http://kylin.io
Apache Kylin Introduction
韩卿|Luke Han
Sr. Product Manager | lukehan@apache.org | @lukehq
v2015.3
http://kylin.io
Agenda
 What’s Apache Kylin?
 Features & Tech Highlights
 Performance
 Roadmap
 Q & A
http://kylin.io
Extreme OLAP Engine for Big Data
Kylin is an open source Distributed Analytics Engine from eBay
that provides SQL interface and multi-dimensional analysis
(OLAP) on Hadoop supporting extremely large datasets
What’s Kylin
kylin / ˈkiːˈlɪn / 麒麟
--n. (in Chinese art) a mythical animal of composite form
• Open Sourced on Oct 1st, 2014
• Be accepted as Apache Incubator Project on Nov 25th, 2014
http://kylin.io
Big Data Era
 More and more data becoming available on Hadoop
 Limitations in existing Business Intelligence (BI) Tools
 Limited support for Hadoop
 Data size growing exponentially
 High latency of interactive queries
 Scale-Up architecture
 Challenges to adopt Hadoop as interactive analysis system
 Majority of analyst groups are SQL savvy
 No mature SQL interface on Hadoop
 OLAP capability on Hadoop ecosystem not ready yet
http://kylin.io
Business Needs for Big Data Analysis
 Sub-second query latency on billions of rows
 ANSI SQL for both analysts and engineers
 Full OLAP capability to offer advanced functionality
 Seamless Integration with BI Tools
 Support of high cardinality and high dimensions
 High concurrency – thousands of end users
 Distributed and scale out architecture for large data volume
http://kylin.io6
Why not
Build an engine from scratch?
http://kylin.io
Transaction
Operation
Strategy
High Level
Aggregation
•Very High Level, e.g GMV by
site by vertical by weeks
Analysis
Query
•Middle level, e.g GMV by site by vertical,
by category (level x) past 12 weeks
Drill Down
to Detail
•Detail Level (Summary Table)
Low Level
Aggregation
•First Level
Aggragation
Transaction
Level
•Transaction Data
Analytics Query Taxonomy
OLAP
Kylin is designed to accelerate 80+% analytics queries performance on Hadoop
OLTP
http://kylin.io
 Huge volume data
 Table scan
 Big table joins
 Data shuffling
 Analysis on different granularity
 Runtime aggregation expensive
 Map Reduce job
 Batch processing
Technical Challenges
http://kylin.io
OLAP Cube – Balance between Space and Time
time, item
time, item, location
time, item, location, supplier
time item location supplier
time, location
Time, supplier
item, location
item, supplier
location, supplier
time, item, supplier
time, location, supplier
item, location, supplier
0-D(apex) cuboid
1-D cuboids
2-D cuboids
3-D cuboids
4-D(base) cuboid
• Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
1. (9/15, milk, Urbana, Dairy_land) - <time, item, location, supplier>
2. (9/15, milk, Urbana, *) - <time, item, location>
3. (*, milk, Urbana, *) - <item, location>
4. (*, milk, Chicago, *) - <item, location>
5. (*, milk, *, *) - <item>
• Cuboid = one combination of dimensions
• Cube = all combination of dimensions (all cuboids)
http://kylin.io
From Relational to Key-Value
http://kylin.io
Kylin Architecture Overview
11
Cube Build Engine
(MapReduce…)
SQL
Low Latency -
Seconds
Mid Latency - Minutes
Routing
3rd Party App
(Web App, Mobile…)
Metadata
SQL-Based Tool
(BI Tools: Tableau…)
Query Engine
Hadoop
Hive
REST API JDBC/ODBC
 Online Analysis Data Flow
 Offline Data Flow
 Clients/Users interactive with
Kylin via SQL
