SlideShare a Scribd company logo
Jim Dowling Assoc Prof, KTH
Senior Researcher, RISE SICS
CEO, Logical Clocks AB
SPARK & TENSORFLOW
AS-A-SERVICE
#EUai8
Hops
Newton confirmed what many suspected
• In August 1684, Halley
visited Newton:
“What type of curve does
a planet describe in its
orbit about the sun,
assuming an inverse
square law of attraction?”
2#EUai8
• In June 2017,
Facebook showed
how to reduce training
time on ImageNet for
a Deep CNN from 2
weeks to 1 hour by
scaling out to 256
GPUs.
3#EUai8
https://arxiv.org/abs/1706.02677
Facebook confirmed what many suspected
AI Hierarchy of Needs
5
DDL
(Distributed
Deep Learning)
Deep Learning,
RL, Automated ML
A/B Testing, Experimentation, ML
B.I. Analytics, Metrics, Aggregates,
Features, Training/Test Data
Reliable Data Pipelines, ETL, Unstructured and
Structured Data Storage, Real-Time Data Ingestion
[Adapted from https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007?gi=7e13a696e469 ]
AI Hierarchy of Needs
6
DDL
(Distributed
Deep Learning)
Deep Learning,
RL, Automated ML
A/B Testing, Experimentation, ML
B.I. Analytics, Metrics, Aggregates,
Features, Training/Test Data
Reliable Data Pipelines, ETL, Unstructured and
Structured Data Storage, Real-Time Data Ingestion
[Adapted from https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007?gi=7e13a696e469 ]
Analytics
Prediction
AI Hierarchy of Needs
7
DDL
(Distributed
Deep Learning)
Deep Learning,
RL, Automated ML
A/B Testing, Experimentation, ML
B.I. Analytics, Metrics, Aggregates,
Features, Training/Test Data
Reliable Data Pipelines, ETL, Unstructured and
Structured Data Storage, Real-Time Data Ingestion
Hops
[Adapted from https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007?gi=7e13a696e469 ]
Deep Learning Hierarchy of Scale
8#EUai8
DDL
AllReduce
on GPU Servers
DDL with GPU Servers
and Parameter Servers
Parallel Experiments on GPU Servers
Single GPU
Many GPUs on a Single GPU Server
Days/Hours
Days
Weeks
Minutes
Training Time for ImageNet
Hours
Deep Learning Hierarchy of Scale
9#EUai8
Public
Clouds
On-Premise
Single GPU
Multiple GPUs on a Single GPU Server
DDL
AllReduce
on GPU Servers
DDL with GPU Servers
and Parameter Servers
Single GPU
Many GPUs on a Single GPU Server
Parallel Experiments on GPU Servers
Single Host DL
Distributed DL
DNN Training Time and Researcher Productivity
• Distributed Deep Learning
– Interactive analysis!
– Instant gratification!
• Single Host Deep Learning
– Google-Envy
10
“My Model’s Training.”
Training
What Hardware do you Need?
• SingleRoot PCI
Complex Server*
– 10 Nvidia GTX 1080Ti
• 11 GB Memory
– 256 GB Ram
– 2 Intel Xeon CPUs
– 2x56 Gb Infiniband
15K Euro
• Nvidia DGX-1
– 8 Nvidia Tesla P100/V100
• 16 GB Memory
– 512 GB Ram
– 2 Intel Xeon CPUs
– 4x100 Gb Infiniband
– NVLink**
up to 150K Euro
*https://www.servethehome.com/single-root-or-dual-root-for-deep-learning-gpu-to-gpu-systems
**https://www.microway.com/hpc-tech-tips/comparing-nvlink-vs-pci-e-nvidia-tesla-p100-gpus-openpower-servers/
12#EUai8
SingleRoot
Complex Server
with 10 GPUs
[Images from: https://www.microway.com/product/octoputer-4u-10-gpu-server-single-root-complex/ ]
Tensorflow GAN Training Example*
13#EUai8
*https://www.servethehome.com/deeplearning11-10x-nvidia-gtx-1080-ti-single-root-deep-learning-server-part-1/
Cluster of Commodity GPU Servers
14#EUai8
InfiniBand
Max 1-2 GPU Servers per Rack (2-4 KW per server)
Spark and TF – Cluster Integration
15#EUai8
Training Data and Model Store
Cluster Manager
Single GPU
Experiment
Parallel Experiments
(HyperParam Tuning)
Distributed
Training Job
Deprecated
Mix of commodity GPUs and more
