SlideShare a Scribd company logo
Produced by Wellesley Information Services, LLC, publisher of SAPinsider. © 2017 Wellesley Information Services. All rights reserved.
Analysing and Troubleshooting Performance
Issues in SAP BusinessObjects BI Reports and
Dashboards
Dan Goodinson
BI Brainz
1
In This Session
• Determine where time is spent during various workflows, get to the bottom of
performance complaints, and improve the experience for end users
• See which tools can be used to collect and analyze data and how to extract the
information needed, as well as how to interpret the information to determine where most
time is spent during workflows
• Delays can have unexpected root causes; see how to identify performance bottlenecks
with real-life examples, as well as how different components in the architectural workflow
can influence execution times
2
What We’ll Cover
• Best practice when measuring performance – controlled and consistent testing
• Performance analysis for some example workflows
• Tools to use to interpret the data, and accounting for time spent in each processing layer
• Wrap-up
3
Best Practice When Measuring Performance
• Architectural workflows within SAP BusinessObjects Enterprise can be complex
• When a performance concern is raised, it can be a challenge to identify the root cause
 Front end – inefficient report design?
 Are you using the best application for the job at hand?
 SAP BusinessObjects and database – insufficient capacity, incorrect configuration?
 Inefficient distribution of servers across cluster
 Inadequate or inefficient heap assignment
 Suboptimal configuration of services; missing SAP Notes and fixes
 Other factors
 Room to improve your database query?
 Network latency?
 End-user laptop configuration causing a bottleneck?
4
Best Practice When Measuring Performance (cont.)
• Front-end application (e.g., WebI) is frequently blamed since this is the only part users
interact with …
• Another frequently cited concern is lack of server resources
• These concerns can be easily investigated, verified, and addressed or put to rest
5
Best Practice When Measuring Performance (cont.)
• Start by analyzing a workflow in isolation
 Where possible, take measurements in an environment where you can control the load
 If production-like resources are not available, be prepared to extrapolate
 If using tools to generate load, be sure to set realistic active concurrency
• Take multiple measurements at different times during the day
 Time may vary even in the same workflow – always take an average
 Don’t forget to account for system/database/client cache
• Do some geographical locations suffer more than others?
 Is number of users at that location a factor? Bandwidth issues?
 Are jobs running overnight which affect different time zones?
 How far is that location from your data? Network round trip/latency?
6
Best Practice When Measuring Performance (cont.)
• Once you have consistent measurements, check all processing layers involved and
determine time spent within each layer
 How much time is spent in the database running the query?
 How much time is spent bringing data back from the data source?
 How much time is spent building each page and delivering it to the user?
• This will help identify which areas you may need to revisit:
 Content design: Are you trying to fit too much into one report or database query?
 Environment sizing or configuration: Are additional resources required?
 Jobs and data loading: Can the schedule be adjusted?
 Customization or call stack: Is it time to raise a support case?
7
What We’ll Cover
• Best practice when measuring performance – controlled and consistent testing
• Performance analysis for some example workflows
• Tools to use to interpret the data, and accounting for time spent in each processing layer
• Wrap-up
8
Analyzing Performance for Some Example Workflows
• Web Intelligence refresh via OLAP BICS to BW on SAP HANA
• Web Intelligence refresh via JDBC to SAP HANA sidecar
• AD or SAP logon into BI launchpad
• OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
9
Web Intelligence Refresh via OLAP BICS to BW on SAP HANA
• Web Intelligence (WebI) is an ad hoc reporting application that allows end users to define
queries and design reports, or to modify existing reports depending on requirements
• To optimize report performance or find potential bottlenecks:
 Capture SAP BusinessObjects traces
 Use SAP Client Plug-in (see SAP Note 1861180)
 This tags each step with a unique correlation ID
 Measure front-end execution using, e.g., HttpWatch
 Record BW execution time using ST12
 Review BW stats with ST13 BIIPTOOLS
10
WebI Refresh via OLAP BICS to BW on SAP HANA
• Workflow starts when user clicks button in browser
 HttpWatch, Fiddler, etc., will accurately record start (and end) of execution
• Take several measurements without traces to establish a baseline
• With a consistent measurement, now perform same workflow but with traces enabled
 Be aware of overhead introduced by the traces – overhead can be significant!
 Consider overhead in your final assessment
• Gather and filter the traces based on tag generated by the SAP Client Plug-in
 This will enable you to follow the workflow through the traces
 Several trace analysis tools are provided by SAP
 E.g., FlexiLogReader (refer to SAP Knowledge Base Article 2203047)
11
WebI Refresh via OLAP BICS to BW on SAP HANA (cont.)
• In this example workflow, several servers will be called
 WebI Processing Server sees incoming call from HttpServletRequest
 We can follow the function call stack which will invoke other servers as required
 Calls to CMS (for security and core processing queries)
 Calls to Security Token Server (STS) to resolve single sign-on to BW
 DSLBridge (hosted in an APS) to fetch data from BW and to build transient universe
• Traces show the architecture involved – investigate time spent in each processing layer
• Add up time spent for all “HttpServletRequest” calls
 Does this match time measured by, e.g., HttpWatch, Fiddler, etc.?
 Small discrepancies to be expected
 Time recorded in front end, but not traced, is activity outside of SAP BusinessObjects
 E.g., time spent processing by client browser
12
WebI Refresh via OLAP BICS to BW on SAP HANA (cont.)
• Use the following tools to capture information during the workflow:
 SAP Client Plug-in (set trace level to high)
 Can also activate traces via CMC, though transactions won’t be tagged
 HttpWatch or Fiddler (or equivalent) can measure front-end execution time
 Will also show the HTTP requests involved
 Use ST12 transaction in BW for user ID executing the query
 Only capture RFC calls (at this stage)
13
WebI Refresh via OLAP BICS to BW on SAP HANA (cont.)
• After workflow has completed:
 Save the HttpWatch output as a .hwl file
 Stop recording with SAP Client Plug-in and collect relevant trace files
 BI launchpad
 WIPS
 DSLBridge
 CMS
 STS
 Stop ST12 and collect output, pick up statistics in ST13/BIIPTOOLS
 Both ST12 and BIIPTOOLS output can be saved to Excel for offline analysis
14
WebI Refresh via OLAP BICS to BW on SAP HANA (cont.)
• For comprehensive traces, use SAP Client Plug-in on “high” setting
• But this creates a problem – activity will be logged on virtually all trace files (even those
not relevant to our workflow)
 “High” will pick up unimportant communication between internal components
 This background noise is not important to us
• To identify components and trace files of interest, first trace your workflow on “low”
 Then gather ALL trace files with .glf file extension
 Search all .glf files for correlation ID tag from businesstransaction.xml
 There is less “noise” – and we only find hits in files that are relevant to our workflow
• Now run traces again on “high” setting to record your workflow
 Only gather trace files identified as important in previous step (ignore the rest)
15
WebI Refresh via OLAP BICS to BW on SAP HANA (cont.)
• Various tools can be used to search multiple trace files for the correlation ID tag
 E.g., Notepad++, UltraEdit, etc.
 Relevant* traces shown here:
 WIPS
 DSLBridge
 CMS
 STS
*BI Launchpad is also relevant,
though not shown here
16
Analysis of Trace Files
• When bringing the results together, you’ll see time spent on operations like:
 DPCommandsEx
 answerPrompts
 openDocumentMDP
 getSessionInfosEx
 getMap, getPages, getBlobInfo, etc.
• Follow incoming/outgoing function calls from Tomcat layer to WIPS, and from WIPS to
other services
• For activity outside SAP BusinessObjects (e.g., in BW), details of time spent can be found
using tools provided by that particular module/interface (e.g., ST12, ST13)
 SAP BusinessObjects traces can only record overall time for database activity
 Traces contain no detail/granularity on transactions inside the data source
17
Analysis of Trace Files (cont.)
• The illustration below brings together HttpWatch, traces, ST12, and ST13 data. Total
execution was measured as 12.822s, and I accounted for 12.109s in the breakdown:
18
Analysis of Trace Files — Breakdown of Findings
• Total execution time as seen by user was recorded using HttpWatch
 This comprises:
 BI4 Platform time
▪ CMS authorization (STS was used, because of SSO to BW)
▪ DSLBridge
▪ WebI Processing Server (WIPS)
 Data source time (BW on SAP HANA)
▪ Query execution time
▪ Calculation in database
 Transfer time between database and BI4 platform