 OLAP Cube is transparent to
users
Star Schema Data Key Value Data
Data
Cube
OLAP
Cube
(HBase)
SQL
REST Server
http://kylin.io
 Hive
 Input source
 Pre-join star schema during cube building
 MapReduce
 Pre-aggregation metrics during cube building
 HDFS
 Store intermediated files during cube building.
 HBase
 Store data cube.
 Serve query on data cube.
 Coprocessor is used for query processing.
How Does Kylin Utilize Hadoop Components?
http://kylin.io
Agenda
 What’s Apache Kylin?
 Features & Tech Highlights
 Performance
 Roadmap
 Q & A
http://kylin.io
 Extremely Fast OLAP Engine at Scale
Kylin is designed to reduce query latency on Hadoop for 10+ billions of rows of data
 ANSI SQL Interface on Hadoop
Kylin offers ANSI SQL on Hadoop and supports most ANSI SQL query functions
 Seamless Integration with BI Tools
Kylin currently offers integration capability with BI Tools like Tableau.
 Interactive Query Capability
Users can interact with Hadoop data via Kylin at sub-second latency, better than Hive
queries for the same dataset
 MOLAP Cube
User can define a data model and pre-build in Kylin with more than 10+ billions of raw
data records
Features Highlights
http://kylin.io
 Compression and Encoding Support
 Incremental Refresh of Cubes
 Approximate Query Capability for distinct Count (HyperLogLog)
 Leverage HBase Coprocessor for query latency
 Job Management and Monitoring
 Easy Web interface to manage, build, monitor and query cubes
 Security capability to set ACL at Cube/Project Level
 Support LDAP Integration
Features Highlights…
http://kylin.io
Cube Designer
http://kylin.io
Job Management
http://kylin.io
Query and Visualization
http://kylin.io
Tableau Integration
http://kylin.io
Data Modeling
Cube: …
Fact Table: …
Dimensions: …
Measures: …
Storage(HBase): …Fact
Dim Dim
Dim
Source
Star Schema
row A
row B
row C
Column Family
Val 1
Val 2
Val 3
Row Key Column
Target
HBase Storage
Mapping
Cube Metadata
End User Cube Modeler Admin
http://kylin.io
Cube Build Job Flow
http://kylin.io
How To Store Cube? – HBase Schema
http://kylin.io
Query Engine – Kylin Explain Plan
SELECT test_cal_dt.week_beg_dt, test_category.category_name, test_category.lvl2_name, test_category.lvl3_name,
test_kylin_fact.lstg_format_name, test_sites.site_name, SUM(test_kylin_fact.price) AS GMV, COUNT(*) AS TRANS_CNT
FROM test_kylin_fact
LEFT JOIN test_cal_dt ON test_kylin_fact.cal_dt = test_cal_dt.cal_dt
LEFT JOIN test_category ON test_kylin_fact.leaf_categ_id = test_category.leaf_categ_id AND test_kylin_fact.lstg_site_id =
test_category.site_id
LEFT JOIN test_sites ON test_kylin_fact.lstg_site_id = test_sites.site_id
WHERE test_kylin_fact.seller_id = 123456OR test_kylin_fact.lstg_format_name = ’New'
GROUP BY test_cal_dt.week_beg_dt, test_category.category_name, test_category.lvl2_name, test_category.lvl3_name,
test_kylin_fact.lstg_format_name,test_sites.site_name
OLAPToEnumerableConverter
OLAPProjectRel(WEEK_BEG_DT=[$0], category_name=[$1], CATEG_LVL2_NAME=[$2], CATEG_LVL3_NAME=[$3],
LSTG_FORMAT_NAME=[$4], SITE_NAME=[$5], GMV=[CASE(=($7, 0), null, $6)], TRANS_CNT=[$8])
OLAPAggregateRel(group=[{0, 1, 2, 3, 4, 5}], agg#0=[$SUM0($6)], agg#1=[COUNT($6)], TRANS_CNT=[COUNT()])
OLAPProjectRel(WEEK_BEG_DT=[$13], category_name=[$21], CATEG_LVL2_NAME=[$15], CATEG_LVL3_NAME=[$14],
LSTG_FORMAT_NAME=[$5], SITE_NAME=[$23], PRICE=[$0])