powerful GPUs good for (1) parallel
experiments and (2) distributed training
GPU Resource Requests in Hops
16#EUai8
HopsYARN (Supports GPUs-as-a-Resource)
4 GPUs on any host
10 GPUs on 1 host
100 GPUs on 10 hosts with ‘Infiniband’
20 GPUs on 2 hosts with ‘Infiniband_P100’
Hops
HopsFS
HopsFS: Next Generation HDFS*
17
16x
Throughput
FasterBigger
*https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
**https://eurosys2017.github.io/assets/data/posters/poster09-Niazi.pdf
37x
Number of files
Scale Challenge Winner (2017)
Small Files**
TensorFlow Spark API Integration
• Tight Integration
– Databricks’ Tensorframes and Deep Learning Pipelines
• Loose Integration
– TensorFlow-on-Spark, Hops TfLauncher
• PySpark as a wrapper for TensorFlow
18#EUai8
Deep Learning Pipelines
19#EUai8
graph = tf.Graph() with tf.Session(graph=graph) as sess:
image_arr = utils.imageInputPlaceholder()
frozen_graph = tfx.strip_and_freeze_until(…)
transformer = TFImageTransformer(…)
image_df = readImages("/data/myimages")
processed_image_df = transformer.transform(image_df)
…
select image, driven_by_007(image) as probability from car_examples
order by probability desc limit 6
Inferencing possible with SparkSQL
Hops TfLauncher – TF in Spark
def model_fn(learning_rate, dropout):
import tensorflow as tf
from hops import tensorboard, hdfs, devices
…..
from hops import tflauncher
args_dict = {'learning_rate': [0.001], 'dropout': [0.5]}
tflauncher.launch(spark, model_fn, args_dict)
20
Launch TF jobs as Mappers in Spark
“Pure” TensorFlow code
in the Executor
Hops TfLauncher – Parallel Experiments
21#EUai8
def model_fn(learning_rate, dropout):
…..
from hops import tflauncher
args_dict = {'learning_rate': [0.001, 0.005, 0.01],
'dropout': [0.5, 0.6, 0.7]}
tflauncher.launch(spark, model_fn, args_dict)
Launches 3 Executors with 3 different Hyperparameter
settings. Each Executor can have 1-N GPUs.
New TensorFlow APIs
tf.data.Dataset tf.estimator.Estimator tf.data.Iterator
22#EUai8
def model_fn(features, labels, mode, params):
…
dataset = tf.data.TFRecordDataset([“/v/f1.tfrecord", “/v/f2.tfrecord"])
dataset = dataset.map(...)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
iterator = Iterator.from_dataset(dataset)
….
nn = tf.estimator.Estimator(model_fn=model_fn, params=dict_hyp_params)
Prefer over RDDs-to-feed_dict
Distributed TensorFlow
• AllReduce
– Horovod by Uber with MPI/NCCL
– Baidu AllReduce/MPI in TensorFlow/contrib
• Distributed Parameter Servers
– TensorFlow-on-Spark
– Distributed TensorFlow
23#EUai8
DDL
AllReduce
on GPU Servers
DDL with GPU Servers
and Parameter Servers
Asynchronous SGD vs Synchronous SGD
• Synchronous Stochastic Gradient Descent (SGD) now dominant,
due to improved convergence guarantees:
– “Revisiting Synchronous SGD”, Chen et al, ICLR 2016
https://research.google.com/pubs/pub45187.html
24
Distributed TF with Parameter Servers
25
Synchronous SGD
with Data Parallelism
Tensorflow-on-Spark (Yahoo!)
• Rewrite TensorFlow apps to Distributed TensorFlow
• Two modes:
1. feed_dict: RDD.mapPartitions()
2. TFReader + queue_runner: direct HDFS access from Tensorflow
26[Image from https://www.slideshare.net/Hadoop_Summit/tensorflowonspark-scalable-tensorflow-learning-on-spark-clusters]
TFonSpark with Spark Streaming
27#EUai8
[Image from https://www.slideshare.net/Hadoop_Summit/tensorflowonspark-scalable-tensorflow-learning-on-spark-clusters]
All-Reduce/MPI
28
GPU 0
GPU 1
GPU 2
GPU 3
send
send
send
send
recv
recv
recv
recv
AllReduce: Minimize Inter-Host B/W
29
Only one slow
worker or comms
link is needed to
bottleneck DNN
training time.
