SlideShare a Scribd company logo
Using	efficient	linear	local	features	
in	the	copy-move	forgery	
detection	task
A NDRE Y 	KUZNE T SOV,	V L A DISL AV M YA SNIKOV
SA M A RA 	STAT E 	A E ROSPA CE 	 UNIV E RSIT Y 	(SSA U),	 WWW.SSA U.RU
KUZNE T SOFF.A NDRE Y @G M A IL .COM
A IST-2016
Contents
1.	Introduction	to	image	forgery	detection	problem
2.	The	proposed	 approach
3.	Conducted	experiments
4.	Conclusion
2
Image	forgery	– what	is	it?
Main	forgery	types
1. Changing	local	characteristics
2. Copy-move	(plain,	transformed)
3. Splicing
4. Objects	modelling
3
Copy-move	example
Protection	types
1. Active	(digital	watermarks)
2. Passive	(forgery	detection	algorithms)
Digital	data	is	used	everywhere	(research,	commercial	and	military	purposes)
Plain	copy-move	example
4
Initial	image Image	forgery
The	proposed	approach
5
Problem: there	is	no copy-move	detection	algorithm	with	~100%	precision	[1]
The	key	features	of	the	proposed	 algorithm:
- 100%	recall
- high	calculation	speed	(for	real-time	image	analysis)
- low	computational	complexity
- 99,9%	precision
The	main	steps	of	the	algorithm
1. Sliding	window	analysis	mode
2. Use	special	structural	pattern
3. Hash	values	calculation	( based	on	linear	local	features)
4. Store	hash	values	in	a	hash	table
1. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection
approaches. In: IEEE Transactions on InformationForensics and Security. Volume 7(6). (2012). 1841–1854
Structural	pattern
6
A	structural	pattern is	defined	as	follows:
,	where
the	set	of	coordinates																								is	defined	as	follows:
( )ba,,Λℵ
( ) ( )
( )nmbaba
nm
,,,,,
,
Π≡Λℵ
Λ∈
!
( )nmba ,,,Π
( )
( ) ( ) ( )
( ) ( )⎪
⎭
⎪
⎬
⎫
⎪
⎩
⎪
⎨
⎧
−+−+−+
−++
≡Π
1,1,,,1
,1,,,1,,,
,,,
bnamnam
bnmnmnm
nmba
!
!
!
Let																be	an	analyzed	image( )nmf ,
– a	simplified	 form	of	a	structural	pattern( ){ }( )ba,,0,0ℵ
( ) 5,3,3, =ΛΛℵ
7
Duplicate
7
There	are	duplicates	by	a	pattern	 ( )ba,,Λℵ ,	if	there	are	at	least	2	pairs	of	coordinates	
( )nm ʹʹ, ( )nm ʹʹʹʹ,and that	satisfy	the	following	equalities:
( ) ( )
( ) ( ).,,,
,,,
banm
nnmmfnnmmf
Λℵ∈∀
+ʹʹ+ʹʹ=+ʹ+ʹ
The	task	is	to	determine	for	each	image	pixel,	which	corresponds	 to	the	upper	left	point
of	an	image	fragment	(with	a	form	of	a	structural	pattern),	a	unique	integer	number:
0 – no	copy-move,	>0	– copy-move	type
(m’,n’) 1 2
3 4 5
6 7 8
(m’’,n’’) 1 2
3 4 5
6 7 8
Duplicates
Copy-move	detection	scheme
8
Hash	values
calculation
Hash	table	(contains	absolute	
frequencies	of	hash	values	)
An	image	fragment	is	identified	 as	a	duplicate,	
if	its	absolute	frequency	is	greater	than	1
0
1
2
3
4
Hash	values
Two	hashing	approaches
• Cryptographic
• Perceptual
Linear	local	features
9
Linear	local	feature	(LLF)	over	Galois	field	GF(p):																														,	where	( ){ }( )Amh
M
m ,
1
0
−
=
( ){ } 1
0
−
=
M
mmh is	a	kernel,	A	is	a	convolution	algorithm	over	GF(p),	p is	a	prime	number
