SlideShare a Scribd company logo
AN EFFICIENT 

BOUNDARY INTEGRAL METHOD 

FOR 

STIFF FLUID INTERFACE PROBLEMS
Oleksiy Varfolomiyev

advisor Michael Siegel

co-advisor Michael Booty

NJIT, 29 April 2015
MOTIVATION
Problem: Study the evolution of interface between two
immiscible, inviscid, incompressible, irrotational fluids of
different constant density in three dimensions 

Solution: To formulate and investigate a boundary integral
method for the solution of the stiff internal waves/
Rayleigh-Taylor problem with surface tension and
elasticity

⇢1
⇢2
S
OUTLINE
• Mathematical Model

• The Boundary Integral Method

• The Small-scale Decomposition

• Invariants of the Motion

• Symmetry

• Linear Stability Analysis

• Numerical Method

• Simulation Results
MATHEMATICAL MODEL
MODEL DESCRIPTION
• Gravity

• Surface Tension

• Elastic Bending Stress
Fluids are driven by
GOVERNING EQUATIONS
Interface parameterization
X(~↵, t) = (x(~↵, t), y(~↵, t), z(~↵, t)), ~↵ = (↵, )
Bernoulli’s Equation for Fluids Velocities Potentials
@ i
@t
r i · Xt +
1
2
|r i|2
+
pi
⇢i
+ gz = 0 in Di
Interface Evolution Equation
Xt = V1ˆt1
+ V2ˆt2
+ Uˆn
r i = ViVelocity potential
BOUNDARY CONDITIONS
Kinematic Boundary Condition
Laplace-Young Boundary Condition
Far-field Velocity
V1 · ˆn = V2 · ˆn = U on S
p1 p2 = (1 + 2) on S
V ! 0 as z ! ±1
[p] = ¯Eb4s 2 ¯Eb3
+ 2  + 2 ¯Ebg
Pressure Jump across elastic Interface
Fluid Velocity on S given by the Birkhoff-Rott Integral
W(X) = PV
Z 1
1
Z 1
1
j0
⇥ rXG(X, X0
) d↵0
d 0
+ V1ˆn,
=
1
4⇡
PV
Z 1
1
Z 1
1
j0
⇥
(X X0
)
|X X0|3
d↵0
d 0
+ V1ˆn
Generalized Isothermal Parameterization
E = X↵ · X↵
F = X↵ · X
G = X · X
L = X↵↵ · ˆn
M = X↵ · ˆn
N = X · ˆn
G(↵, , t) = (t)E(↵, , t), F(↵, , t) = 0
µ = 1 2 j = µ↵X µ X↵W = (V1 + V2)/2
Ambrose,
Siegel ‘12
Caflish,
Li ‘05
Xt = V1ˆt1
+ V2ˆt2
+ (W · ˆn)ˆn
Interface Evolution Equation
µt + A t =
µ↵
p
E
V 1
(W · ˆt1
) +
µ
p
E
V 2
(W · ˆt2
)
+A
"
2(W · ˆn)2
+ 2V1(W · ˆt1
) + 2V2(W · ˆt2
)
µ2
↵
4E
µ2
4 E
|W|2
#
B 2Gz
Vortex Sheet Density Evolution Equation
= 1 + 2  =
L + N
E
A =
⇢1 ⇢2
⇢1 + ⇢2
G =
AgL
v2
c
B =
2
L(⇢1 + ⇢2)v2
c
ELASTIC INTERFACE
Pressure Jump across the Interface
[p] = ¯Eb4s 2 ¯Eb3
+ 2  + 2 ¯Ebg
g =
LN M2
E2
¯Eb
Gaussian curvature
Bending modulus
Surface Laplacian
Plotnikov,
Toland ‘11
4s =
1
p
EG F2
@
@
E @
@ F @
@↵
p
EG F2
!
+
1
p
EG F2
@
@↵
G @
@↵ F @
@
p
EG F2
!
µt + A t =
µ↵
p
E
V 1
(W · ˆt1
) +
µ
p
E
V 2
(W · ˆt2
)
+A
"
2(W · ˆn)2
+ 2V1(W · ˆt1
) + 2V2(W · ˆt2
)
µ2
↵
4E
µ2
4 E
|W|2
#
+Eb(4s 23
+ 2g) + B + 2Agz
-Equation for the elastic interfaceµ
Tangential Velocities are chosen to preserve parameterization
✓
V1
p
E
◆
↵
✓
V2
p
E
◆
=
tE + 2U ( L N) ( E G)
2 E
✓
V2
p
E
◆
↵
+
✓
V1
p
E
◆
=
2UM F
p
E
( E G)t = 0
Ft = 0
( E G) FRelaxation Terms
THE BOUNDARY INTEGRAL
METHOD
Normal Velocity Decomposition
U(X) ⌘ W · ˆn = Us(X) + Usub(X)
Us(X)
Usub(X)
- high order terms dominant at a small scale
- lower order terms
W(X) =
1
4⇡
PV
Z 1
1
Z 1
1
j0
⇥
X0
↵(↵ ↵0
) + X0
( 0
)
E0 3
2
h
(↵ ↵0)
2
+ (t) ( 0)
2
i3
2
d↵0
d 0
+
1
4⇡
PV
Z 1
1
Z 1
1
j0
⇥
8
><
>:
X X0
|X X0|3
X0
↵(↵ ↵0
) + X0
( 0
)
E0 3
2
h
(↵ ↵0)
2
+ (t) ( 0)
2
i3
2
9
>=
>;
d↵d 0
= Ws(X) + Wsub(X)
Taylor expansion of the kernel about X’
Ambrose,
Masmoudi ‘09
Us =
p
4⇡
PV
Z 1
1
Z 1
1
ˆn(µ↵(↵ ↵0
) + µ0
( 0
))
E0 1
2
h
(↵ ↵0)
2
+ (t) ( 0)
2
i3
2
d↵0
d 0
· ˆn
Leading order part of the Normal Velocity
H1f(↵, ) =
1
2⇡
PV
Z 1
1
Z 1
1
f(↵0
, 0
)(↵ ↵0
)
h
(↵ ↵0)
2
+ (t) ( 0)
2
i3
2
d↵0
d 0
,
H2f(↵, ) =
1
2⇡
PV
Z 1
1
Z 1
1
f(↵0
, 0
)( 0
)
h
(↵ ↵0)
2
+ (t) ( 0)
2
i3
2
d↵0
d 0
Riesz Transforms
Us = Ws · ˆn =
1
2

