
Sentimental Analysis - Naive Bayes Algorithm
Khushboo Gupta
 
PDF
A Survey on Analysis of Twitter Opinion Mining using Sentiment Analysis
IRJET Journal
 
PPTX
Collective sensing
mahdikianirad1
 
PDF
Hybrid Classifier for Sentiment Analysis using Effective Pipelining
IRJET Journal
 
PDF
IRJET - Implementation of Twitter Sentimental Analysis According to Hash Tag
IRJET Journal
 
PDF
IRJET- Interpreting Public Sentiments Variation by using FB-LDA Technique
IRJET Journal
 
PDF
IRJET - Twitter Sentiment Analysis using Machine Learning
IRJET Journal
 
PDF
Vol 7 No 1 - November 2013
ijcsbi
 
PPTX
Twitter sentiment classifications 1
eshtiyak
 
PPTX
Major presentation
PS241092
 
PDF
IRJET- A Review on: Sentiment Polarity Analysis on Twitter Data from Diff...
IRJET Journal
 
PDF
Sentiment Analysis of Twitter Data
Sumit Raj
 
PDF
IRJET- Real Time Sentiment Analysis of Political Twitter Data using Machi...
IRJET Journal
 
PDF
Kishaloy Haldar and Wenqiang Lei - WESST - Sentiment Analysis of Social Media
NUS Institute of Applied Learning Sciences and Educational Technology
 
PPTX
Sentiment Analysis in Twitter
Ayushi Dalmia
 
PPT
Report v1
Vinay Singri
 
PPT
Sentiment Analysis in Twitter
prnk08
 
DOCX
Abstract
Suresh Prabhu
 
PDF
UTILIZING TWITTER TO PERFORM AUTONOMOUS SENTIMENT ANALYSIS
IRJET Journal
 
PPTX
Sentiment analysis using ml
Pravin Katiyar
 
Sentimental Analysis - Naive Bayes Algorithm
Khushboo Gupta
 
A Survey on Analysis of Twitter Opinion Mining using Sentiment Analysis
IRJET Journal
 
Collective sensing
mahdikianirad1
 
Hybrid Classifier for Sentiment Analysis using Effective Pipelining
IRJET Journal
 
IRJET - Implementation of Twitter Sentimental Analysis According to Hash Tag
IRJET Journal
 
IRJET- Interpreting Public Sentiments Variation by using FB-LDA Technique
IRJET Journal
 
IRJET - Twitter Sentiment Analysis using Machine Learning
IRJET Journal
 
Vol 7 No 1 - November 2013
ijcsbi
 
Twitter sentiment classifications 1
eshtiyak
 
Major presentation
PS241092
 
IRJET- A Review on: Sentiment Polarity Analysis on Twitter Data from Diff...
IRJET Journal
 
Sentiment Analysis of Twitter Data
Sumit Raj
 
IRJET- Real Time Sentiment Analysis of Political Twitter Data using Machi...
IRJET Journal
 
Kishaloy Haldar and Wenqiang Lei - WESST - Sentiment Analysis of Social Media
NUS Institute of Applied Learning Sciences and Educational Technology
 
Sentiment Analysis in Twitter
Ayushi Dalmia
 
Report v1
Vinay Singri
 
Sentiment Analysis in Twitter
prnk08
 
Abstract
Suresh Prabhu
 
UTILIZING TWITTER TO PERFORM AUTONOMOUS SENTIMENT ANALYSIS
IRJET Journal
 
Sentiment analysis using ml
Pravin Katiyar
 
Ad

Recently uploaded (20)

PPTX
UNIT DAA PPT cover all topics 2021 regulation
archu26
 
PDF
A presentation on the Urban Heat Island Effect
studyfor7hrs
 
PPTX
EC3551-Transmission lines Demo class .pptx
Mahalakshmiprasannag
 
PPTX
Benefits_^0_Challigi😙🏡💐8fenges[1].pptx
akghostmaker
 
PDF
Introduction to Productivity and Quality
মোঃ ফুরকান উদ্দিন জুয়েল
 
PDF
Water Design_Manual_2005. KENYA FOR WASTER SUPPLY AND SEWERAGE
DancanNgutuku
 
PPTX
drones for disaster prevention response.pptx
NawrasShatnawi1
 
PPTX
site survey architecture student B.arch.
sri02032006
 
PPTX
Green Building & Energy Conservation ppt
Sagar Sarangi
 
PPTX
Types of Bearing_Specifications_PPT.pptx
PranjulAgrahariAkash
 
PPT
inherently safer design for engineering.ppt
DhavalShah616893
 
PDF
Statistical Data Analysis Using SPSS Software
shrikrishna kesharwani
 
PPTX
Structural Functiona theory this important for the theorist
cagumaydanny26
 
PPT
Oxygen Co2 Transport in the Lungs(Exchange og gases)
SUNDERLINSHIBUD
 
PDF
6th International Conference on Machine Learning Techniques and Data Science ...
ijistjournal
 
