This document provides an introduction to machine learning. It discusses how machine learning allows computers to learn from experience to improve their performance on tasks. Supervised learning is described, where the goal is to learn a function that maps inputs to outputs from a labeled dataset. Cross-validation techniques like the test set method, leave-one-out cross-validation, and k-fold cross-validation are introduced to evaluate model performance without overfitting. Applications of machine learning like medical diagnosis, recommendation systems, and autonomous driving are briefly outlined.