H1
✓
µ↵ˆn
E
1
2
◆
+ H2
✓
µ ˆn
E
1
2
◆
· ˆn
bH1f(k) = i
k1
k
ˆfk, bH2f(k) = i
k2
k
ˆfk
Symbols of the Riesz Transforms
k =
q
k2
1 + k2
2
Xt = Usˆn + V1sˆt1
+ V2sˆt2
+ (U Us)ˆn + (V1 V1s)ˆt1
+ (V2 V2s)ˆt2
The first three terms in the RHS give the leading order
behavior at small scales, treated implicitly in the
proposed numerical method. These implicit nonlocal
terms evaluated efficiently using the FFT method.
The last three terms in the RHS are of lower order,
treated explicitly.
Evolution Equation Decomposition
INVARIANTS OFTHE MOTION
Conservation of Mass / Mean Height of the Interface
¯z =
1
4⇡2
Z 2⇡
0
Z 2⇡
0
z dxdy =
1
4⇡2
Z 1
0
Z 1
0
z |x↵y y↵x | d↵d
Potential Energy
Ep = (⇢1 ⇢2)g
Z 2⇡
0
Z 2⇡
0
Z z(x,y)
0
z dxdydz
= (⇢1 ⇢2)g
Z 2⇡
0
Z 2⇡
0
z2
2
dxdy
= (⇢1 ⇢2)g
Z 1
0
Z 1
0
z2
2
|J| d↵d
Jacobian |J| = |x↵y y↵x |
Surface Energy
Es =
Z
S
Z
dS =
Z 1
0
Z 1
0
|X↵ ⇥ X | d↵d
Ek = E1
k + E2
k =
1
4
(⇢1 + ⇢2)
Z 1
0
Z 1
0
(µ + A )U |X↵ ⇥ X | d↵d
Kinetic Energy
= 1 + 2
E1
k =
1
2
⇢1
Z 2⇡
0
Z 2⇡
0
Z z(x,y)
0
|r 1|2
dxdydz
µ = 1 2 1 = ( + µ)/2 2 = ( µ)/2
Elastic Bending Energy
Esb =
p
2
Z 1
0
Z 1
0
Eb 2
|E| d↵d
˜Etot = A
Z 1
0
Z 1
0
z2
|x↵y y↵x | d↵d
+
p
2
Z 1
0
Z 1
0
(µ + A )U|E| d↵d
+B
p Z 1
0
Z 1
0
|E| d↵d
+
p
2
Z 1
0
Z 1
0
Eb 2
|E| d↵d
Total Energy
Plotnikov,
Toland ‘11
SYMMETRY
X( ↵, ) = ( x(↵, ), y(↵, ), z(↵, )),
µ( ↵, ) = µ(↵, )
If initial condition possess the symmetry
then symmetry is preserved with the evolution of S
Remark
z has purely real Fourier components
x, y, mu have purely imaginary components
Thus all the Fourier components arrays
have half the usual size!
This accelerates the solution algorithm
LINEAR STABILITY ANALYSIS
Perform a small perturbation of the flat interface 

with zero mean vortex sheet strength
X = (2⇡↵ + x0
, 2⇡ + y0
, z0
), with |x0
|, |y0
|, |z0
| ⌧ 1,
µ = µ0
, with |µ| ⌧ 1
Interface velocity at the leading order
W0
=
1
8⇡2
PV
Z 1
1
Z 1
1
µ0
↵(↵ ↵0
) + µ0
( 0
)
[(↵ ↵0)2 + (t)( 0)2]
3/2
d↵0
d 0 ˆk
Normal Velocity
U =
1
4⇡
(H1 (µ↵) + H2 (µ ))
Evolution Equations
dµ0
dt
= B 2Gz0
X0
t = (W0
· ˆk)ˆk ⇡ U0 ˆk
Linear System of ODE’s for the Fourier Components
d
dt
✓
ˆzk
ˆµk
◆
=
✓
0 k
2
B
2 k2
2G 0
◆ ✓
ˆzk
ˆµk
◆
LINEARIZED EQUATIONS
f(ˆ↵) =
X
ˆk
ˆf(ˆk) eiˆk·ˆ↵ ˆf(ˆk) =
Z 1
0
Z 1
0
e 2⇡iˆk·ˆ↵
f(ˆ↵) dˆ↵ k =
q
k2
1 + k2
2
Dispersion Relation k =
B
4 2
k3 G
k
ˆzk(t) =

k
4
p
k
ˆµk(0) +
1
2
ˆzk(0) e
p
kt
+

1
2
ˆzk(0)
k
4
p
k
ˆµk(0) e
p
kt
= ˆzk(0) cosh(
p
kt) +
k
2
p
k
ˆµk(0) sinh(
p
kt)
ˆµk(t) =

1
2
ˆµk(0) +
p
k
k
ˆzk(0) e
p
kt
+

1
2
ˆµk(0)
p
k
k
ˆzk(0) e
p
kt
= ˆµk(0) cosh(
p
kt) + 2
p
k
k
ˆzk(0) sinh(
p
kt)
ˆzk(t) = ˆzk(0) cos(
p
kt) +
k
2
p
k
ˆµk(0) sin(
p
kt),
ˆµk(t) = ˆµk(0) cos(
p
kt)
2
p
k
k
ˆzk(0) sin(
p
kt)
k < 0 Waves Solution
Rayleigh-Taylor Instabilityk 0
Linearized Problem Solution
ˆz00
k (t) =
k
2
ˆµ0
k =
k
2
✓
B
2
k2
2G
◆
ˆzk(t) = k ˆzk(t)
✓
@
@t
◆2
⇠
✓
@
@↵
◆3
⇠
✓
@
@
◆3
✓
@
@t
◆
⇠
✓
@
@↵
◆3/2
⇠
✓
@
@
◆3/2
4t ⇠ (Emh)3/2
, Em = min
(↵, )
E(↵, )
Relation between Time and Space Derivatives
Symbolically
Time step Stability Constraint
ˆz00
k (t) =
k
2
ˆµ0
k =
k
2
✓
B
2
k2
2G
◆
ˆzk(t) = k ˆzk(t)
Dispersion Relation k =
Eb
4
k5 B
4
k3
Gk
ˆz00
k (t) =
k
2
ˆµ0
k =
k
2
✓
Eb
2
k4 B
2
k2
2G
◆
ˆzk(t) = k ˆzk(t)
Elastic Waves Linearized Problem
Relation between Time and Space Derivatives
✓
@
@t
◆2
⇠
✓
@
@↵
◆5
⇠
✓
@
@
◆5 ✓
@
@t
◆
⇠
✓
@
@↵
◆5/2
⇠
✓
@
@
◆5/2
Time step Stability Constraint
4t ⇠ h5/2
NUMERICAL METHOD
Xn+1
= Xn
+ 4t Vn
1 · ˆt1 + Vn
2 · ˆt2 + Un
· ˆn
µn+1
= µn
+ 4t