PPTX
265587293-NFPA 101 Life safety code-PPT-1.pptx
chandermwason
 
PDF
monopile foundation seminar topic for civil engineering students
Ahina5
 
PPTX
Introduction to Neural Networks and Perceptron Learning Algorithm.pptx
Kayalvizhi A
 
PPTX
NEUROMOROPHIC nu iajwojeieheueueueu.pptx
knkoodalingam39
 
PDF
Unified_Cloud_Comm_Presentation anil singh ppt
anilsingh298751
 
UNIT DAA PPT cover all topics 2021 regulation
archu26
 
A presentation on the Urban Heat Island Effect
studyfor7hrs
 
EC3551-Transmission lines Demo class .pptx
Mahalakshmiprasannag
 
Benefits_^0_Challigi😙🏡💐8fenges[1].pptx
akghostmaker
 
Introduction to Productivity and Quality
মোঃ ফুরকান উদ্দিন জুয়েল
 
Water Design_Manual_2005. KENYA FOR WASTER SUPPLY AND SEWERAGE
DancanNgutuku
 
drones for disaster prevention response.pptx
NawrasShatnawi1
 
site survey architecture student B.arch.
sri02032006
 
Green Building & Energy Conservation ppt
Sagar Sarangi
 
Types of Bearing_Specifications_PPT.pptx
PranjulAgrahariAkash
 
inherently safer design for engineering.ppt
DhavalShah616893
 
Statistical Data Analysis Using SPSS Software
shrikrishna kesharwani
 
Structural Functiona theory this important for the theorist
cagumaydanny26
 
Oxygen Co2 Transport in the Lungs(Exchange og gases)
SUNDERLINSHIBUD
 
6th International Conference on Machine Learning Techniques and Data Science ...
ijistjournal
 
265587293-NFPA 101 Life safety code-PPT-1.pptx
chandermwason
 
monopile foundation seminar topic for civil engineering students
Ahina5
 
Introduction to Neural Networks and Perceptron Learning Algorithm.pptx
Kayalvizhi A
 
NEUROMOROPHIC nu iajwojeieheueueueu.pptx
knkoodalingam39
 
Unified_Cloud_Comm_Presentation anil singh ppt
anilsingh298751
 
Ad

An Approach to Subjectivity Detection on Twitter Using the Structured Information