OLAPFilterRel(condition=[OR(=($3, 123456), =($5, ’New'))])
OLAPJoinRel(condition=[=($2, $25)], joinType=[left])
OLAPJoinRel(condition=[AND(=($6, $22), =($2, $17))], joinType=[left])
OLAPJoinRel(condition=[=($4, $12)], joinType=[left])
OLAPTableScan(table=[[DEFAULT, TEST_KYLIN_FACT]], fields=[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
OLAPTableScan(table=[[DEFAULT, TEST_CAL_DT]], fields=[[0, 1]])
OLAPTableScan(table=[[DEFAULT, test_category]], fields=[[0, 1, 2, 3, 4, 5, 6, 7, 8]])
OLAPTableScan(table=[[DEFAULT, TEST_SITES]], fields=[[0, 1, 2]])
http://kylin.io
 Full Cube
 Pre-aggregate all dimension combinations
 “Curse of dimensionality”: N dimension cube has 2N cuboid.
 Partial Cube
 To avoid dimension explosion, we divide the dimensions into
different aggregation groups
 2N+M+L  2N + 2M + 2L
 For cube with 30 dimensions, if we divide these dimensions into 3
group, the cuboid number will reduce from 1 Billion to 3 Thousands
 230  210 + 210 + 210
 Tradeoff between online aggregation and offline pre-aggregation
How To Optimize Cube? – Full Cube vs. Partial
Cube
http://kylin.io
How To Optimize Cube? – Partial Cube
http://kylin.io
How To Optimize Cube? – Incremental Building
http://kylin.io
Agenda
 What’s Apache Kylin?
 Features & Tech Highlights
 Performance
 Roadmap
 Q & A
http://kylin.io
Kylin vs. Hive
# Query
Type
Return Dataset Query
On Kylin (s)
Query
On Hive (s)
Comments
1 High Level
Aggregation
4 0.129 157.437 1,217 times
2 Analysis Query 22,669 1.615 109.206 68 times
3 Drill Down to
Detail
325,029 12.058 113.123 9 times
4 Drill Down to
Detail
524,780 22.42 6383.21 278 times
5 Data Dump 972,002 49.054 N/A
0
50
100
150
200
SQL #1 SQL #2 SQL #3
Hive
Kylin
High Level
Aggregatio
n
Analysis
Query
Drill Down
to Detail
Low Level
Aggregatio
n
Transactio
n Level
Based on 12+B records case
http://kylin.io
Performance -- Concurrency
Linear scale out with more nodes
http://kylin.io
Performance - Query Latency
90%tile queries <5s
Green Line: 90%tile queries
Gray Line: 95%tile queries
http://kylin.io
Agenda
 What’s Apache Kylin?
 Features & Tech Highlights
 Performance
 Roadmap
 Q & A
http://kylin.io
Kylin Evolution Roadmap
201520142013
Initial
Prototype
for MOLAP
• Basic end to end
POC
MOLAP
• Incremental
Refresh
• ANSI SQL
• ODBC Driver
• Web GUI
• ACL
• Open Source
HOLAP
• Streaming OLAP
• JDBC Driver
• New UI
• Excel Support
• … more
Next Gen
• Automation
• Capacity
Management
• In-Memory
Analysis (TBD)
• Spark (TBD)
• … more
TBD
Future…
Sep, 2013
Jan, 2014
Sep, 2014
Q1, 2015
http://kylin.io
 Kylin Core
 Fundamental framework of
Kylin OLAP Engine
 Extension
 Plugins to support for
additional functions and
features
 Integration
 Lifecycle Management
Support to integrate with
other applications
 Interface
 Allows for third party users to
build more features via user-
interface atop Kylin core
 Driver
 ODBC and JDBC Drivers
Kylin OLAP
Core
Extension
 Security
 Redis Storage
 Spark Engine
 Docker
Interface
 Web Console
 Customized BI
 Ambari/Hue Plugin
Integration
 ODBC Driver
 ETL
 Drill
 SparkSQL
Kylin Ecosystem
http://kylin.io
 Kylin Site:
 http://kylin.io
 Twitter:
 @ApacheKylin
 Github:
 apache/incubator-kylin
 WeChat (微信)
 ApacheKylin
Open Source
http://kylin.io
If you want to go fast, go alone.
If you want to go far, go together.
--African Proverb