µn
↵
p
En
V n
1 (Wn
· ˆtn
1) +
µn
p
nEn
V n
2 (Wn
· ˆtn
2)
4t (Bn
+ 2Agzn
)
(t) =
R 1
0
R 1
0
G(↵, , t) d↵d
R 1
0
R 1
0
E(↵, , t) d↵d
EXPLICIT DISCRETIZATION
fn
= fn
ij = f(↵i, j, tn
), i, j = 1, ..., N; n = 0, 1, ...
Boussinesq Approximation
Xn+1
4t V n+1
1s · ˆtn
1 + V n+1
2s · ˆtn
2 + Un+1
s · ˆnn
= Xn
+ 4t
⇥
(Un
Un
s ) · ˆnn
+ (V n
1 V n
1s)ˆtn
1 + (V n
2 V n
2s)ˆtn
2
⇤
µn+1
+ A n+1
+ 4t Bn+1
+ 2Gzn+1
= µn
+ A n
+ 4t
(
µn
↵
p
En
V n
1 (Wn
· ˆtn
1) +
µn
p
En
V n
2 (Wn
· ˆtn
2)
+A
"
2(Wn
· ˆnn
)2
+ 2V n
1 (Wn
· ˆtn
1) + 2V n
2 (Wn
· ˆtn
2)
(µn
↵)2
4En
(µn
)2
4 En
|Wn
|2
# )
IMPLICIT DISCRETIZATION
Arbitrary Atwood Number
n+1
=
Ln+1
+ Nn+1
En
, Ln+1
= Xn+1
↵↵ · ˆnn
, Nn+1
= Xn+1
· ˆnn
Xn+1
+ R(Xn+1
, µn+1
p ) = f(Xn
, µn
p )
µn+1
p + Q(Xn+1
) = h(Xn
, µn
p )
µp := µ + A for convenience µ0
p ⌘ µ0
⌘ 0
µn+1
p = µn+1
+ A n+1
and Xn+1
GMRES solves for
µn+1
+ A2 ˜Kµn+1
= µn+1
p
= 2 ˜Kµ =
1
2⇡
Z Z
µ0
(X X0
) · ˆn
|X X0
|3
|X0
↵ ⇥ X0
| d↵0
d 0
GMRES solves for µn+1
Init guess
Lin System for the Fourier components
˜µn+1
:= µn+1
p A (Xn+1
, µn
)
= 2
Z p
E W · ˆt1 d↵ + R( )
= 2
Z p
G W · ˆt2 d + Q(↵)
R( ) are only modes of 2
Z p
G W · ˆt2 d
Q(↵) are ↵ only modes of 2
Z p
E W · ˆt1 d↵
Integrals are efficiently computed using
the Fourier transform technique
Computation of the Velocity Potential
Fast Computation of the Birkhoff-Rott Integral
In a doubly-periodic domain integral over
the fundamental root cell C
G(X, X0
) =
X
m2Z2
˜G(X X0
2 ˜m⇡), ˜m = (m, n)
˜G(X X0
2 ˜m⇡) =
1
[(x x0 2m⇡)2 + (y y0 2n⇡)2 + (z z0)2]1/2
G(X, X0
) =
X
˜m2Z2
0
✓
1
2
˜G(X X0
2 ˜m⇡) +
1
2
˜G(X X0
+ 2 ˜m⇡)
1
2⇡|m|
◆
Sum of periodic ext. of the free space Green’s function
For conditional convergence add reflection and const
W =
1
4⇡
PV
Z
C
Z
(µ↵X µ X↵)0
⇥ rXG(X, X0
) d↵0
d 0
Beale ‘04
The Ewald summation technique converts the
slowly convergent sum of algebraic functions into a
rapidly convergent sum of transcendental functions
G(X, X0
) =
1
4⇡
X
m2Z2
˜Rmn(z z0
) cos m(x x0
) cos n(y y0
)
2erfc(m
⇠ )
m
!
+
1
2
X
m2Z2
0
✓
erfc(
p
s⇠)
p
s
erfc(⇡⇠m)
⇡m
◆
+
⇠
p
⇡
˜Rmn(z z0
) =
1
p
m2 + n2
"
e
p
m2+n2(z z0
)
erfc
p
m2 + n2
⇠
+
z z0
2
⇠
!
+e
p
m2+n2(z z0
)
erfc
p
m2 + n2
⇠
z z0
2
⇠
! #
.
s = [(x x0
)/2 m⇡]2
+ [(y y0
)/2 n⇡]2
+ [(z z0
)/2]2
G = Gb + GaEwald Sum⇠ -decay rate parameter
• Integral over the Reciprocal sum is computed with the
trapezoidal rule method spectrally accurate for the periodic
functions
• Integral over the Real space sum is computed with the
method of Haroldsen and Meiron ’98 chosen to give third
order accuracy in space
• Balancing the workload for Reciprocal and Real Space sum
we get overall operation countO(N3/2
)
FAST EWALD SUMMATION
NUMERICAL SIMULATION
max of num. solution and solution of the linearized problem
x(↵, ) = 2⇡↵
y(↵, ) = 2⇡
z(↵, ) = A0 cos(2⇡↵) cos(2⇡ )
Initial condition
xlin(↵, , t) = 2⇡↵
ylin(↵, , t) = 2⇡
zlin(↵, , t) =
X
k
bzk(0) exp[ (k)t + ik · ~↵]
Linearized problem solution
Numerical Solution Validation
A0 = 0.1
A0 = 0.5
Invariants of motion check
Relative error of the total energy
for varying the time step
A = 0.9, Ag = 1, B = 0.01,
N = 64, 4t = 0.001
Agreement with Baker
Growing modes solution
Explicit and Implicit method
solution match check
Baker, Caflisch, Siegel ‘93
• Gravity
• Surface tension
• Gravity & surface tension
Internal Waves 

vs 

Growing Solution
Stability (Explicit method)
A = 0, Ag = 10, B = 1, Eb = 0.1, t = 0.04
The largest stable time step
t  CE3/2
m /(BN3/2
)
Stability 