A	hash	value is	a	result	of convolution	of	an	image	fragment	and	a	kernel ( ){ } 1
0
−
=
M
mmh
Linear	local	features
10
( )
( ) ( ) [ ]
( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) .01~1
,2,,0~
,1,1,0~
,/1,,0
,/1,1,0
,10
1
1
1
1
=−++−
Θ−+∈=+−
Θ−∈=−−−
Θ−+∈=−
Θ−∈=−−
=
∑
∑
∑
∑
=
=
=
=
KMMha
KMMmmkmha
Mmmkmhamh
KMMmkmha
Mmkmhamh
h
K
K
k
k
K
k
k
K
k
k
K
k
k
ϕ
ϕ
ϕ
!
!
FIR	values																		are	calculated	using	the	following	system	of	linear	equations	(SLE):( ){ } 1
0
−
=
M
mmh
( ){ } 1,0~: +=Θ≠∈=Θ + Knn ϕZ
Set	of	irregularities:
SLE	are	solved	to	select	
the	optimal	convolution	kernel
1
2
−
−+
K
KMC
Recursive LLF calculation
( ) ( ) ( ) ( )
1,0
~
1
−=
−+−= ∑∑
Θ∈=
Nn
mmnxknyany
m
K
k
k ϕ
(LLF were	developed	by V.	Myasnikov in	2007)
Copy-move	algorithm
11
Let	H(t) be	a	hash-table,	P(m,n) be	a	2D	array	of	potential	duplicates
no
sub	windows	
intersection	
maximum
sub	windows	
intersection	
false;
Experiments
12
Let us use a number of false detected duplicates (collisions) as a quality parameter colK
Test set: 10 satellite images SPOT-4, 5000x7000, without duplicates
,Precision
fptp
tp
+
=
,Recall
fntp
tp
+
=
Metrics	for	quality	estimation
tp – true	positive
fp – false	positive
fn – false	negative
PC	used:	Intel	Core	i5	3470,	8GB	RAM
{ }K
kka 1= are	defined	as	follows:
(a)				Fibonacci	sequence	
elements:
K=2 –
K=3 –
K=4 –
(b)				Polynomial	coefficients:
( ) k
K
k
k Ca 1−=
2,1 21 == aa
3,2,1 321 === aaa
5,3,2,1 4321 ==== aaaa
Experiments.	Accuracy	
13
0
2000
4000
6000
8000
10x10 9x9 8x8 7x7 6x6
a	x	b
Sliding	window	size	11×11,	 Sliding	window	size	18×18,	 9=Λ4=Λ
0
2
4
6
8
10
12
16x16 14x14 12x12 10x10 8x8 7x7 6x6
a	x	b
Results:
• a	>	8,	b	>	8
• 6>Λ
colKcolK
Kcol
Proposed	solution 2D	Rabin-
Karp	rolling	
hash(a) (b)
2 240854 1338933 1235
3 242 230 1235
4 232 225 1235
Experiments.	Accuracy	
14
Method Precision,	% Recall,	%
Circle 92.1 100
FMT 90.57 100
Lin 94.12 100
Surf 91.49 89.58
Zernike 92.31 100
Our	approach 99.9 100
Database	[1]	contains	48 images	with	resolution	3000	x	2300	pixels
[1] Image manipulationdataset is created at the Friedrich-Alexander-Universität Erlangen-Nürnberg byV. Christlein et al.
Examples
15
Experiments.	Computational	
complexity
16
12000
12500
13000
13500
14000
9x9 9x10 11x11 13x13 15x15
Avg.	image	analysis	time,	
ms
a×b
Average image analysis time is 12.5 s, because of recursive hash values calculation
Method Total	time,	s
Circle 5103.43
FMT 6948.03
Lin 4785.71
Surf 1052.12
Zernike 7065.18
Our	approach 420.12
Results	and	conclusion
17
Plans	for	future
1. Designing	 transformed	copy-move	detection	(affine,	JPEG,	
contrast	enhancement,	etc.)
2. Compare	with	GPU-based	version	of	the	algorithm
Results
1. The	algorithm	has	0-false	negative	error
2. Execution	speed	is	very	high	due	to	low	computational	
complexity	(including	 recursive	hash	calculation)
3. False	positive	error	is													in	average%10 5−
18
Thanks	for	attention!
Questions?