More Related Content

PPTX
Apache Kylin – Cubes on Hadoop
PPTX
Apache kylin 2.0: from classic olap to real-time data warehouse
PDF
고급 클라우드 아키텍처 방법론- 양승도 솔루션즈 아키텍트:: AWS Cloud Track 2 Advanced
PPTX
Design cube in Apache Kylin
PDF
Accelerating Big Data Analytics with Apache Kylin
PPTX
Introduction à la big data V2
PPTX
Apache Kylin on HBase: Extreme OLAP engine for big data
PPTX
Presentation About Big Data (DBMS)
Apache Kylin – Cubes on Hadoop
Apache kylin 2.0: from classic olap to real-time data warehouse
고급 클라우드 아키텍처 방법론- 양승도 솔루션즈 아키텍트:: AWS Cloud Track 2 Advanced
Design cube in Apache Kylin
Accelerating Big Data Analytics with Apache Kylin
Introduction à la big data V2
Apache Kylin on HBase: Extreme OLAP engine for big data
Presentation About Big Data (DBMS)

What's hot (20)

PDF
Apache Kylin - Balance Between Space and Time
PPTX
Apache Ambari: Past, Present, Future
PPTX
The Evolution of Apache Kylin
PDF
Facebook Messages & HBase
PDF
KSQL-ops! Running ksqlDB in the Wild (Simon Aubury, ThoughtWorks) Kafka Summi...
PDF
AWS Enterprise Summit :: 하이브리드 클라우드 인프라를 통한 데이터센터 확장과 마이그레이션 방안 (조성진 매니저)
PDF
Got data?… now what? An introduction to modern data platforms
PPTX
Big data analytics
PDF
Building a Data Lake on AWS
PPTX
Hadoop Tutorial For Beginners
PPTX
Introduction to Data Engineering
PDF
대용량 데이터베이스의 클라우드 네이티브 DB로 전환 시 확인해야 하는 체크 포인트-김지훈, AWS Database Specialist SA...
PPTX
GraphTour 2020 - BT: Use of Graph Database in P2P / P2MP Connectivity for Vid...
PPTX
Apache HBase Performance Tuning
PPTX
Apache HBase™
PPTX
Apache Ranger
PPTX
HBase and HDFS: Understanding FileSystem Usage in HBase
PPTX
AWS - Autoscaling Fundamentals
PPTX
Hadoop Backup and Disaster Recovery
PPTX
Kudu Deep-Dive
Apache Kylin - Balance Between Space and Time
Apache Ambari: Past, Present, Future
The Evolution of Apache Kylin
Facebook Messages & HBase
KSQL-ops! Running ksqlDB in the Wild (Simon Aubury, ThoughtWorks) Kafka Summi...
AWS Enterprise Summit :: 하이브리드 클라우드 인프라를 통한 데이터센터 확장과 마이그레이션 방안 (조성진 매니저)
Got data?… now what? An introduction to modern data platforms
Big data analytics
Building a Data Lake on AWS
Hadoop Tutorial For Beginners
Introduction to Data Engineering
대용량 데이터베이스의 클라우드 네이티브 DB로 전환 시 확인해야 하는 체크 포인트-김지훈, AWS Database Specialist SA...
GraphTour 2020 - BT: Use of Graph Database in P2P / P2MP Connectivity for Vid...
Apache HBase Performance Tuning
Apache HBase™
Apache Ranger
HBase and HDFS: Understanding FileSystem Usage in HBase
AWS - Autoscaling Fundamentals
Hadoop Backup and Disaster Recovery
Kudu Deep-Dive
Ad

Viewers also liked (20)