(Surface Tension Case)
Stability (Hydroelastic Problem)
Aliasing Filter
⇢N (k, l) = exp
(
20
✓
k
N/2
◆10
+
✓
l
N/2
◆10
!)
The largest stable time step
4t ⇠ h5/2
High resolution with aliasing filter
A = 0, Ag = 5, B = 0, Eb = 0.1, t = 1.625, N = 128, 4t = 0.0025
• Developed method is effective at removing the stiffness
introduced by the surface tension and elasticity
• High order time-step stability constraint for explicit
methods is eliminated by the use of small-scale
decomposition method with semi-implicit discretization
• Method is computationally efficient requiring work
comparable to explicit method
• Presented algorithm can be made arbitrary order accurate
CONCLUSION
G = Gb + Ga
-Reciprocal sum containing far-field contributions
-Real space sum containing local contributions
Gb
Ga
Integral over the Reciprocal sum
Ib
(X) =
Z
⇧
f(↵, )rGb
(X, X0
) d↵d
Integral over the Real space sum
Ia
(X) =
Z
⇧
f(↵, )rGa
(X, X0
) d↵d
Ewald Sum

More Related Content

What's hot (20)

PPT
2 backlash simulation
Solo Hermelin
 
PDF
Signals and Systems Formula Sheet
Haris Hassan
 
PDF
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Summary of MAST
Sangjun Son
 
PDF
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
The Statistical and Applied Mathematical Sciences Institute
 
PPT
Inner outer and spectral factorizations
Solo Hermelin
 
PPT
Legendre functions
Solo Hermelin
 
PDF
Introduction to Gaussian Processes
Dmytro Fishman
 
PDF
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Komal Goyal
 
PDF
Multivariate Gaussin, Rayleigh & Rician distributions
HAmindavarLectures
 
PPT
Analytic dynamics
Solo Hermelin
 
PPT
Dyadics
Solo Hermelin
 
PDF
11.vibration characteristics of non homogeneous visco-elastic square plate
Alexander Decker
 
PDF
Vibration characteristics of non homogeneous visco-elastic square plate
Alexander Decker
 
PPT
5 cramer-rao lower bound
Solo Hermelin
 
PPT
Calculus of variation problems
Solo Hermelin
 
PPT
Laplace equation
alexkhan129
 
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
VjekoslavKovac1
 
PDF
The feedback-control-for-distributed-systems
Cemal Ardil
 
2 backlash simulation
Solo Hermelin
 
Signals and Systems Formula Sheet
Haris Hassan
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
The Statistical and Applied Mathematical Sciences Institute
 
Summary of MAST
Sangjun Son
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
The Statistical and Applied Mathematical Sciences Institute
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
The Statistical and Applied Mathematical Sciences Institute
 
Inner outer and spectral factorizations
Solo Hermelin
 
Legendre functions
Solo Hermelin
 
Introduction to Gaussian Processes
Dmytro Fishman
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Komal Goyal
 
Multivariate Gaussin, Rayleigh & Rician distributions
HAmindavarLectures
 
Analytic dynamics
Solo Hermelin
 
Dyadics
Solo Hermelin
 
11.vibration characteristics of non homogeneous visco-elastic square plate
Alexander Decker
 
Vibration characteristics of non homogeneous visco-elastic square plate
Alexander Decker
 
5 cramer-rao lower bound
Solo Hermelin
 
Calculus of variation problems
Solo Hermelin
 
Laplace equation
alexkhan129
 
Scattering theory analogues of several classical estimates in Fourier analysis
VjekoslavKovac1
 
The feedback-control-for-distributed-systems
Cemal Ardil
 

Similar to An Efficient Boundary Integral Method for Stiff Fluid Interface Problems (20)

PDF
ابلايد كامل .pdfgxhjdjdhdhdjdjjxhddjdndjjd
195250
 
PDF
University of manchester mathematical formula tables
Gaurav Vasani
 
PDF
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
Deep Learning JP
 
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Introduction to Statistical Methods for Financial Models 1st Severini Solutio...
morinjnicau
 
PDF
ch9.pdf
KavS14
 
PDF
Modeling the Dynamics of SGD by Stochastic Differential Equation
Mark Chang
 
PDF
Admissions in India 2015
Edhole.com
 
PDF
Mathematical formula tables
Saravana Selvan
 
PDF
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li
 
PDF
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
PDF
Semiglobal state observers for nonlinear analytic discrete-time systems
CostanzoManes
 
PPT
Simple harmonic motion1
Rosmaya Mokhtar
 
PDF
Tales on two commuting transformations or flows
VjekoslavKovac1
 
PDF
03 Cap 2 - fourier-analysis-2015.pdf
ROCIOMAMANIALATA1
 
PDF
Introduction to Statistical Methods for Financial Models 1st Severini Solutio...
kaelagerik3z
 
PPT
Econometric lec3.ppt
TuanAnhTran425237
 
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Rene Kotze
 
PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 
PPTX
Resurgence2020-Sueishi análise wkb com in
vadfilho
 
ابلايد كامل .pdfgxhjdjdhdhdjdjjxhddjdndjjd
195250
 
University of manchester mathematical formula tables
Gaurav Vasani
 
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
Deep Learning JP
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Introduction to Statistical Methods for Financial Models 1st Severini Solutio...
morinjnicau
 
ch9.pdf
KavS14
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Mark Chang
 
Admissions in India 2015
Edhole.com
 
Mathematical formula tables
Saravana Selvan
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li
 
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
Semiglobal state observers for nonlinear analytic discrete-time systems
CostanzoManes
 
Simple harmonic motion1
Rosmaya Mokhtar
 
Tales on two commuting transformations or flows
VjekoslavKovac1
 
03 Cap 2 - fourier-analysis-2015.pdf
ROCIOMAMANIALATA1
 
Introduction to Statistical Methods for Financial Models 1st Severini Solutio...
kaelagerik3z
 