More Related Content

What's hot (20)

ODP
Blind detection of image manipulation @ PoliMi
Giorgio Sironi
 
PPTX
Naveen 9911103606 major ppt
Naveen Rajgariya
 
PDF
Detecting image splicing in the wild Web
Symeon Papadopoulos
 
PDF
Video Forgery Detection: Literature review
Tharindu Rusira
 
PDF
Denoising Process Based on Arbitrarily Shaped Windows
CSCJournals
 
PPT
Chapter10 image segmentation
asodariyabhavesh
 
PDF
Iaetsd an enhanced circular detection technique rpsw using circular hough t...
Iaetsd Iaetsd
 
PDF
Copy Move Forgery Detection Using GLCM Based Statistical Features
ijcisjournal
 
PDF
Iaetsd a modified image fusion approach using guided filter
Iaetsd Iaetsd
 
PDF
Performance Analysis of CRT for Image Encryption
ijcisjournal
 
PDF
Image segmentation using advanced fuzzy c-mean algorithm [FYP @ IITR, obtaine...
Koteswar Rao Jerripothula
 
PPT
Digital Image Processing
Azharo7
 
PPT
Image Texture Analysis
lalitxp
 
PDF
Av4301248253
IJERA Editor
 
PDF
3D Reconstruction from Multiple uncalibrated 2D Images of an Object
Ankur Tyagi
 
PPTX
Image segmentation
Rania H
 
PPTX
Digital Image Fundamentals - II
Hemantha Kulathilake
 
PPT
Fuzzy c-means clustering for image segmentation
Dharmesh Patel
 
PPTX
Segmentation Techniques -I
Hemantha Kulathilake
 
Blind detection of image manipulation @ PoliMi
Giorgio Sironi
 
Naveen 9911103606 major ppt
Naveen Rajgariya
 
Detecting image splicing in the wild Web
Symeon Papadopoulos
 
Video Forgery Detection: Literature review
Tharindu Rusira
 
Denoising Process Based on Arbitrarily Shaped Windows
CSCJournals
 
Chapter10 image segmentation
asodariyabhavesh
 
Iaetsd an enhanced circular detection technique rpsw using circular hough t...
Iaetsd Iaetsd
 
Copy Move Forgery Detection Using GLCM Based Statistical Features
ijcisjournal
 
Iaetsd a modified image fusion approach using guided filter
Iaetsd Iaetsd
 
Performance Analysis of CRT for Image Encryption
ijcisjournal
 
Image segmentation using advanced fuzzy c-mean algorithm [FYP @ IITR, obtaine...
Koteswar Rao Jerripothula
 
Digital Image Processing
Azharo7
 
Image Texture Analysis
lalitxp
 
Av4301248253
IJERA Editor
 
3D Reconstruction from Multiple uncalibrated 2D Images of an Object
Ankur Tyagi
 
Image segmentation
Rania H
 
Digital Image Fundamentals - II
Hemantha Kulathilake
 
Fuzzy c-means clustering for image segmentation
Dharmesh Patel
 
Segmentation Techniques -I
Hemantha Kulathilake
 

Similar to Andrey Kuznetsov and Vladislav Myasnikov - Using Efficient Linear Local Features in the Copy-move Forgery Detection Task (20)

PPT
Performance analysis of bangla speech recognizer model using hmm
Abdullah al Mamun
 
PDF
Lecture-11.pdf
NiharikaThakur32
 
PPTX
Dynamic Music Emotion Recognition Using State-Space Models
multimediaeval
 
PPTX
"Speech recognition" - Hidden Markov Models @ Papers We Love Bucharest
Stefan Adam
 
PDF
assignemts.pdf
ramish32
 
PDF
An evolutionary method for constructing complex SVM kernels
infopapers
 
PDF
Chapter 1_Lect_3 System Modeling_144875f87dacff21abd64f918872013c Copy.pdf
AbdelrahmanOmara4
 
PDF
Maneuvering target track prediction model
IJCI JOURNAL
 
PPTX
UNITIII1 Stereo geometry and vision.pptx
demepa1337
 
PDF
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Alexander Litvinenko
 
PDF
Section6 stochastic
cairo university
 
PDF
NIPS2017 Few-shot Learning and Graph Convolution
Kazuki Fujikawa
 
PDF
Bayesian modelling and computation for Raman spectroscopy
Matt Moores
 
PDF
Image Based Visual Servoing for Omnidirectional Wheeled Mobile Robots in Volt...
International Multispeciality Journal of Health
 
PDF
Da4201691696
IJERA Editor
 
PDF
Machine Setup Time - A Limit Determiner (Tool)
Gan Chun Chet
 
PDF
Numerical Algorithm for a few Special Functions
Amos Tsai
 
PDF
Sparse coding Super-Resolution を用いた核医学画像処理
Yutaka KATAYAMA
 
PPTX
A hybrid sine cosine optimization algorithm for solving global optimization p...
Aboul Ella Hassanien
 
PDF
xldb-2015
Mohitdeep Singh
 
Performance analysis of bangla speech recognizer model using hmm
Abdullah al Mamun
 
Lecture-11.pdf
NiharikaThakur32
 
Dynamic Music Emotion Recognition Using State-Space Models
multimediaeval
 
"Speech recognition" - Hidden Markov Models @ Papers We Love Bucharest
Stefan Adam
 
assignemts.pdf
ramish32
 
An evolutionary method for constructing complex SVM kernels
infopapers
 
Chapter 1_Lect_3 System Modeling_144875f87dacff21abd64f918872013c Copy.pdf
AbdelrahmanOmara4
 