PPTX
Apache Kylin Extreme OLAP Engine for Big Data
PPTX
Apache Kylin - OLAP Cubes for SQL on Hadoop
PDF
Apache Kylin: OLAP Engine on Hadoop - Tech Deep Dive
PDF
5. Apache Kylin的金融大数据应用场景 - Apache Kylin Meetup @Shanghai
PDF
Apache Kylin Open Source Journey for QCon2015 Beijing
PDF
The Evolution of Apache Kylin by Luke Han
PDF
6. Apache Kylin Roadmap and Community - Apache Kylin Meetup @Shanghai
PPTX
Kylin OLAP Engine Tour
PDF
1. Apache Kylin Deep Dive - Streaming and Plugin Architecture - Apache Kylin ...
PPTX
Apache Kylin Streaming
PPTX
Adding Spark support to Kylin at Bay Area Spark Meetup
PPTX
ТФРВС - весна 2014 - лекция 1
PDF
Sybase BAM Overview
PPTX
Apache Kylin: Hadoop OLAP Engine, 2014 Dec
PPTX
Kylin Engineering Principles
PPTX
Kylin olap part 1- getting started
PDF
The Apache Way - Building Open Source Community in China - Luke Han
PDF
eBay Cloud CMS - QCon 2012 - http://yidb.org/
PDF
Low Latency OLAP with Hadoop and HBase
PPTX
Apache Kylin @ Big Data Europe 2015
Apache Kylin Extreme OLAP Engine for Big Data
Apache Kylin - OLAP Cubes for SQL on Hadoop
Apache Kylin: OLAP Engine on Hadoop - Tech Deep Dive
5. Apache Kylin的金融大数据应用场景 - Apache Kylin Meetup @Shanghai
Apache Kylin Open Source Journey for QCon2015 Beijing
The Evolution of Apache Kylin by Luke Han
6. Apache Kylin Roadmap and Community - Apache Kylin Meetup @Shanghai
Kylin OLAP Engine Tour
1. Apache Kylin Deep Dive - Streaming and Plugin Architecture - Apache Kylin ...
Apache Kylin Streaming
Adding Spark support to Kylin at Bay Area Spark Meetup
ТФРВС - весна 2014 - лекция 1
Sybase BAM Overview
Apache Kylin: Hadoop OLAP Engine, 2014 Dec
Kylin Engineering Principles
Kylin olap part 1- getting started
The Apache Way - Building Open Source Community in China - Luke Han
eBay Cloud CMS - QCon 2012 - http://yidb.org/
Low Latency OLAP with Hadoop and HBase
Apache Kylin @ Big Data Europe 2015
Ad

Similar to Apache Kylin Introduction (20)

PPTX
Apache kylin - Big Data Technology Conference 2014 Beijing
PPTX
HBaseCon 2015: Apache Kylin - Extreme OLAP Engine for Hadoop
PPTX
ApacheKylin_HBaseCon2015
PPTX
Apache kylin (china hadoop summit 2015 shanghai)
PDF
Apache Kylin - Balance between space and time - Hadoop Summit 2015
PDF
Apache kylin boost your SQLs on extremely large dataset
PDF
Apache kylin boost your sqls on extremely large dataset
PDF
Apache Kylin Use Cases in China and Japan
PDF
Apache Kylin and Use Cases - 2018 Big Data Spain
PDF
Cloud-native Semantic Layer on Data Lake
PPTX
HBaseConAsia2018 Track2-2: Apache Kylin on HBase: Extreme OLAP for big data
PPTX
Apache Kylin 1.5 Updates
PPTX
Apache Kylin’s Performance Boost from Apache HBase
PDF
Kylin and Druid Presentation
PDF
Apache Kylin: Speed Up Cubing with Apache Spark with Luke Han and Shaofeng Shi
PPTX
Apache kylin 101 - Get Sub-Second Analytics on Massive Datasets
PPTX
Apache Kylin 101
PDF
Apache Kylin Meetup: Berlin - With OLX Group
PDF
Apache kylin meetup berlin olx v1.0
PPTX
Open Source Technologies in the Analytics Revolution
Apache kylin - Big Data Technology Conference 2014 Beijing
HBaseCon 2015: Apache Kylin - Extreme OLAP Engine for Hadoop
ApacheKylin_HBaseCon2015
Apache kylin (china hadoop summit 2015 shanghai)
Apache Kylin - Balance between space and time - Hadoop Summit 2015
Apache kylin boost your SQLs on extremely large dataset
Apache kylin boost your sqls on extremely large dataset
Apache Kylin Use Cases in China and Japan
Apache Kylin and Use Cases - 2018 Big Data Spain
Cloud-native Semantic Layer on Data Lake
HBaseConAsia2018 Track2-2: Apache Kylin on HBase: Extreme OLAP for big data
Apache Kylin 1.5 Updates
Apache Kylin’s Performance Boost from Apache HBase
Kylin and Druid Presentation
Apache Kylin: Speed Up Cubing with Apache Spark with Luke Han and Shaofeng Shi
Apache kylin 101 - Get Sub-Second Analytics on Massive Datasets
Apache Kylin 101
Apache Kylin Meetup: Berlin - With OLX Group
Apache kylin meetup berlin olx v1.0
Open Source Technologies in the Analytics Revolution