Econometric lec3.ppt
TuanAnhTran425237
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Rene Kotze
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 
Resurgence2020-Sueishi análise wkb com in
vadfilho
 
Ad

More from Alex (Oleksiy) Varfolomiyev (7)

PDF
A non-stiff numerical method for 3D interfacial flow of inviscid fluids.
Alex (Oleksiy) Varfolomiyev
 
PDF
A non-stiff boundary integral method for internal waves
Alex (Oleksiy) Varfolomiyev
 
PDF
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Alex (Oleksiy) Varfolomiyev
 
KEY
Neural Networks and Applications
Alex (Oleksiy) Varfolomiyev
 
PDF
Dynamic Tumor Growth Modelling
Alex (Oleksiy) Varfolomiyev
 
KEY
Optimal Finite Difference Grids
Alex (Oleksiy) Varfolomiyev
 
PPT
Phase Field Method
Alex (Oleksiy) Varfolomiyev
 
A non-stiff numerical method for 3D interfacial flow of inviscid fluids.
Alex (Oleksiy) Varfolomiyev
 
A non-stiff boundary integral method for internal waves
Alex (Oleksiy) Varfolomiyev
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Alex (Oleksiy) Varfolomiyev
 
Neural Networks and Applications
Alex (Oleksiy) Varfolomiyev
 
Dynamic Tumor Growth Modelling
Alex (Oleksiy) Varfolomiyev
 
Optimal Finite Difference Grids
Alex (Oleksiy) Varfolomiyev
 
Phase Field Method
Alex (Oleksiy) Varfolomiyev
 
Ad

Recently uploaded (20)

PDF
Step-by-Step Guide: How mRNA Vaccines Works
TECNIC
 
PDF
High-speedBouldersandtheDebrisFieldinDARTEjecta
Sérgio Sacani
 
PPTX
How to write a research paper July 3 2025.pptx
suneeta panicker
 
PPTX
Pratik inorganic chemistry silicon based ppt
akshaythaker18
 
PPTX
Akshay tunneling .pptx_20250331_165945_0000.pptx
akshaythaker18
 
PDF
RODENT PEST MANAGEMENT-converted-compressed.pdf
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PPTX
Lamarckism is one of the earliest theories of evolution, proposed before Darw...
Laxman Khatal
 
PDF
2025-06-10 TWDB Agency Updates & Legislative Outcomes
tagdpa
 
PDF
Primordial Black Holes and the First Stars
Sérgio Sacani
 
PDF
NRRM 330 Dynamic Equlibrium Presentation
Rowan Sales
 
PDF
Phosphates reveal high pH ocean water on Enceladus
Sérgio Sacani
 
PPT
Human physiology and digestive system
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PDF
Carbon-richDustInjectedintotheInterstellarMediumbyGalacticWCBinaries Survives...
Sérgio Sacani
 
PPTX
MICROBIOLOGY PART-1 INTRODUCTION .pptx
Mohit Kumar
 
PPT
Introduction of animal physiology in vertebrates
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PPTX
Diagnostic Features of Common Oral Ulcerative Lesions.pptx
Dr Palak borade
 
PPTX
MODULE 2 Effects of Lifestyle in the Function of Respiratory and Circulator...
judithgracemangunday
 
PPTX
Different formulation of fungicides.pptx
MrRABIRANJAN
 
PPTX
PEDIA IDS IN A GIST_6488b6b5-3152-4a4a-a943-20a56efddd43 (2).pptx
tdas83504
 
PPTX
Q1 - W1 - D2 - Models of matter for science.pptx
RyanCudal3
 
Step-by-Step Guide: How mRNA Vaccines Works
TECNIC
 
High-speedBouldersandtheDebrisFieldinDARTEjecta
Sérgio Sacani
 
How to write a research paper July 3 2025.pptx
suneeta panicker
 
Pratik inorganic chemistry silicon based ppt
akshaythaker18
 
Akshay tunneling .pptx_20250331_165945_0000.pptx
akshaythaker18
 
RODENT PEST MANAGEMENT-converted-compressed.pdf
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Lamarckism is one of the earliest theories of evolution, proposed before Darw...
Laxman Khatal
 
2025-06-10 TWDB Agency Updates & Legislative Outcomes
tagdpa
 
Primordial Black Holes and the First Stars
Sérgio Sacani
 
NRRM 330 Dynamic Equlibrium Presentation
Rowan Sales
 
Phosphates reveal high pH ocean water on Enceladus
Sérgio Sacani
 
Human physiology and digestive system
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Carbon-richDustInjectedintotheInterstellarMediumbyGalacticWCBinaries Survives...
Sérgio Sacani
 
MICROBIOLOGY PART-1 INTRODUCTION .pptx
Mohit Kumar
 
Introduction of animal physiology in vertebrates
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Diagnostic Features of Common Oral Ulcerative Lesions.pptx
Dr Palak borade
 
MODULE 2 Effects of Lifestyle in the Function of Respiratory and Circulator...
judithgracemangunday
 