 Time outside BI4 traces – e.g., processing time in client browser or laptop
19
Analysis of Trace Files — Breakdown of Findings (cont.)
• Here is where most time was spent at each stage:
 BI4 Platform time – captured in BI4 trace files
 CMS time (and STS time, since we are using SSO to BW)
▪ Security/authorization checks can be expensive
➢ Can we simplify security (e.g., reduce group membership) to improve response times?
 DSLBridge
▪ Query execution plan (QXP) and transient/lean universe generation
➢ More objects in the BEx query means more expensive QXP
➢ Challenge the business users – Do they really need/use ALL those objects?
➢ Can you satisfy business requirements using several smaller, leaner queries/reports?
 WebI processing
▪ Microcube population, rendering report for display, calculation of variables, etc.
➢ Check for expensive pagination functions – e.g., GetPages (for “page number x of y”)
➢ Can any report-level calculations be push down to the database?
20
Analysis of Trace Files — Breakdown of Findings (cont.)
• Here is where most time was spent at each stage: (cont.)
 Data source time (in our case BW on SAP HANA)
 Not captured in BI4 traces – this is found in ST12 and ST13 BIIPTOOLS output
 Query execution time
▪ Can you add more mandatory prompts to restrict the dataset?
 OLAP calculations
▪ Can any more calculations be pushed down to HANA?
 OLAP processing: data is sorted and formatted according to query design
 Receive data from OLAP processor and put into transfer structure in BICS interface
 Data transfer from BW to BI Layer
 DSL (WebI) BICS time: data transfer and preparation for WebI usage
21
Analysis of Trace Files — Breakdown of Findings (cont.)
• Don’t forget to account for time not recorded in BI4 traces
 Execution time in HttpWatch always adds up to more than recorded in traces
 A small discrepancy is to be expected
 Includes initial/final communication between client and BI4 platform
 Also includes any client-side processing time
▪ E.g., work done by browser, Java, etc.
 Anything more than a couple of seconds warrants further investigation
22
Analysis of Trace Files — Points to Consider
• Is the poor performance an intermittent problem?
 Data loading can affect data manager time
 Taking measurements throughout the day may help you pinpoint this
 Refer to earlier section on best practice in testing methodology
• Are clients making full use of all available caching mechanisms?
 Check content design for functions which cause cache to be ignored!
 Refer to http://scn.sap.com/docs/DOC-58532
 See section “Do not (accidentally) disable the cache mechanism of Web Intelligence”
23
Analysis of Trace Files — Points to Consider (cont.)
• Metadata transmission can be expensive
 This may be influenced by content design
 E.g., transient/lean universe generation – Can you reduce number of key fields
and/or characteristics?
 Too many prompt responses can result in high send time in the RFC record
 This may also be influenced by BW configuration
 Activate compression via BASXML flag for the relevant BICS calls affected (e.g.,
BISC_PROV_GET_INITIAL_STATE)
▪ See SAP Note 1733726
▪ Available since:
➢ BW 7.30 SP09
➢ BW 7.31 SP06
➢ BW 7.40 SP11
24
Analyzing Performance for Some Example Workflows
• Web Intelligence refresh via OLAP BICS to BW on SAP HANA
• Web Intelligence refresh via JDBC to SAP HANA sidecar
• AD or SAP logon into BI launchpad
• OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
25
Web Intelligence Refresh via JDBC to SAP HANA Sidecar
• The methodology we previously described applies here, too
 However, data fetch for JDBC is now done by the WIPS itself (INPROC)
 WIPS doesn’t outsource to a “third party” to communicate with the data source
 In previous workflow, data fetch was handled by DSLBridge
 Connection Server (CS) would be used for relational data sources
 Communication with data source is handled by the CS JNI Engine inside the WIPS
 To trace activity in the JNI call stack we must update the cs.cfg file
26
Web Intelligence Refresh via JDBC to SAP HANA Sidecar (cont.)
• cs.cfg file resides at following location:
<boeinstalldir>/dataAccess/connectionServer
 Update the following to enable tracing:
<JavaVM>
<Options>
<Option>-Dtracelog.configfile=<yourFolder>/BO_trace.ini</Option>
<Option>-Dtracelog.logdir=<yourFolder></Option>
<Option>-Dtracelog.name=CSJNIEngine</Option>
</Options>
• If SSO is used, then JDBC will either use XML-based SAML, or Kerberos AD
• Time spent will show in the WIPS and STS output
27
Web Intelligence Refresh via JDBC to SAP HANA Sidecar (cont.)
• The output will be captured in the CSJNIEngine_trace file
• Output looks something like this:
13:46:01.479|+0000|Information| |==| | |CSJNIEngine|14160|1471|Thread-1459
|{|431|4|3|4|BIlaunchpad.WebApp|BOESERVER|webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.proces
sDPCommandsEx|localhost:14160:13844.107885:1|CSJNI.JNIbeforeIncomingCall| BOESERVER START OUTGOING
CALL execute: FROM [CSJNI.JNIbeforeIncomingCall# BOESERVER]-
13:46:01.503|+0000|Information| |==| | |CSJNIEngine|14160|1471|Thread-1459 |}|431|2|3|2|BIlaunchpad.WebApp|
BOESERVER |webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.processDPCommandsEx| BOESERVER
|CSJNI.JNIbeforeIncomingCall| BOESERVER ||CS::JAVA::fetch: 00.025-
13:46:01.505|+0000|Error| |==|E| |CSJNIEngine|14160|1471|Thread-1459 |}|431|3|3|1|BIlaunchpad.WebApp|
BOESERVER |webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.processDPCommandsEx| BOESERVER
|CSJNI.JNIbeforeIncomingCall| BOESERVER ||END INCOMING CALL SPENT [04.029] FROM
[webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.processDPCommandsEx#] TO
[CSJNI.JNIbeforeIncomingCall# BOESERVER]
28
Analyzing Performance for Some Example Workflows
• Web Intelligence refresh via OLAP BICS to BW on SAP HANA
• Web Intelligence refresh via JDBC to SAP HANA sidecar
• AD or SAP logon into BI launchpad
• OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
29
AD or SAP Logon into BI Launchpad
• Each authentication type has its own plug-in
 There are client-side SDK plug-ins and server-side (CMS) plug-ins
 Client tools may also use web services, etc.
• User logon is initiated by client-side plug-in
 Handshake occurs between the client-side and the CMS plug-ins
 On successful handshake, the CMS permits logon
• Plug-ins may need to perform different functions, depending on authentication type
 Regardless of authentication type, CMS security sub-system performs the following:
 Ensures user count does not exceed the maximum allowed for current license key
 Creates a session InfoObject and increments the license count
 Creates the logon token InfoObject (a unique string instead of username/password)
 Optionally creates the user InfoObject if it does not already exist
▪ This depends on settings in Authentication tab in CMC
30
AD or SAP Logon into BI Launchpad (cont.)
• Enterprise authentication logon requires the secEnterprise client-side plug-in
 Plug-in encrypts the username and password
 Plug-in stores this in a security buffer, and hands the security buffer to CMS
 CMS security sub-system calls the object sub-system to verify user InfoObject exists
and password matches
 If these criteria are satisfied and security allows, the user is allowed to log on
• AD authentication logon requires the secWinAD client-side plug-in
 Queries the Domain Controller (DC) to authenticate the user
 On successful authentication, a token from DC gets passed to the server-side
secWinAD plug-in on CMS
 Server-side plug-in verifies group membership by searching through group graph
 Group graph includes information about User Groups and how they relate to each other
31
AD or SAP Logon into BI Launchpad (cont.)
• Use case scenario: users report very slow into BI Platform
 With use of a viewer like HttpWatch, monitor HTTP(S) traffic on the client
 For each call you can see execution time in seconds, which protocol used, bytes
received, and if static content is read from the cache
 In the example above, a particular call stands out: Vintela request
 https://BOEserver:8443/BOE/portal/1502261134/BIPCoreWeb/VintelaServlet?vint_bac
kURL=%2FInfoView%2Flogon.faces&vint_cms=%40bi4-CMS
32
AD or SAP Logon into BI Launchpad (cont.)
• Use SAP Client Plug-in to trace the workflow
 We see one call taking nearly 10s to get a response
 Make use of network analysis tool (e.g., Wireshark) to inspect traffic during that call
 In this real-life example, a network utility (nbtstat) revealed a NetBIOS packet querying for a
computer name
 Problem was caused by poor server-side WINS configuration, and initial NetBIOS request timing out for
each of the 3 NICs before eventually coming back
33
AD or SAP Logon into BI Launchpad (cont.)
• WINS determines the IP address associated with a particular network computer
 After disabling WINS on all NICs, nbtstat failed immediately – did not expire/time out
 With no NetBIOS queries left pending, SSO logon was no longer held up
• WINS – NetBIOS over TCP/IP – LMHOSTS are mainly for legacy NetBIOS-based apps
• SAP BusinessObjects does not require NetBIOS for authentication, and name resolution
should always use DNS
34
Analyzing Performance for Some Example Workflows
• Web Intelligence refresh via OLAP BICS to BW on SAP HANA
• Web Intelligence refresh via JDBC to SAP HANA sidecar
• AD or SAP logon into BI launchpad
• OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
35
OLAP Refresh via OLAP BICS in SAP BusinessObjects BI4.1 to