More from Luke Han (6)

PDF
Augmented OLAP for Big Data
PPTX
Refactoring your EDW with Mobile Analytics Products
PPTX
Building Enterprise OLAP on Hadoop for FSI
PDF
3. Apache Tez Introducation - Apache Kylin Meetup @Shanghai
PPTX
4.Building a Data Product using apache Zeppelin - Apache Kylin Meetup @Shanghai
PPTX
Actuate presentation 2011
Augmented OLAP for Big Data
Refactoring your EDW with Mobile Analytics Products
Building Enterprise OLAP on Hadoop for FSI
3. Apache Tez Introducation - Apache Kylin Meetup @Shanghai
4.Building a Data Product using apache Zeppelin - Apache Kylin Meetup @Shanghai
Actuate presentation 2011

Recently uploaded (20)

PDF
CCleaner 6.39.11548 Crack 2025 License Key
PPTX
R-Studio Crack Free Download 2025 Latest
PPTX
Computer Software - Technology and Livelihood Education
PDF
E-Commerce Website Development Companyin india
PPTX
Presentation by Samna Perveen And Subhan Afzal.pptx
PDF
infoteam HELLAS company profile 2025 presentation
PPTX
HackYourBrain__UtrechtJUG__11092025.pptx
PDF
MiniTool Power Data Recovery 12.6 Crack + Portable (Latest Version 2025)
PDF
Practical Indispensable Project Management Tips for Delivering Successful Exp...
PPTX
Full-Stack Developer Courses That Actually Land You Jobs
PPTX
Matchmaking for JVMs: How to Pick the Perfect GC Partner
PPTX
Cybersecurity-and-Fraud-Protecting-Your-Digital-Life.pptx
PDF
Visual explanation of Dijkstra's Algorithm using Python
PDF
Type Class Derivation in Scala 3 - Jose Luis Pintado Barbero
PDF
Sun and Bloombase Spitfire StoreSafe End-to-end Storage Security Solution
PPTX
Viber For Windows 25.7.1 Crack + Serial Keygen
PPTX
Cybersecurity: Protecting the Digital World
PPTX
Python is a high-level, interpreted programming language
PPTX
Bista Solutions Advanced Accounting Package
PPTX
Lecture 5 Software Requirement Engineering
CCleaner 6.39.11548 Crack 2025 License Key
R-Studio Crack Free Download 2025 Latest
Computer Software - Technology and Livelihood Education
E-Commerce Website Development Companyin india
Presentation by Samna Perveen And Subhan Afzal.pptx
infoteam HELLAS company profile 2025 presentation
HackYourBrain__UtrechtJUG__11092025.pptx
MiniTool Power Data Recovery 12.6 Crack + Portable (Latest Version 2025)
Practical Indispensable Project Management Tips for Delivering Successful Exp...
Full-Stack Developer Courses That Actually Land You Jobs
Matchmaking for JVMs: How to Pick the Perfect GC Partner
Cybersecurity-and-Fraud-Protecting-Your-Digital-Life.pptx
Visual explanation of Dijkstra's Algorithm using Python
Type Class Derivation in Scala 3 - Jose Luis Pintado Barbero
Sun and Bloombase Spitfire StoreSafe End-to-end Storage Security Solution
Viber For Windows 25.7.1 Crack + Serial Keygen
Cybersecurity: Protecting the Digital World
Python is a high-level, interpreted programming language
Bista Solutions Advanced Accounting Package
Lecture 5 Software Requirement Engineering

Apache Kylin Introduction