Different formulation of fungicides.pptx
MrRABIRANJAN
 
PEDIA IDS IN A GIST_6488b6b5-3152-4a4a-a943-20a56efddd43 (2).pptx
tdas83504
 
Q1 - W1 - D2 - Models of matter for science.pptx
RyanCudal3
 

An Efficient Boundary Integral Method for Stiff Fluid Interface Problems

  • 1. AN EFFICIENT BOUNDARY INTEGRAL METHOD FOR STIFF FLUID INTERFACE PROBLEMS Oleksiy Varfolomiyev advisor Michael Siegel co-advisor Michael Booty NJIT, 29 April 2015
  • 2. MOTIVATION Problem: Study the evolution of interface between two immiscible, inviscid, incompressible, irrotational fluids of different constant density in three dimensions Solution: To formulate and investigate a boundary integral method for the solution of the stiff internal waves/ Rayleigh-Taylor problem with surface tension and elasticity ⇢1 ⇢2 S
  • 3. OUTLINE • Mathematical Model • The Boundary Integral Method • The Small-scale Decomposition • Invariants of the Motion • Symmetry • Linear Stability Analysis • Numerical Method • Simulation Results
  • 5. MODEL DESCRIPTION • Gravity • Surface Tension • Elastic Bending Stress Fluids are driven by
  • 6. GOVERNING EQUATIONS Interface parameterization X(~↵, t) = (x(~↵, t), y(~↵, t), z(~↵, t)), ~↵ = (↵, ) Bernoulli’s Equation for Fluids Velocities Potentials @ i @t r i · Xt + 1 2 |r i|2 + pi ⇢i + gz = 0 in Di Interface Evolution Equation Xt = V1ˆt1 + V2ˆt2 + Uˆn r i = ViVelocity potential
  • 7. BOUNDARY CONDITIONS Kinematic Boundary Condition Laplace-Young Boundary Condition Far-field Velocity V1 · ˆn = V2 · ˆn = U on S p1 p2 = (1 + 2) on S V ! 0 as z ! ±1 [p] = ¯Eb4s 2 ¯Eb3 + 2  + 2 ¯Ebg Pressure Jump across elastic Interface
  • 8. Fluid Velocity on S given by the Birkhoff-Rott Integral W(X) = PV Z 1 1 Z 1 1 j0 ⇥ rXG(X, X0 ) d↵0 d 0 + V1ˆn, = 1 4⇡ PV Z 1 1 Z 1 1 j0 ⇥ (X X0 ) |X X0|3 d↵0 d 0 + V1ˆn Generalized Isothermal Parameterization E = X↵ · X↵ F = X↵ · X G = X · X L = X↵↵ · ˆn M = X↵ · ˆn N = X · ˆn G(↵, , t) = (t)E(↵, , t), F(↵, , t) = 0 µ = 1 2 j = µ↵X µ X↵W = (V1 + V2)/2 Ambrose, Siegel ‘12 Caflish, Li ‘05
  • 9. Xt = V1ˆt1 + V2ˆt2 + (W · ˆn)ˆn Interface Evolution Equation µt + A t = µ↵ p E V 1 (W · ˆt1 ) + µ p E V 2 (W · ˆt2 ) +A " 2(W · ˆn)2 + 2V1(W · ˆt1 ) + 2V2(W · ˆt2 ) µ2 ↵ 4E µ2 4 E |W|2 # B 2Gz Vortex Sheet Density Evolution Equation = 1 + 2  = L + N E A = ⇢1 ⇢2 ⇢1 + ⇢2 G = AgL v2 c B = 2 L(⇢1 + ⇢2)v2 c
  • 10. ELASTIC INTERFACE Pressure Jump across the Interface [p] = ¯Eb4s 2 ¯Eb3 + 2  + 2 ¯Ebg g = LN M2 E2 ¯Eb Gaussian curvature Bending modulus Surface Laplacian Plotnikov, Toland ‘11 4s = 1 p EG F2 @ @ E @ @ F @ @↵ p EG F2 ! + 1 p EG F2 @ @↵ G @ @↵ F @ @ p EG F2 !
  • 11. µt + A t = µ↵ p E V 1 (W · ˆt1 ) + µ p E V 2 (W · ˆt2 ) +A " 2(W · ˆn)2 + 2V1(W · ˆt1 ) + 2V2(W · ˆt2 ) µ2 ↵ 4E µ2 4 E |W|2 # +Eb(4s 23 + 2g) + B + 2Agz -Equation for the elastic interfaceµ Tangential Velocities are chosen to preserve parameterization ✓ V1 p E ◆ ↵ ✓ V2 p E ◆ = tE + 2U ( L N) ( E G) 2 E ✓ V2 p E ◆ ↵ + ✓ V1 p E ◆ = 2UM F p E ( E G)t = 0 Ft = 0 ( E G) FRelaxation Terms
  • 13. Normal Velocity Decomposition U(X) ⌘ W · ˆn = Us(X) + Usub(X) Us(X) Usub(X) - high order terms dominant at a small scale - lower order terms W(X) = 1 4⇡ PV Z 1 1 Z 1 1 j0 ⇥ X0 ↵(↵ ↵0 ) + X0 ( 0 ) E0 3 2 h (↵ ↵0) 2 + (t) ( 0) 2 i3 2 d↵0 d 0 + 1 4⇡ PV Z 1 1 Z 1 1 j0 ⇥ 8 >< >: X X0 |X X0|3 X0 ↵(↵ ↵0 ) + X0 ( 0 ) E0 3 2 h (↵ ↵0) 2 + (t) ( 0) 2 i3 2 9 >= >; d↵d 0 = Ws(X) + Wsub(X) Taylor expansion of the kernel about X’ Ambrose, Masmoudi ‘09
  • 14. Us = p 4⇡ PV Z 1 1 Z 1 1 ˆn(µ↵(↵ ↵0 ) + µ0 ( 0 )) E0 1 2 h (↵ ↵0) 2 + (t) ( 0) 2 i3 2 d↵0 d 0 · ˆn Leading order part of the Normal Velocity H1f(↵, ) = 1 2⇡ PV Z 1 1 Z 1 1 f(↵0 , 0 )(↵ ↵0 ) h (↵ ↵0) 2 + (t) ( 0) 2 i3 2 d↵0 d 0 , H2f(↵, ) = 1 2⇡ PV Z 1 1 Z 1 1 f(↵0 , 0 )( 0 ) h (↵ ↵0) 2 + (t) ( 0) 2 i3 2 d↵0 d 0 Riesz Transforms Us = Ws · ˆn = 1 2  H1 ✓ µ↵ˆn E 1 2 ◆ + H2 ✓ µ ˆn E 1 2 ◆ · ˆn bH1f(k) = i k1 k ˆfk, bH2f(k) = i k2 k ˆfk Symbols of the Riesz Transforms k = q k2 1 + k2 2