Maneuvering target track prediction model
IJCI JOURNAL
 
UNITIII1 Stereo geometry and vision.pptx
demepa1337
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Alexander Litvinenko
 
Section6 stochastic
cairo university
 
NIPS2017 Few-shot Learning and Graph Convolution
Kazuki Fujikawa
 
Bayesian modelling and computation for Raman spectroscopy
Matt Moores
 
Image Based Visual Servoing for Omnidirectional Wheeled Mobile Robots in Volt...
International Multispeciality Journal of Health
 
Da4201691696
IJERA Editor
 
Machine Setup Time - A Limit Determiner (Tool)
Gan Chun Chet
 
Numerical Algorithm for a few Special Functions
Amos Tsai
 
Sparse coding Super-Resolution を用いた核医学画像処理
Yutaka KATAYAMA
 
A hybrid sine cosine optimization algorithm for solving global optimization p...
Aboul Ella Hassanien
 
xldb-2015
Mohitdeep Singh
 
Ad

More from AIST (20)

PDF
Alexey Mikhaylichenko - Automatic Detection of Bone Contours in X-Ray Images
AIST
 
PDF
Алена Ильина и Иван Бибилов, GoTo - GoTo школы, конкурсы и хакатоны
AIST
 
PDF
Станислав Кралин, Сайтсофт - Связанные открытые данные федеральных органов ис...
AIST
 
PDF
Павел Браславский,Velpas - Velpas: мобильный визуальный поиск
AIST
 
PDF
Евгений Цымбалов, Webgames - Методы машинного обучения для задач игровой анал...
AIST
 
PDF
Александр Москвичев, EveResearch - Алгоритмы анализа данных в маркетинговых и...
AIST
 
PDF
Петр Ермаков, HeadHunter - Модерация резюме: от людей к роботам. Машинное обу...
AIST
 
PPTX
Иосиф Иткин, Exactpro - TBA
AIST
 
PPTX
Nikolay Karpov - Evolvable Semantic Platform for Facilitating Knowledge Exchange
AIST
 
PDF
George Moiseev - Classification of E-commerce Websites by Product Categories
AIST
 
PDF
Elena Bruches - The Hybrid Approach to Part-of-Speech Disambiguation
AIST
 
PDF
Marina Danshina - The methodology of automated decryption of znamenny chants
AIST
 
PDF
Edward Klyshinsky - The Corpus of Syntactic Co-occurences: the First Glance
AIST
 
PPTX
Galina Lavrentyeva - Anti-spoofing Methods for Automatic Speaker Verification...
AIST
 
PDF
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
AIST
 
PDF
Kaytoue Mehdi - Finding duplicate labels in behavioral data: an application f...
AIST
 
PPTX
Valeri Labunets - The bichromatic excitable Schrodinger metamedium
AIST
 
PPTX
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
AIST
 
PDF
Alexander Karkishchenko - Threefold Symmetry Detection in Hexagonal Images Ba...
AIST
 
PPTX
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
AIST
 
Alexey Mikhaylichenko - Automatic Detection of Bone Contours in X-Ray Images
AIST
 
Алена Ильина и Иван Бибилов, GoTo - GoTo школы, конкурсы и хакатоны
AIST
 
Станислав Кралин, Сайтсофт - Связанные открытые данные федеральных органов ис...
AIST
 
Павел Браславский,Velpas - Velpas: мобильный визуальный поиск
AIST
 
Евгений Цымбалов, Webgames - Методы машинного обучения для задач игровой анал...
AIST
 
Александр Москвичев, EveResearch - Алгоритмы анализа данных в маркетинговых и...
AIST
 
Петр Ермаков, HeadHunter - Модерация резюме: от людей к роботам. Машинное обу...
AIST
 
Иосиф Иткин, Exactpro - TBA
AIST
 
Nikolay Karpov - Evolvable Semantic Platform for Facilitating Knowledge Exchange
AIST
 
George Moiseev - Classification of E-commerce Websites by Product Categories
AIST
 
Elena Bruches - The Hybrid Approach to Part-of-Speech Disambiguation
AIST
 
Marina Danshina - The methodology of automated decryption of znamenny chants
AIST
 
Edward Klyshinsky - The Corpus of Syntactic Co-occurences: the First Glance
AIST
 
Galina Lavrentyeva - Anti-spoofing Methods for Automatic Speaker Verification...
AIST
 