BW on SAP HANA
• In this section, we investigate performance of Analysis, edition for OLAP (aOLAP)
• aOLAP is designed for query and analysis rather than reporting
 Works against multi-dimensional data sources
 Limited formatting capability – normally used for generating tabular “workspaces”
• The multi-dimensional analysis server (MDAS) handles aOLAP workspaces
 MDAS is hosted by an Adaptive Processing Server (APS)
• For a typical aOLAP refresh via BICS to BW on SAP HANA, we see interaction between
various layers and servers using same methodology as previously discussed
 For process operations outside the BI4 platform, use BW statistics, ST12, etc.
 BW statistics and ST12 provide extra detail that can’t be recorded in the BI4 traces
36
OLAP Refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to
BW on SAP HANA (cont.)
• Total execution time (e.g., from HttpWatch) will comprise:
 CMS time (and STS time, if using SSO to BW)
 MDAS function calls for query execution (BICS calls)
 Database processing:
 HANA DB retrieval times (depending on how much data the query asks for)
 OLAP Calculations (most calculations will be processed in OLAP)
▪ Check possibility to push down to HANA
 OLAP processing time
 BICS interface (BI/BW)
 Data transfer from BW to BI Layer
 Display in BI launchpad and client rendering time
37
OLAP Refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to
BW on SAP HANA (cont.)
• BW back-end statistics for aOLAP workflows can be generated by enabling BICS profiling
 This is controlled via a properties file on the BOE server running the MDAS service:
<BOE install dir>javapjsservicesMDASresourcescombusinessobjectsmultidimensionalservicesmdas.properties
• If multidimensional.services.bics.profiling.enabled is set to true:
 OLAP statistics in table RSDDSTAT_OLAP are generated
 Data Manager statistics in table RSDDSTAT_DM are generated
• This means a RSBOLAP_BICS_STATISTIC_INFO function for almost every activity
 This can have a significant impact on aOLAP performance as experienced by
end users!
 E.g., time taken to display a prompt to the user: we measured 11.5s with and 5s without profiling
 E.g., time taken to execute a data fetch: we measured 45s with and 32s without profiling
38
OLAP Refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to
BW on SAP HANA (cont.)
• When a BEx query is connected to multiple sheets in an aOLAP workspace, check that
aOLAP is only loading the active tab
• MDAS may perform the loadQuery for ALL tabs, having huge impact on response times
• Below is an example of a workspace containing 12 sheets:
 There is only one getRepresentation call
 But the MDAS issues a loadQuery for all 11 (inactive) sheets too!
 SAP Development Group provided code optimization via ADAPT01730767 to address
the overhead in the call stack when using multi-tabs
39
Analysis of Trace Files
• Use SAP tools (e.g., GLF Viewer, FlexiLogReader) to review trace files
• Filter by correlation ID from businesstransaction.xml
 This removes “background noise”
 You can now focus on activity from your workflow
• Use indents and/or color to highlight each function call
 Can now easily find start/end of function calls
 Makes it easy to see how long each step takes
• Add threadID column
 Can now see and filter by individual threads
• Scan transaction times, and look for “jumps”
 This is when activity is happening outside the traces
 E.g., when activity is happening in data source
40
Performance Impact of “Lazy Loading” #1
• aOLAP can be configured to always load queries when workspace is opened, or only load
queries when explicitly requested by user interaction
 Only loading when asked is referred to by SAP as “lazy loading”
• To enable lazy loading, make a configuration change in the mdaclient.properties file on
the server running Tomcat:
 #Configure whether queries are lazy loaded when first accessed to retrieve data or
preloaded when the workspace is opened.#query.lazyload=false
41
Performance Impact of “Lazy Loading” #2
• There is another configuration setting on the MDAS stack that SAP refers to as “lazy
loading”
 Lazy loading also means to prevent pre-load of metadata from BW with MDAS
 Controls whether metadata hierarchies and attributes are pre-loaded all at once or are
lazy loaded when their dimension is expanded by the user
 To enable pre-load of metadata, make a configuration change in mdas.properties
 Multidimensional.services.preload.metadata=true
• Both lazy loading options should be assessed for potential performance gains
42
Other Performance Considerations
• If you take an aOLAP workspace from BI4.0 and open it in BI4.1, an in-situ upgrade of the
internal workspace takes place to allow for new capabilities delivered with BI4.1
 Upgrade causes several seconds delay when first opening the workspace in BI4.1
 Happens each time the workspace is opened in BI4.1 until upgraded version is saved
 After an upgrade, ask users to open and then save the workspace
 The in-situ upgrade will not happen again
43
Other Performance Considerations (cont.)
• Maximum Member Selector Size and Member Selector Cache Limit tuning
• Maximum Member Selector Size
 Maximum Member Selector Size is set to 100,000 by default and acts as a safety
belt limit
 Regardless of how many members exist, we never fetch more than this number
of members
 E.g., if set to 500, then in the first SQL statement you will find out if there are more
than 500 entries
• Member Selector Cache Limit
 If Maximum Member Selector Size is less than or equal to Member Selector Cache Limit
then members will be cached in MDAS for faster access on future queries
 This is only applicable in flattened hierarchies
44
What We’ll Cover
• Best practice when measuring performance – controlled and consistent testing
• Performance analysis for some example workflows
• Tools to use to interpret the data, and accounting for time spent in each processing layer
• Wrap-up
45
Tools to Use to Interpret the Data, and Accounting for Time Spent
in Each Processing Layer
• The following tools were used to aid the analysis exercise for the examples outlined in
this presentation:
 SAP Client Plug-in: a BI4 trace utility provided by SAP (SAP Article 1861180)
 Wireshark: freely available network analyzer
 HttpWatch, Fiddler: freely available HTTP viewer and web debugger
 GLF Viewer: a log file viewer provided by SAP
 This has been superseded by FlexiLogReader (SAP KB Article 2203047)
 Notepad++: a freely available editor that supports several programming languages
 nbtstat: diagnostic tool for NetBIOS over TCP/IP (part of the Windows OS)
46
What We’ll Cover
• Best practice when measuring performance – controlled and consistent testing
• Performance analysis for some example workflows
• Tools to use to interpret the data, and accounting for time spent in each processing layer
• Wrap-up
47
Where to Find More Information
• Toby Johnston, “BI Platform E2E tracing with Solution Manager E2E Trace Analysis” (SCN, September 2013).
 http://wiki.scn.sap.com/wiki/display/BOBJ/BI+Platform+E2E+tracing+with+Solution+Manager+E2E+Trace+Analysis
• Matthew Shaw, “Standard BI Platform log tracing” (SCN, January 2015).
 http://wiki.scn.sap.com/wiki/display/BOBJ/Standard+BI+Platform+log+tracing
• SAP Not 2103024 – *** MASTER NOTE *** How To Trace Business Objects 4.0 and 4.1 (Servers and Clients)
 http://service.sap.com/sap/support/notes/2103024 *
• Toby Johnston, “Wily Introscope for BI Platform 4.0: Why it is important and how to get started” (SCN, August 2012).
 http://scn.sap.com/community/bi-platform/remote-supportability/blog/2012/08/06/an-administrators-match-made-in-
heaven-extend-your-bi-platform-40-monitoring-capabilities-with-wily-introscope
• Helena Chong, “Tutorials – SAP Business Intelligence Platform 4.x” (SCN, April 2017).
 http://scn.sap.com/docs/DOC-8292
 Process flows for SAP BusinessObjects 4.x
• Appendix 1: Anatomy of the Web Intelligence Processing Server
* Requires login credentials to the SAP Service Marketplace
48
7 Key Points to Take Home
• Simplify and isolate your workflow, and get a consistent baseline measurement
• Examine which processing layers are involved, and understand how the various layers
interact with each other
• Use the best tools to gather traces for the problem workflow and simplify your analysis
• Break down the total runtime into different processing layers to see where the holdup is
• Don’t forget that delays can occur outside the traces – e.g., in end-user laptop!
• Verify if active concurrency, data volumes, or core processing play a factor in
performance degradation
• If appropriate, then embark on a tuning exercise based on your findings
 Challenge user requirements – outline/demonstrate benefit of a smaller BEx query!
 Review server resources, consider distribution and/or configuration changes
 If necessary, raise a Support case to highlight inefficient/incorrect product behavior
49
Your Turn!
How to contact me:
Dan Goodinson
dan.goodinson@bibrainz.com
Please remember to complete your session evaluation
50
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other
countries. All other product and service names mentioned are the trademarks of their respective companies. Wellesley Information Services is neither owned nor controlled by SAP SE.
Disclaimer
Wellesley Information Services, 20 Carematrix Drive, Dedham, MA 02026 Copyright © 2017 Wellesley Information Services.
All rights reserved.