  • 15. Xt = Usˆn + V1sˆt1 + V2sˆt2 + (U Us)ˆn + (V1 V1s)ˆt1 + (V2 V2s)ˆt2 The first three terms in the RHS give the leading order behavior at small scales, treated implicitly in the proposed numerical method. These implicit nonlocal terms evaluated efficiently using the FFT method. The last three terms in the RHS are of lower order, treated explicitly. Evolution Equation Decomposition
  • 17. Conservation of Mass / Mean Height of the Interface ¯z = 1 4⇡2 Z 2⇡ 0 Z 2⇡ 0 z dxdy = 1 4⇡2 Z 1 0 Z 1 0 z |x↵y y↵x | d↵d Potential Energy Ep = (⇢1 ⇢2)g Z 2⇡ 0 Z 2⇡ 0 Z z(x,y) 0 z dxdydz = (⇢1 ⇢2)g Z 2⇡ 0 Z 2⇡ 0 z2 2 dxdy = (⇢1 ⇢2)g Z 1 0 Z 1 0 z2 2 |J| d↵d Jacobian |J| = |x↵y y↵x |
  • 18. Surface Energy Es = Z S Z dS = Z 1 0 Z 1 0 |X↵ ⇥ X | d↵d Ek = E1 k + E2 k = 1 4 (⇢1 + ⇢2) Z 1 0 Z 1 0 (µ + A )U |X↵ ⇥ X | d↵d Kinetic Energy = 1 + 2 E1 k = 1 2 ⇢1 Z 2⇡ 0 Z 2⇡ 0 Z z(x,y) 0 |r 1|2 dxdydz µ = 1 2 1 = ( + µ)/2 2 = ( µ)/2
  • 19. Elastic Bending Energy Esb = p 2 Z 1 0 Z 1 0 Eb 2 |E| d↵d ˜Etot = A Z 1 0 Z 1 0 z2 |x↵y y↵x | d↵d + p 2 Z 1 0 Z 1 0 (µ + A )U|E| d↵d +B p Z 1 0 Z 1 0 |E| d↵d + p 2 Z 1 0 Z 1 0 Eb 2 |E| d↵d Total Energy Plotnikov, Toland ‘11
  • 21. X( ↵, ) = ( x(↵, ), y(↵, ), z(↵, )), µ( ↵, ) = µ(↵, ) If initial condition possess the symmetry then symmetry is preserved with the evolution of S Remark z has purely real Fourier components x, y, mu have purely imaginary components Thus all the Fourier components arrays have half the usual size! This accelerates the solution algorithm
  • 23. Perform a small perturbation of the flat interface with zero mean vortex sheet strength X = (2⇡↵ + x0 , 2⇡ + y0 , z0 ), with |x0 |, |y0 |, |z0 | ⌧ 1, µ = µ0 , with |µ| ⌧ 1 Interface velocity at the leading order W0 = 1 8⇡2 PV Z 1 1 Z 1 1 µ0 ↵(↵ ↵0 ) + µ0 ( 0 ) [(↵ ↵0)2 + (t)( 0)2] 3/2 d↵0 d 0 ˆk Normal Velocity U = 1 4⇡ (H1 (µ↵) + H2 (µ ))
  • 24. Evolution Equations dµ0 dt = B 2Gz0 X0 t = (W0 · ˆk)ˆk ⇡ U0 ˆk Linear System of ODE’s for the Fourier Components d dt ✓ ˆzk ˆµk ◆ = ✓ 0 k 2 B 2 k2 2G 0 ◆ ✓ ˆzk ˆµk ◆ LINEARIZED EQUATIONS f(ˆ↵) = X ˆk ˆf(ˆk) eiˆk·ˆ↵ ˆf(ˆk) = Z 1 0 Z 1 0 e 2⇡iˆk·ˆ↵ f(ˆ↵) dˆ↵ k = q k2 1 + k2 2
  • 25. Dispersion Relation k = B 4 2 k3 G k ˆzk(t) =  k 4 p k ˆµk(0) + 1 2 ˆzk(0) e p kt +  1 2 ˆzk(0) k 4 p k ˆµk(0) e p kt = ˆzk(0) cosh( p kt) + k 2 p k ˆµk(0) sinh( p kt) ˆµk(t) =  1 2 ˆµk(0) + p k k ˆzk(0) e p kt +  1 2 ˆµk(0) p k k ˆzk(0) e p kt = ˆµk(0) cosh( p kt) + 2 p k k ˆzk(0) sinh( p kt) ˆzk(t) = ˆzk(0) cos( p kt) + k 2 p k ˆµk(0) sin( p kt), ˆµk(t) = ˆµk(0) cos( p kt) 2 p k k ˆzk(0) sin( p kt) k < 0 Waves Solution Rayleigh-Taylor Instabilityk 0 Linearized Problem Solution ˆz00 k (t) = k 2 ˆµ0 k = k 2 ✓ B 2 k2 2G ◆ ˆzk(t) = k ˆzk(t)
  • 26. ✓ @ @t ◆2 ⇠ ✓ @ @↵ ◆3 ⇠ ✓ @ @ ◆3 ✓ @ @t ◆ ⇠ ✓ @ @↵ ◆3/2 ⇠ ✓ @ @ ◆3/2 4t ⇠ (Emh)3/2 , Em = min (↵, ) E(↵, ) Relation between Time and Space Derivatives Symbolically Time step Stability Constraint ˆz00 k (t) = k 2 ˆµ0 k = k 2 ✓ B 2 k2 2G ◆ ˆzk(t) = k ˆzk(t)
  • 27. Dispersion Relation k = Eb 4 k5 B 4 k3 Gk ˆz00 k (t) = k 2 ˆµ0 k = k 2 ✓ Eb 2 k4 B 2 k2 2G ◆ ˆzk(t) = k ˆzk(t) Elastic Waves Linearized Problem Relation between Time and Space Derivatives ✓ @ @t ◆2 ⇠ ✓ @ @↵ ◆5 ⇠ ✓ @ @ ◆5 ✓ @ @t ◆ ⇠ ✓ @ @↵ ◆5/2 ⇠ ✓ @ @ ◆5/2 Time step Stability Constraint 4t ⇠ h5/2
  • 29. Xn+1 = Xn + 4t Vn 1 · ˆt1 + Vn 2 · ˆt2 + Un · ˆn µn+1 = µn + 4t  µn ↵ p En V n 1 (Wn · ˆtn 1) + µn p nEn V n 2 (Wn · ˆtn 2) 4t (Bn + 2Agzn ) (t) = R 1 0 R 1 0 G(↵, , t) d↵d R 1 0 R 1 0 E(↵, , t) d↵d EXPLICIT DISCRETIZATION fn = fn ij = f(↵i, j, tn ), i, j = 1, ..., N; n = 0, 1, ... Boussinesq Approximation
  • 30. Xn+1 4t V n+1 1s · ˆtn 1 + V n+1 2s · ˆtn 2 + Un+1 s · ˆnn = Xn + 4t ⇥ (Un Un s ) · ˆnn + (V n 1 V n 1s)ˆtn 1 + (V n 2 V n 2s)ˆtn 2 ⇤ µn+1 + A n+1 + 4t Bn+1 + 2Gzn+1 = µn + A n + 4t ( µn ↵ p En V n 1 (Wn · ˆtn 1) + µn p En V n 2 (Wn · ˆtn 2) +A " 2(Wn · ˆnn )2 + 2V n 1 (Wn · ˆtn 1) + 2V n 2 (Wn · ˆtn 2) (µn ↵)2 4En (µn )2 4 En |Wn |2 # ) IMPLICIT DISCRETIZATION Arbitrary Atwood Number n+1 = Ln+1 + Nn+1 En , Ln+1 = Xn+1 ↵↵ · ˆnn , Nn+1 = Xn+1 · ˆnn