Oleksandr Frei and Murat Apishev - Parallel Non-blocking Deterministic Algori...
AIST
 
Kaytoue Mehdi - Finding duplicate labels in behavioral data: an application f...
AIST
 
Valeri Labunets - The bichromatic excitable Schrodinger metamedium
AIST
 
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
AIST
 
Alexander Karkishchenko - Threefold Symmetry Detection in Hexagonal Images Ba...
AIST
 
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
AIST
 
Ad

Recently uploaded (20)

PDF
apidays Munich 2025 - Geospatial Artificial Intelligence (GeoAI) with OGC API...
apidays
 
PPTX
Credit Card Fraud Detection Presentation
rasmilalama
 
PPTX
apidays Munich 2025 - Streamline & Secure LLM Traffic with APISIX AI Gateway ...
apidays
 
PDF
How to Avoid 7 Costly Mainframe Migration Mistakes
JP Infra Pvt Ltd
 
PDF
Basotho Satisfaction with Electricity(Statspack)
KatlehoMefane
 
PPTX
materials that are required to used.pptx
drkaran1421
 
DOCX
Discover the Key Benefits of Implementing Data Mesh Architecture.docx
ajaykumar405166
 
PPTX
apidays Munich 2025 - Federated API Management and Governance, Vince Baker (D...
apidays
 
PPTX
原版定制AIM毕业证(澳大利亚音乐学院毕业证书)成绩单底纹防伪如何办理
Taqyea
 
PDF
MusicVideoProjectRubric Animation production music video.pdf
ALBERTIANCASUGA
 
PDF
apidays Munich 2025 - The life-changing magic of great API docs, Jens Fischer...
apidays
 
PPTX
UPS Case Study - Group 5 with example and implementation .pptx
yasserabdelwahab6
 
PPTX
apidays Munich 2025 - Effectively incorporating API Security into the overall...
apidays
 
PPTX
Enterprise Architecture and TOGAF Presn
starksolutionsindia
 
PPTX
Spark with anjbnn hfkkjn hbkjbu h jhbk.pptx
nreddyjanga
 
PDF
The X-Press God-WPS Office.pdf hdhdhdhdhd
ramifatoh4
 
PPTX
Unified-Framework-for-Enhancing-Federated-Learning-Security-and-Robustness.pptx
suneelsudeepjavali
 
PPTX
This PowerPoint presentation titled "Data Visualization: Turning Data into In...
HemaDivyaKantamaneni
 
PPTX
GEN CHEM ACCURACY AND PRECISION eme.pptx
yeagere932
 
PDF
Introduction to Data Science_Washington_
StarToon1
 
apidays Munich 2025 - Geospatial Artificial Intelligence (GeoAI) with OGC API...
apidays
 
Credit Card Fraud Detection Presentation
rasmilalama
 
apidays Munich 2025 - Streamline & Secure LLM Traffic with APISIX AI Gateway ...
apidays
 
How to Avoid 7 Costly Mainframe Migration Mistakes
JP Infra Pvt Ltd
 
Basotho Satisfaction with Electricity(Statspack)
KatlehoMefane
 
materials that are required to used.pptx
drkaran1421
 
Discover the Key Benefits of Implementing Data Mesh Architecture.docx
ajaykumar405166
 
apidays Munich 2025 - Federated API Management and Governance, Vince Baker (D...
apidays
 
原版定制AIM毕业证(澳大利亚音乐学院毕业证书)成绩单底纹防伪如何办理
Taqyea
 
MusicVideoProjectRubric Animation production music video.pdf
ALBERTIANCASUGA
 
apidays Munich 2025 - The life-changing magic of great API docs, Jens Fischer...
apidays
 
UPS Case Study - Group 5 with example and implementation .pptx
yasserabdelwahab6
 
apidays Munich 2025 - Effectively incorporating API Security into the overall...
apidays
 
Enterprise Architecture and TOGAF Presn
starksolutionsindia
 
Spark with anjbnn hfkkjn hbkjbu h jhbk.pptx
nreddyjanga
 
The X-Press God-WPS Office.pdf hdhdhdhdhd
ramifatoh4
 
Unified-Framework-for-Enhancing-Federated-Learning-Security-and-Robustness.pptx
suneelsudeepjavali
 
This PowerPoint presentation titled "Data Visualization: Turning Data into In...
HemaDivyaKantamaneni
 
GEN CHEM ACCURACY AND PRECISION eme.pptx
yeagere932
 
Introduction to Data Science_Washington_
StarToon1
 

Andrey Kuznetsov and Vladislav Myasnikov - Using Efficient Linear Local Features in the Copy-move Forgery Detection Task