More Related Content

What's hot (20)

PPT
Sql Server Performance Tuning
Bala Subra
 
PDF
Les BD NoSQL
Minyar Sassi Hidri
 
PDF
Resume de BI
zeroweddou
 
PDF
Introduction à la Business Intelligence
Cynapsys It Hotspot
 
PPTX
Chp1 - Introduction à l'Informatique Décisionnelle
Lilia Sfaxi
 
PDF
Observability
Ebru Cucen Çüçen
 
PDF
Intégration des données avec Talend ETL
Lilia Sfaxi
 
PPTX
Power bi desktop et Power BI Service
Sophie Marchand, M.Sc., CPA, CGA, MVP
 
PPT
Les défis de l'archivage numérique (Fr)
CABSIS Consulting Ltd
 
PPTX
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
PDF
Data Virtualization: An Essential Component of a Cloud Data Lake
Denodo
 
PDF
Moving to Databricks & Delta
Databricks
 
PPTX
Modern data warehouse
Rakesh Jayaram
 
PPTX
HDInsight for Architects
Ashish Thapliyal
 
PPT
Projet Bi - 3 - Alimentation des données
Jean-Marc Dupont
 
PDF
Initiation à Android
Lilia Sfaxi
 
PDF
Kogito: cloud native business automation
Mario Fusco
 
PDF
Tp Sql Server Integration Services 2008
Abdelouahed Abdou
 
PDF
Bases de Données non relationnelles, NoSQL (Introduction) 1er cours
Hatim CHAHDI
 
Sql Server Performance Tuning
Bala Subra
 
Les BD NoSQL
Minyar Sassi Hidri
 
Resume de BI
zeroweddou
 
Introduction à la Business Intelligence
Cynapsys It Hotspot
 
Chp1 - Introduction à l'Informatique Décisionnelle
Lilia Sfaxi
 
Observability
Ebru Cucen Çüçen
 
Intégration des données avec Talend ETL
Lilia Sfaxi
 
Power bi desktop et Power BI Service
Sophie Marchand, M.Sc., CPA, CGA, MVP
 
Les défis de l'archivage numérique (Fr)
CABSIS Consulting Ltd
 
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
Data Virtualization: An Essential Component of a Cloud Data Lake
Denodo
 
Moving to Databricks & Delta
Databricks
 
Modern data warehouse
Rakesh Jayaram
 
HDInsight for Architects
Ashish Thapliyal
 
Projet Bi - 3 - Alimentation des données
Jean-Marc Dupont
 
Initiation à Android
Lilia Sfaxi
 
Kogito: cloud native business automation
Mario Fusco
 
Tp Sql Server Integration Services 2008
Abdelouahed Abdou
 
Bases de Données non relationnelles, NoSQL (Introduction) 1er cours
Hatim CHAHDI
 

Similar to Analysing and Troubleshooting Performance Issues in SAP BusinessObjects BI Reports and Dashboards (20)

PDF
How to pinpoint and fix sources of performance problems in your SAP BusinessO...
Xoomworks Business Intelligence
 
PDF
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
BI Brainz
 
PDF
ASUG influence council 2012 - SAP BusinessObjects Web Intelligence
karstenruf
 
PDF
SAP BusinessObjects Web Intelligence Influence Council 2012
solmanclients
 
PPTX
Quick and dirty performance analysis
Chris Kernaghan
 
PDF
Delivering Real-Time Business Value for Professional Services
SAP Technology
 
PDF
Article by Marlabs Bangalore employee receives international recognition!
Marlabs
 