  • 1. Improving the Sentiment Analysis ... DeustoTech - Deusto Institute of Technology, University of Deusto http://www.morelab.deusto.es September 28, 2016 An Approach to Subjectivity Detection on Twitter Using the Structured Information ICCCI 2016 - 8th International Conference on Computational Collective Intelligence Juan Sixto, Aitor Almeida and Diego López-de-Ipiña 1
  • 2. Improving the Sentiment Analysis ... Overview Introduction & Motivation Related Work Sentiment Analysis of Twitter Data Structured and Unstructured Information Experiments Conclusions & Future Work 2/15
  • 3. Improving the Sentiment Analysis ... Introduction & Motivation ► User-generated information of social networks ► New algorithms and methods for their classification. ► The Sentiment Analysis (SA) methods. ► Ranking algorithms as resources. ► Microblogging and Twitter ► One of the largest textual data sources. ► Specific characteristics. Introduction & Motivation 33/15
  • 4. Improving the Sentiment Analysis ... Introduction & Motivation ► Can the Structured Information of Twitter be used for sentiment analysis at global level? ► How the Structured Information of Twitter is classified? ► What Structural features are useful to subjectivity detection task? Introduction & Motivation 44/15
  • 5. Improving the Sentiment Analysis ... Related Work ► Contextual Applications in Sentiment Analysis ► [Pennacchiotti and Popescu, 2011] Linguistic and social network. ► [De Choudhury et al., 2013] User behavior to predict emotional states. ► Classification algorithms ► [Cortes and Vapnik, 1995] Support Vector Machine (SVM) ► [Cox, 1958] Logistic Regression (LR) ► [Friedman, 2001] Gradient Boosting Classifier (GBC) ► Train and Test Dataset ► [Villena-Román et al., 2015] TASS’15 General Corpus. ► 7.219 (11%) Train / 60.798 (89%) Test. ► Six different polarity labels: P+, P, N+, N, NEU, NONE Related Work 55/15
  • 6. Improving the Sentiment Analysis ... Sentiment Analysis of Twitter Data Okapi BM25 ranking function 66/15 ► Sentiment Analysis (or Opinion Mining) is defined as the task of finding the opinions of authors about specific entities. ► Feldman, 2013 ► Twitter text corpora ► Heterogeneous user-generated corpora ► Open Domain ► Noisy Text
  • 7. Improving the Sentiment Analysis ... Structured and Unstructured Information Okapi BM25 ranking function 77/15
  • 8. Improving the Sentiment Analysis ... Adaptation of the algorithm ► Four categories of attributes. ► Text attributes ► Hashtags, Links, Emoticons, Punctuation, Retweet,... ► Tweet attributes ► Quantity of retweets, creation date/time, associated place,... ► User attributes ► Location, political affiliation, post habits,... ► Topographic attributes ► Modularity class of user, In-degree, Out-degree, Communities,... Okapi BM25 ranking function 88/15
  • 9. Improving the Sentiment Analysis ... Adaptation of the algorithm ► Four categories of attributes. ► Text attributes ► Hashtags, Links, Emoticons, Punctuation, Retweet,... ► Tweet attributes ► Quantity of retweets, creation date/time, associated place,... ► User attributes ► Location, political affiliation, post habits,... ► Topographic attributes ► Modularity class of user, In-degree, Out-degree, Communities,... Okapi BM25 ranking function 99/15
  • 10. Improving the Sentiment Analysis ... Experiments Experiments 1010/15 ► Selected features to train a classifier ► [Barbosa and Feng, 2010] ► URL ► Exclamation marks ► Emoticons ► Uppercase words ► Uppercase Percent ► Favorites ► Modularity Class ► Directed graph relations based on “Follow” ► Three communities formed by left/right/neutral ideologies. ► Graph Degrees (In-Degree - Out-Degree) ► Retweets (RTs) ► Ellipsis
  • 11. Improving the Sentiment Analysis ... Experiments ● Meta-Information classifier ○ GradientBoosting model ● Bag-of-Words classifier ○ Logistic Regression model ● Meta-Information and Bag-of-Words classifier ○ Matrix representation of structural features ○ GradientBoosting model ● Meta-Information and Bag-of-Words Stacking Classifier ○ Both models. ○ Array of level-0 models. ○ Logistic Regression model Experiments 1111/15
  • 12. Improving the Sentiment Analysis ... Experiments ► Test datasets : 60.798 items. ► 6 categories: NONE,NEU,P,N,P+,N+ ► NONE: 20.54 % (Train) and 12,30 % (Test). ► Performance measures: ► Accuracy: true results / total dataset. ► Macro averaged-F1: precision and recall. ► NONE-F1: micro averaged F1 of the True labels. Experiments 1212/15
  • 13. Improving the Sentiment Analysis ... Conclusions Conclusions 1313/15 ► We have proposed a method which: ► Adapt the contextual data to the global polarity detection task. ► Add new ways to use the contextual information. ► We presented a contextual data classification. ► We combined the structured and unstructured information to complement the classification task.
  • 14. Improving the Sentiment Analysis ... Future Work Future Work 1414/15 ► Improve the present system including: ► More Twitter components and their relation with polarity. ► Lexicons and semantic resources. ► Extend the classifier to a global polarity task ► Study the relation between structural data and other user features.
  • 15. Improving the Sentiment Analysis ... Thank You 1515/15
  • 16. Improving the Sentiment Analysis ... All rights of images are reserved by the original owners*, the rest of the content is licensed under a Creative Commons by-sa 3.0 license.
  • 17. Improving the Sentiment Analysis ... DeustoTech - Deusto Institute of Technology, University of Deusto http://www.morelab.deusto.es An Approach to Subjectivity Detection on Twitter Using the Structured Information Juan Sixto, Aitor Almeida and Diego López-de-Ipiña {jsixto, aitor.almeida, dipina }@deusto.es