  • 31. Xn+1 + R(Xn+1 , µn+1 p ) = f(Xn , µn p ) µn+1 p + Q(Xn+1 ) = h(Xn , µn p ) µp := µ + A for convenience µ0 p ⌘ µ0 ⌘ 0 µn+1 p = µn+1 + A n+1 and Xn+1 GMRES solves for µn+1 + A2 ˜Kµn+1 = µn+1 p = 2 ˜Kµ = 1 2⇡ Z Z µ0 (X X0 ) · ˆn |X X0 |3 |X0 ↵ ⇥ X0 | d↵0 d 0 GMRES solves for µn+1 Init guess Lin System for the Fourier components ˜µn+1 := µn+1 p A (Xn+1 , µn )
  • 32. = 2 Z p E W · ˆt1 d↵ + R( ) = 2 Z p G W · ˆt2 d + Q(↵) R( ) are only modes of 2 Z p G W · ˆt2 d Q(↵) are ↵ only modes of 2 Z p E W · ˆt1 d↵ Integrals are efficiently computed using the Fourier transform technique Computation of the Velocity Potential
  • 33. Fast Computation of the Birkhoff-Rott Integral In a doubly-periodic domain integral over the fundamental root cell C G(X, X0 ) = X m2Z2 ˜G(X X0 2 ˜m⇡), ˜m = (m, n) ˜G(X X0 2 ˜m⇡) = 1 [(x x0 2m⇡)2 + (y y0 2n⇡)2 + (z z0)2]1/2 G(X, X0 ) = X ˜m2Z2 0 ✓ 1 2 ˜G(X X0 2 ˜m⇡) + 1 2 ˜G(X X0 + 2 ˜m⇡) 1 2⇡|m| ◆ Sum of periodic ext. of the free space Green’s function For conditional convergence add reflection and const W = 1 4⇡ PV Z C Z (µ↵X µ X↵)0 ⇥ rXG(X, X0 ) d↵0 d 0 Beale ‘04
  • 34. The Ewald summation technique converts the slowly convergent sum of algebraic functions into a rapidly convergent sum of transcendental functions G(X, X0 ) = 1 4⇡ X m2Z2 ˜Rmn(z z0 ) cos m(x x0 ) cos n(y y0 ) 2erfc(m ⇠ ) m ! + 1 2 X m2Z2 0 ✓ erfc( p s⇠) p s erfc(⇡⇠m) ⇡m ◆ + ⇠ p ⇡ ˜Rmn(z z0 ) = 1 p m2 + n2 " e p m2+n2(z z0 ) erfc p m2 + n2 ⇠ + z z0 2 ⇠ ! +e p m2+n2(z z0 ) erfc p m2 + n2 ⇠ z z0 2 ⇠ ! # . s = [(x x0 )/2 m⇡]2 + [(y y0 )/2 n⇡]2 + [(z z0 )/2]2 G = Gb + GaEwald Sum⇠ -decay rate parameter
  • 35. • Integral over the Reciprocal sum is computed with the trapezoidal rule method spectrally accurate for the periodic functions • Integral over the Real space sum is computed with the method of Haroldsen and Meiron ’98 chosen to give third order accuracy in space • Balancing the workload for Reciprocal and Real Space sum we get overall operation countO(N3/2 ) FAST EWALD SUMMATION
  • 37. max of num. solution and solution of the linearized problem x(↵, ) = 2⇡↵ y(↵, ) = 2⇡ z(↵, ) = A0 cos(2⇡↵) cos(2⇡ ) Initial condition xlin(↵, , t) = 2⇡↵ ylin(↵, , t) = 2⇡ zlin(↵, , t) = X k bzk(0) exp[ (k)t + ik · ~↵] Linearized problem solution Numerical Solution Validation A0 = 0.1 A0 = 0.5
  • 38. Invariants of motion check Relative error of the total energy for varying the time step A = 0.9, Ag = 1, B = 0.01, N = 64, 4t = 0.001
  • 39. Agreement with Baker Growing modes solution Explicit and Implicit method solution match check Baker, Caflisch, Siegel ‘93
  • 40. • Gravity • Surface tension • Gravity & surface tension Internal Waves vs Growing Solution
  • 41. Stability (Explicit method) A = 0, Ag = 10, B = 1, Eb = 0.1, t = 0.04
  • 42. The largest stable time step t  CE3/2 m /(BN3/2 ) Stability (Surface Tension Case)
  • 43. Stability (Hydroelastic Problem) Aliasing Filter ⇢N (k, l) = exp ( 20 ✓ k N/2 ◆10 + ✓ l N/2 ◆10 !) The largest stable time step 4t ⇠ h5/2
  • 44. High resolution with aliasing filter A = 0, Ag = 5, B = 0, Eb = 0.1, t = 1.625, N = 128, 4t = 0.0025
  • 45. • Developed method is effective at removing the stiffness introduced by the surface tension and elasticity • High order time-step stability constraint for explicit methods is eliminated by the use of small-scale decomposition method with semi-implicit discretization • Method is computationally efficient requiring work comparable to explicit method • Presented algorithm can be made arbitrary order accurate CONCLUSION
  • 46. G = Gb + Ga -Reciprocal sum containing far-field contributions -Real space sum containing local contributions Gb Ga Integral over the Reciprocal sum Ib (X) = Z ⇧ f(↵, )rGb (X, X0 ) d↵d Integral over the Real space sum Ia (X) = Z ⇧ f(↵, )rGa (X, X0 ) d↵d Ewald Sum