PDF
SAP Business Workflow - Best Practices
Warren Eiserman
 
PDF
Web Performance Analysis - TCF Pro 2009
Guy Ferraiolo
 
PPTX
LEN - BIBO Overview v1 .pptx
ArsyanSyahir2
 
PDF
Workload Analysis
GlobalLogic Ukraine
 
PDF
Case Study: Lessons from Newell Rubbermaid's SAP HANA Proof of Concept
SAPinsider Events
 
PDF
Maximizing Database Tuning in SAP SQL Anywhere
SAP Technology
 
PPTX
Getting Started with BI Analytics on HANA
Dickinson + Associates
 
PDF
Sapperformancetestingbestpracticeguidev1 0-130121141448-phpapp02
Pompee Das
 
PDF
Sap performance testing best practice guidev1 0-130121141448-phpapp02
Kamalaksha Das
 
PDF
SAP Performance Testing Best Practice Guide v1.0
Argos
 
PDF
IBM's Business Analytics Portfolio for Training Purposes
Natalija Pavic
 
PDF
Goal driven performance optimization (Пётр Зайцев)
Ontico
 
How to pinpoint and fix sources of performance problems in your SAP BusinessO...
Xoomworks Business Intelligence
 
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
BI Brainz
 
ASUG influence council 2012 - SAP BusinessObjects Web Intelligence
karstenruf
 
SAP BusinessObjects Web Intelligence Influence Council 2012
solmanclients
 
Quick and dirty performance analysis
Chris Kernaghan
 
Delivering Real-Time Business Value for Professional Services
SAP Technology
 
Article by Marlabs Bangalore employee receives international recognition!
Marlabs
 
SAP Business Workflow - Best Practices
Warren Eiserman
 
Web Performance Analysis - TCF Pro 2009
Guy Ferraiolo
 
LEN - BIBO Overview v1 .pptx
ArsyanSyahir2
 
Workload Analysis
GlobalLogic Ukraine
 
Case Study: Lessons from Newell Rubbermaid's SAP HANA Proof of Concept
SAPinsider Events
 
Maximizing Database Tuning in SAP SQL Anywhere
SAP Technology
 
Getting Started with BI Analytics on HANA
Dickinson + Associates
 
Sapperformancetestingbestpracticeguidev1 0-130121141448-phpapp02
Pompee Das
 
Sap performance testing best practice guidev1 0-130121141448-phpapp02
Kamalaksha Das
 
SAP Performance Testing Best Practice Guide v1.0
Argos
 
IBM's Business Analytics Portfolio for Training Purposes
Natalija Pavic
 
Goal driven performance optimization (Пётр Зайцев)
Ontico
 
Ad

Recently uploaded (20)

PPTX
apidays Helsinki & North 2025 - Agentic AI: A Friend or Foe?, Merja Kajava (A...
apidays
 
PDF
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
PPTX
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
PDF
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
PPTX
ER_Model_Relationship_in_DBMS_Presentation.pptx
dharaadhvaryu1992
 
PDF
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
PDF
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PPT
AI Future trends and opportunities_oct7v1.ppt
SHIKHAKMEHTA
 
PPTX
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
PDF
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
PPTX
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PDF
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
PDF
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PDF
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
PDF
Driving Employee Engagement in a Hybrid World.pdf
Mia scott
 
PDF
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
apidays Helsinki & North 2025 - Agentic AI: A Friend or Foe?, Merja Kajava (A...
apidays
 
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
ER_Model_Relationship_in_DBMS_Presentation.pptx
dharaadhvaryu1992
 
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
AI Future trends and opportunities_oct7v1.ppt
SHIKHAKMEHTA
 
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
Driving Employee Engagement in a Hybrid World.pdf
Mia scott
 
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
Ad

Analysing and Troubleshooting Performance Issues in SAP BusinessObjects BI Reports and Dashboards

  • 1. Produced by Wellesley Information Services, LLC, publisher of SAPinsider. © 2017 Wellesley Information Services. All rights reserved. Analysing and Troubleshooting Performance Issues in SAP BusinessObjects BI Reports and Dashboards Dan Goodinson BI Brainz
  • 2. 1 In This Session • Determine where time is spent during various workflows, get to the bottom of performance complaints, and improve the experience for end users • See which tools can be used to collect and analyze data and how to extract the information needed, as well as how to interpret the information to determine where most time is spent during workflows • Delays can have unexpected root causes; see how to identify performance bottlenecks with real-life examples, as well as how different components in the architectural workflow can influence execution times
  • 3. 2 What We’ll Cover • Best practice when measuring performance – controlled and consistent testing • Performance analysis for some example workflows • Tools to use to interpret the data, and accounting for time spent in each processing layer • Wrap-up
  • 4. 3 Best Practice When Measuring Performance • Architectural workflows within SAP BusinessObjects Enterprise can be complex • When a performance concern is raised, it can be a challenge to identify the root cause  Front end – inefficient report design?  Are you using the best application for the job at hand?  SAP BusinessObjects and database – insufficient capacity, incorrect configuration?  Inefficient distribution of servers across cluster  Inadequate or inefficient heap assignment  Suboptimal configuration of services; missing SAP Notes and fixes  Other factors  Room to improve your database query?  Network latency?  End-user laptop configuration causing a bottleneck?
  • 5. 4 Best Practice When Measuring Performance (cont.) • Front-end application (e.g., WebI) is frequently blamed since this is the only part users interact with … • Another frequently cited concern is lack of server resources • These concerns can be easily investigated, verified, and addressed or put to rest
  • 6. 5 Best Practice When Measuring Performance (cont.) • Start by analyzing a workflow in isolation  Where possible, take measurements in an environment where you can control the load  If production-like resources are not available, be prepared to extrapolate  If using tools to generate load, be sure to set realistic active concurrency • Take multiple measurements at different times during the day  Time may vary even in the same workflow – always take an average  Don’t forget to account for system/database/client cache • Do some geographical locations suffer more than others?  Is number of users at that location a factor? Bandwidth issues?  Are jobs running overnight which affect different time zones?  How far is that location from your data? Network round trip/latency?
  • 7. 6 Best Practice When Measuring Performance (cont.) • Once you have consistent measurements, check all processing layers involved and determine time spent within each layer  How much time is spent in the database running the query?  How much time is spent bringing data back from the data source?  How much time is spent building each page and delivering it to the user? • This will help identify which areas you may need to revisit:  Content design: Are you trying to fit too much into one report or database query?  Environment sizing or configuration: Are additional resources required?  Jobs and data loading: Can the schedule be adjusted?  Customization or call stack: Is it time to raise a support case?
  • 8. 7 What We’ll Cover • Best practice when measuring performance – controlled and consistent testing • Performance analysis for some example workflows • Tools to use to interpret the data, and accounting for time spent in each processing layer • Wrap-up
  • 9. 8 Analyzing Performance for Some Example Workflows • Web Intelligence refresh via OLAP BICS to BW on SAP HANA • Web Intelligence refresh via JDBC to SAP HANA sidecar • AD or SAP logon into BI launchpad • OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
  • 10. 9 Web Intelligence Refresh via OLAP BICS to BW on SAP HANA • Web Intelligence (WebI) is an ad hoc reporting application that allows end users to define queries and design reports, or to modify existing reports depending on requirements • To optimize report performance or find potential bottlenecks:  Capture SAP BusinessObjects traces  Use SAP Client Plug-in (see SAP Note 1861180)  This tags each step with a unique correlation ID  Measure front-end execution using, e.g., HttpWatch  Record BW execution time using ST12  Review BW stats with ST13 BIIPTOOLS
  • 11. 10 WebI Refresh via OLAP BICS to BW on SAP HANA • Workflow starts when user clicks button in browser  HttpWatch, Fiddler, etc., will accurately record start (and end) of execution • Take several measurements without traces to establish a baseline • With a consistent measurement, now perform same workflow but with traces enabled  Be aware of overhead introduced by the traces – overhead can be significant!  Consider overhead in your final assessment • Gather and filter the traces based on tag generated by the SAP Client Plug-in  This will enable you to follow the workflow through the traces  Several trace analysis tools are provided by SAP  E.g., FlexiLogReader (refer to SAP Knowledge Base Article 2203047)
  • 12. 11 WebI Refresh via OLAP BICS to BW on SAP HANA (cont.) • In this example workflow, several servers will be called  WebI Processing Server sees incoming call from HttpServletRequest  We can follow the function call stack which will invoke other servers as required  Calls to CMS (for security and core processing queries)  Calls to Security Token Server (STS) to resolve single sign-on to BW  DSLBridge (hosted in an APS) to fetch data from BW and to build transient universe • Traces show the architecture involved – investigate time spent in each processing layer • Add up time spent for all “HttpServletRequest” calls  Does this match time measured by, e.g., HttpWatch, Fiddler, etc.?  Small discrepancies to be expected  Time recorded in front end, but not traced, is activity outside of SAP BusinessObjects  E.g., time spent processing by client browser
  • 13. 12 WebI Refresh via OLAP BICS to BW on SAP HANA (cont.) • Use the following tools to capture information during the workflow:  SAP Client Plug-in (set trace level to high)  Can also activate traces via CMC, though transactions won’t be tagged  HttpWatch or Fiddler (or equivalent) can measure front-end execution time  Will also show the HTTP requests involved  Use ST12 transaction in BW for user ID executing the query  Only capture RFC calls (at this stage)
  • 14. 13 WebI Refresh via OLAP BICS to BW on SAP HANA (cont.) • After workflow has completed:  Save the HttpWatch output as a .hwl file  Stop recording with SAP Client Plug-in and collect relevant trace files  BI launchpad  WIPS  DSLBridge  CMS  STS  Stop ST12 and collect output, pick up statistics in ST13/BIIPTOOLS  Both ST12 and BIIPTOOLS output can be saved to Excel for offline analysis
  • 15. 14 WebI Refresh via OLAP BICS to BW on SAP HANA (cont.) • For comprehensive traces, use SAP Client Plug-in on “high” setting • But this creates a problem – activity will be logged on virtually all trace files (even those not relevant to our workflow)  “High” will pick up unimportant communication between internal components  This background noise is not important to us • To identify components and trace files of interest, first trace your workflow on “low”  Then gather ALL trace files with .glf file extension  Search all .glf files for correlation ID tag from businesstransaction.xml  There is less “noise” – and we only find hits in files that are relevant to our workflow • Now run traces again on “high” setting to record your workflow  Only gather trace files identified as important in previous step (ignore the rest)
  • 16. 15 WebI Refresh via OLAP BICS to BW on SAP HANA (cont.) • Various tools can be used to search multiple trace files for the correlation ID tag  E.g., Notepad++, UltraEdit, etc.  Relevant* traces shown here:  WIPS  DSLBridge  CMS  STS *BI Launchpad is also relevant, though not shown here
  • 17. 16 Analysis of Trace Files • When bringing the results together, you’ll see time spent on operations like:  DPCommandsEx  answerPrompts  openDocumentMDP  getSessionInfosEx  getMap, getPages, getBlobInfo, etc. • Follow incoming/outgoing function calls from Tomcat layer to WIPS, and from WIPS to other services • For activity outside SAP BusinessObjects (e.g., in BW), details of time spent can be found using tools provided by that particular module/interface (e.g., ST12, ST13)  SAP BusinessObjects traces can only record overall time for database activity  Traces contain no detail/granularity on transactions inside the data source
  • 18. 17 Analysis of Trace Files (cont.) • The illustration below brings together HttpWatch, traces, ST12, and ST13 data. Total execution was measured as 12.822s, and I accounted for 12.109s in the breakdown:
  • 19. 18 Analysis of Trace Files — Breakdown of Findings • Total execution time as seen by user was recorded using HttpWatch  This comprises:  BI4 Platform time ▪ CMS authorization (STS was used, because of SSO to BW) ▪ DSLBridge ▪ WebI Processing Server (WIPS)  Data source time (BW on SAP HANA) ▪ Query execution time ▪ Calculation in database  Transfer time between database and BI4 platform  Time outside BI4 traces – e.g., processing time in client browser or laptop
  • 20. 19 Analysis of Trace Files — Breakdown of Findings (cont.) • Here is where most time was spent at each stage:  BI4 Platform time – captured in BI4 trace files  CMS time (and STS time, since we are using SSO to BW) ▪ Security/authorization checks can be expensive ➢ Can we simplify security (e.g., reduce group membership) to improve response times?  DSLBridge ▪ Query execution plan (QXP) and transient/lean universe generation ➢ More objects in the BEx query means more expensive QXP ➢ Challenge the business users – Do they really need/use ALL those objects? ➢ Can you satisfy business requirements using several smaller, leaner queries/reports?  WebI processing ▪ Microcube population, rendering report for display, calculation of variables, etc. ➢ Check for expensive pagination functions – e.g., GetPages (for “page number x of y”) ➢ Can any report-level calculations be push down to the database?
  • 21. 20 Analysis of Trace Files — Breakdown of Findings (cont.) • Here is where most time was spent at each stage: (cont.)  Data source time (in our case BW on SAP HANA)  Not captured in BI4 traces – this is found in ST12 and ST13 BIIPTOOLS output  Query execution time ▪ Can you add more mandatory prompts to restrict the dataset?  OLAP calculations ▪ Can any more calculations be pushed down to HANA?  OLAP processing: data is sorted and formatted according to query design  Receive data from OLAP processor and put into transfer structure in BICS interface  Data transfer from BW to BI Layer  DSL (WebI) BICS time: data transfer and preparation for WebI usage
  • 22. 21 Analysis of Trace Files — Breakdown of Findings (cont.) • Don’t forget to account for time not recorded in BI4 traces  Execution time in HttpWatch always adds up to more than recorded in traces  A small discrepancy is to be expected  Includes initial/final communication between client and BI4 platform  Also includes any client-side processing time ▪ E.g., work done by browser, Java, etc.  Anything more than a couple of seconds warrants further investigation
  • 23. 22 Analysis of Trace Files — Points to Consider • Is the poor performance an intermittent problem?  Data loading can affect data manager time  Taking measurements throughout the day may help you pinpoint this  Refer to earlier section on best practice in testing methodology • Are clients making full use of all available caching mechanisms?  Check content design for functions which cause cache to be ignored!  Refer to http://scn.sap.com/docs/DOC-58532  See section “Do not (accidentally) disable the cache mechanism of Web Intelligence”
  • 24. 23 Analysis of Trace Files — Points to Consider (cont.) • Metadata transmission can be expensive  This may be influenced by content design  E.g., transient/lean universe generation – Can you reduce number of key fields and/or characteristics?  Too many prompt responses can result in high send time in the RFC record  This may also be influenced by BW configuration  Activate compression via BASXML flag for the relevant BICS calls affected (e.g., BISC_PROV_GET_INITIAL_STATE) ▪ See SAP Note 1733726 ▪ Available since: ➢ BW 7.30 SP09 ➢ BW 7.31 SP06 ➢ BW 7.40 SP11
  • 25. 24 Analyzing Performance for Some Example Workflows • Web Intelligence refresh via OLAP BICS to BW on SAP HANA • Web Intelligence refresh via JDBC to SAP HANA sidecar • AD or SAP logon into BI launchpad • OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
  • 26. 25 Web Intelligence Refresh via JDBC to SAP HANA Sidecar • The methodology we previously described applies here, too  However, data fetch for JDBC is now done by the WIPS itself (INPROC)  WIPS doesn’t outsource to a “third party” to communicate with the data source  In previous workflow, data fetch was handled by DSLBridge  Connection Server (CS) would be used for relational data sources  Communication with data source is handled by the CS JNI Engine inside the WIPS  To trace activity in the JNI call stack we must update the cs.cfg file
  • 27. 26 Web Intelligence Refresh via JDBC to SAP HANA Sidecar (cont.) • cs.cfg file resides at following location: <boeinstalldir>/dataAccess/connectionServer  Update the following to enable tracing: <JavaVM> <Options> <Option>-Dtracelog.configfile=<yourFolder>/BO_trace.ini</Option> <Option>-Dtracelog.logdir=<yourFolder></Option> <Option>-Dtracelog.name=CSJNIEngine</Option> </Options> • If SSO is used, then JDBC will either use XML-based SAML, or Kerberos AD • Time spent will show in the WIPS and STS output
  • 28. 27 Web Intelligence Refresh via JDBC to SAP HANA Sidecar (cont.) • The output will be captured in the CSJNIEngine_trace file • Output looks something like this: 13:46:01.479|+0000|Information| |==| | |CSJNIEngine|14160|1471|Thread-1459 |{|431|4|3|4|BIlaunchpad.WebApp|BOESERVER|webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.proces sDPCommandsEx|localhost:14160:13844.107885:1|CSJNI.JNIbeforeIncomingCall| BOESERVER START OUTGOING CALL execute: FROM [CSJNI.JNIbeforeIncomingCall# BOESERVER]- 13:46:01.503|+0000|Information| |==| | |CSJNIEngine|14160|1471|Thread-1459 |}|431|2|3|2|BIlaunchpad.WebApp| BOESERVER |webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.processDPCommandsEx| BOESERVER |CSJNI.JNIbeforeIncomingCall| BOESERVER ||CS::JAVA::fetch: 00.025- 13:46:01.505|+0000|Error| |==|E| |CSJNIEngine|14160|1471|Thread-1459 |}|431|3|3|1|BIlaunchpad.WebApp| BOESERVER |webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.processDPCommandsEx| BOESERVER |CSJNI.JNIbeforeIncomingCall| BOESERVER ||END INCOMING CALL SPENT [04.029] FROM [webiserver_ACC_PROC_2.WebIntelligenceProcessingServer.processDPCommandsEx#] TO [CSJNI.JNIbeforeIncomingCall# BOESERVER]
  • 29. 28 Analyzing Performance for Some Example Workflows • Web Intelligence refresh via OLAP BICS to BW on SAP HANA • Web Intelligence refresh via JDBC to SAP HANA sidecar • AD or SAP logon into BI launchpad • OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
  • 30. 29 AD or SAP Logon into BI Launchpad • Each authentication type has its own plug-in  There are client-side SDK plug-ins and server-side (CMS) plug-ins  Client tools may also use web services, etc. • User logon is initiated by client-side plug-in  Handshake occurs between the client-side and the CMS plug-ins  On successful handshake, the CMS permits logon • Plug-ins may need to perform different functions, depending on authentication type  Regardless of authentication type, CMS security sub-system performs the following:  Ensures user count does not exceed the maximum allowed for current license key  Creates a session InfoObject and increments the license count  Creates the logon token InfoObject (a unique string instead of username/password)  Optionally creates the user InfoObject if it does not already exist ▪ This depends on settings in Authentication tab in CMC
  • 31. 30 AD or SAP Logon into BI Launchpad (cont.) • Enterprise authentication logon requires the secEnterprise client-side plug-in  Plug-in encrypts the username and password  Plug-in stores this in a security buffer, and hands the security buffer to CMS  CMS security sub-system calls the object sub-system to verify user InfoObject exists and password matches  If these criteria are satisfied and security allows, the user is allowed to log on • AD authentication logon requires the secWinAD client-side plug-in  Queries the Domain Controller (DC) to authenticate the user  On successful authentication, a token from DC gets passed to the server-side secWinAD plug-in on CMS  Server-side plug-in verifies group membership by searching through group graph  Group graph includes information about User Groups and how they relate to each other
  • 32. 31 AD or SAP Logon into BI Launchpad (cont.) • Use case scenario: users report very slow into BI Platform  With use of a viewer like HttpWatch, monitor HTTP(S) traffic on the client  For each call you can see execution time in seconds, which protocol used, bytes received, and if static content is read from the cache  In the example above, a particular call stands out: Vintela request  https://BOEserver:8443/BOE/portal/1502261134/BIPCoreWeb/VintelaServlet?vint_bac kURL=%2FInfoView%2Flogon.faces&vint_cms=%40bi4-CMS
  • 33. 32 AD or SAP Logon into BI Launchpad (cont.) • Use SAP Client Plug-in to trace the workflow  We see one call taking nearly 10s to get a response  Make use of network analysis tool (e.g., Wireshark) to inspect traffic during that call  In this real-life example, a network utility (nbtstat) revealed a NetBIOS packet querying for a computer name  Problem was caused by poor server-side WINS configuration, and initial NetBIOS request timing out for each of the 3 NICs before eventually coming back
  • 34. 33 AD or SAP Logon into BI Launchpad (cont.) • WINS determines the IP address associated with a particular network computer  After disabling WINS on all NICs, nbtstat failed immediately – did not expire/time out  With no NetBIOS queries left pending, SSO logon was no longer held up • WINS – NetBIOS over TCP/IP – LMHOSTS are mainly for legacy NetBIOS-based apps • SAP BusinessObjects does not require NetBIOS for authentication, and name resolution should always use DNS
  • 35. 34 Analyzing Performance for Some Example Workflows • Web Intelligence refresh via OLAP BICS to BW on SAP HANA • Web Intelligence refresh via JDBC to SAP HANA sidecar • AD or SAP logon into BI launchpad • OLAP refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA
  • 36. 35 OLAP Refresh via OLAP BICS in SAP BusinessObjects BI4.1 to BW on SAP HANA • In this section, we investigate performance of Analysis, edition for OLAP (aOLAP) • aOLAP is designed for query and analysis rather than reporting  Works against multi-dimensional data sources  Limited formatting capability – normally used for generating tabular “workspaces” • The multi-dimensional analysis server (MDAS) handles aOLAP workspaces  MDAS is hosted by an Adaptive Processing Server (APS) • For a typical aOLAP refresh via BICS to BW on SAP HANA, we see interaction between various layers and servers using same methodology as previously discussed  For process operations outside the BI4 platform, use BW statistics, ST12, etc.  BW statistics and ST12 provide extra detail that can’t be recorded in the BI4 traces
  • 37. 36 OLAP Refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA (cont.) • Total execution time (e.g., from HttpWatch) will comprise:  CMS time (and STS time, if using SSO to BW)  MDAS function calls for query execution (BICS calls)  Database processing:  HANA DB retrieval times (depending on how much data the query asks for)  OLAP Calculations (most calculations will be processed in OLAP) ▪ Check possibility to push down to HANA  OLAP processing time  BICS interface (BI/BW)  Data transfer from BW to BI Layer  Display in BI launchpad and client rendering time
  • 38. 37 OLAP Refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA (cont.) • BW back-end statistics for aOLAP workflows can be generated by enabling BICS profiling  This is controlled via a properties file on the BOE server running the MDAS service: <BOE install dir>javapjsservicesMDASresourcescombusinessobjectsmultidimensionalservicesmdas.properties • If multidimensional.services.bics.profiling.enabled is set to true:  OLAP statistics in table RSDDSTAT_OLAP are generated  Data Manager statistics in table RSDDSTAT_DM are generated • This means a RSBOLAP_BICS_STATISTIC_INFO function for almost every activity  This can have a significant impact on aOLAP performance as experienced by end users!  E.g., time taken to display a prompt to the user: we measured 11.5s with and 5s without profiling  E.g., time taken to execute a data fetch: we measured 45s with and 32s without profiling
  • 39. 38 OLAP Refresh via OLAP BICS in SAP BusinessObjects BI 4.1 to BW on SAP HANA (cont.) • When a BEx query is connected to multiple sheets in an aOLAP workspace, check that aOLAP is only loading the active tab • MDAS may perform the loadQuery for ALL tabs, having huge impact on response times • Below is an example of a workspace containing 12 sheets:  There is only one getRepresentation call  But the MDAS issues a loadQuery for all 11 (inactive) sheets too!  SAP Development Group provided code optimization via ADAPT01730767 to address the overhead in the call stack when using multi-tabs
  • 40. 39 Analysis of Trace Files • Use SAP tools (e.g., GLF Viewer, FlexiLogReader) to review trace files • Filter by correlation ID from businesstransaction.xml  This removes “background noise”  You can now focus on activity from your workflow • Use indents and/or color to highlight each function call  Can now easily find start/end of function calls  Makes it easy to see how long each step takes • Add threadID column  Can now see and filter by individual threads • Scan transaction times, and look for “jumps”  This is when activity is happening outside the traces  E.g., when activity is happening in data source
  • 41. 40 Performance Impact of “Lazy Loading” #1 • aOLAP can be configured to always load queries when workspace is opened, or only load queries when explicitly requested by user interaction  Only loading when asked is referred to by SAP as “lazy loading” • To enable lazy loading, make a configuration change in the mdaclient.properties file on the server running Tomcat:  #Configure whether queries are lazy loaded when first accessed to retrieve data or preloaded when the workspace is opened.#query.lazyload=false
  • 42. 41 Performance Impact of “Lazy Loading” #2 • There is another configuration setting on the MDAS stack that SAP refers to as “lazy loading”  Lazy loading also means to prevent pre-load of metadata from BW with MDAS  Controls whether metadata hierarchies and attributes are pre-loaded all at once or are lazy loaded when their dimension is expanded by the user  To enable pre-load of metadata, make a configuration change in mdas.properties  Multidimensional.services.preload.metadata=true • Both lazy loading options should be assessed for potential performance gains
  • 43. 42 Other Performance Considerations • If you take an aOLAP workspace from BI4.0 and open it in BI4.1, an in-situ upgrade of the internal workspace takes place to allow for new capabilities delivered with BI4.1  Upgrade causes several seconds delay when first opening the workspace in BI4.1  Happens each time the workspace is opened in BI4.1 until upgraded version is saved  After an upgrade, ask users to open and then save the workspace  The in-situ upgrade will not happen again
  • 44. 43 Other Performance Considerations (cont.) • Maximum Member Selector Size and Member Selector Cache Limit tuning • Maximum Member Selector Size  Maximum Member Selector Size is set to 100,000 by default and acts as a safety belt limit  Regardless of how many members exist, we never fetch more than this number of members  E.g., if set to 500, then in the first SQL statement you will find out if there are more than 500 entries • Member Selector Cache Limit  If Maximum Member Selector Size is less than or equal to Member Selector Cache Limit then members will be cached in MDAS for faster access on future queries  This is only applicable in flattened hierarchies
  • 45. 44 What We’ll Cover • Best practice when measuring performance – controlled and consistent testing • Performance analysis for some example workflows • Tools to use to interpret the data, and accounting for time spent in each processing layer • Wrap-up
  • 46. 45 Tools to Use to Interpret the Data, and Accounting for Time Spent in Each Processing Layer • The following tools were used to aid the analysis exercise for the examples outlined in this presentation:  SAP Client Plug-in: a BI4 trace utility provided by SAP (SAP Article 1861180)  Wireshark: freely available network analyzer  HttpWatch, Fiddler: freely available HTTP viewer and web debugger  GLF Viewer: a log file viewer provided by SAP  This has been superseded by FlexiLogReader (SAP KB Article 2203047)  Notepad++: a freely available editor that supports several programming languages  nbtstat: diagnostic tool for NetBIOS over TCP/IP (part of the Windows OS)
  • 47. 46 What We’ll Cover • Best practice when measuring performance – controlled and consistent testing • Performance analysis for some example workflows • Tools to use to interpret the data, and accounting for time spent in each processing layer • Wrap-up
  • 48. 47 Where to Find More Information • Toby Johnston, “BI Platform E2E tracing with Solution Manager E2E Trace Analysis” (SCN, September 2013).  http://wiki.scn.sap.com/wiki/display/BOBJ/BI+Platform+E2E+tracing+with+Solution+Manager+E2E+Trace+Analysis • Matthew Shaw, “Standard BI Platform log tracing” (SCN, January 2015).  http://wiki.scn.sap.com/wiki/display/BOBJ/Standard+BI+Platform+log+tracing • SAP Not 2103024 – *** MASTER NOTE *** How To Trace Business Objects 4.0 and 4.1 (Servers and Clients)  http://service.sap.com/sap/support/notes/2103024 * • Toby Johnston, “Wily Introscope for BI Platform 4.0: Why it is important and how to get started” (SCN, August 2012).  http://scn.sap.com/community/bi-platform/remote-supportability/blog/2012/08/06/an-administrators-match-made-in- heaven-extend-your-bi-platform-40-monitoring-capabilities-with-wily-introscope • Helena Chong, “Tutorials – SAP Business Intelligence Platform 4.x” (SCN, April 2017).  http://scn.sap.com/docs/DOC-8292  Process flows for SAP BusinessObjects 4.x • Appendix 1: Anatomy of the Web Intelligence Processing Server * Requires login credentials to the SAP Service Marketplace
  • 49. 48 7 Key Points to Take Home • Simplify and isolate your workflow, and get a consistent baseline measurement • Examine which processing layers are involved, and understand how the various layers interact with each other • Use the best tools to gather traces for the problem workflow and simplify your analysis • Break down the total runtime into different processing layers to see where the holdup is • Don’t forget that delays can occur outside the traces – e.g., in end-user laptop! • Verify if active concurrency, data volumes, or core processing play a factor in performance degradation • If appropriate, then embark on a tuning exercise based on your findings  Challenge user requirements – outline/demonstrate benefit of a smaller BEx query!  Review server resources, consider distribution and/or configuration changes  If necessary, raise a Support case to highlight inefficient/incorrect product behavior
  • 50. 49 Your Turn! How to contact me: Dan Goodinson [email protected] Please remember to complete your session evaluation
  • 51. 50 SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. All other product and service names mentioned are the trademarks of their respective companies. Wellesley Information Services is neither owned nor controlled by SAP SE. Disclaimer
  • 52. Wellesley Information Services, 20 Carematrix Drive, Dedham, MA 02026 Copyright © 2017 Wellesley Information Services. All rights reserved.