AllReduce Algorithm
• AllReduce sums all Gradients in N Layers (L1..LN)
using N GPUs in parallel (simplified steps shown).
GPU 0
GPU 1
GPU 2
GPU 3
L1 L2 L3 L4
L1 L2 L3 L4
L1 L2 L3 L4
L1 L2 L3 L4
Backprop
AllReduce Algorithm
GPU 0
GPU 1
GPU 2
GPU 3
L10+L11+L12+L13 L2 L3 L4
Backprop
L10+L11+L12+L13 L2 L3 L4
L10+L11+L12+L13 L2 L3 L4
L10+L11+L12+L13 L2 L3 L4
• Aggregate Gradients from the first layer (L1) while
sending Gradients for L2
AllReduce Algorithm
GPU 0
GPU 1
GPU 2
GPU 3
Backprop
L10+L11+L12+L13 L20+L21+L22+L23 L3 L4
L10+L11+L12+L13 L20+L21+L22+L23 L3 L4
L10+L11+L12+L13 L20+L21+L22+L23 L3 L4
L10+L11+L12+L13 L20+L21+L22+L23 L3 L4
• Broadcast Gradients from higher layers while
computing Gradients at lower layers.
AllReduce Algorithm
GPU 0
GPU 1
GPU 2
GPU 3
Backprop
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4
• Nearly there.
AllReduce Algorithm
GPU 0
GPU 1
GPU 2
GPU 3
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43
L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43
• Finished an iteration.
Hops AllReduce/Horovod/TensorFlow
35#EUai8
import horovod.tensorflow as hvd
def conv_model(feature, target, mode)
…..
def main(_):
hvd.init()
opt = hvd.DistributedOptimizer(opt)
if hvd.local_rank()==0:
hooks = [hvd.BroadcastGlobalVariablesHook(0), ..]
…..
else:
hooks = [hvd.BroadcastGlobalVariablesHook(0), ..]
…..
from hops import allreduce
allreduce.launch(spark, 'hdfs:///Projects/…/all_reduce.ipynb')
“Pure” TensorFlow code
Parameter Server vs AllReduce (Uber)*
36
*https://github.com/uber/horovod
Setup: 16 servers with 4 P100 GPUs each connected by 40 Gbit/s network (synthetic data).
VGG
model
is larger
Dist. Synchnrous SGD: N/W is the Bottleneck
37
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
1 2 3 4 5 6 7 8 9 10
1 GPU 4 GPUs
N/W N/W N/W N/W N/W
Amount
Work
Time
Reduce N/W Comms Time, Increase Computation Time
Amdahl’s Law
Hopsworks:Tensorflow/Spark-as-a-Service
38#EUai8
Hopsworks: Full AI Hierarchy of Needs
39
Develop Train Test Deploy
MySQL Cluster
Hive
InfluxDB
ElasticSearch
KafkaProjects,Datasets,Users
HopsFS / YARN
Spark, Flink, Tensorflow
Jupyter, Zeppelin
Jobs, Kibana, Grafana
REST
API
Hopsworks
Proj-42
Hopsworks Abstractions
40
A Project is a Grouping of Users and Data
Proj-X
Shared TopicTopic /Projs/My/Data
Proj-AllCompanyDB
Ismail et al, Hopsworks: Improving User Experience and Development on Hadoop with Scalable, Strongly Consistent Metadata, ICDCS 2017
Per-Project Conda Libs in Hopsworks
41#EUai8
Dela*
42
Peer-to-Peer Search and Download for Huge DataSets
(ImageNet, YouTube8M, MsCoCo, Reddit, etc)
*http://ieeexplore.ieee.org/document/7980225/ (ICDCS 2017)
DEMO
43#EUai8
Register and Play for today:
http://spark.hops.site
Conclusions
• Many good frameworks for TF and Spark
– TensorFlowOnSpark, Deep Learning Pipelines
• Hopsworks support for TF and Spark
– GPUs-as-a-Resource in HopsYARN
– TfLauncher, TensorFlow-on-Spark, Horovod
– Jupyter with Conda Support
• More on GPU-Servers at www.logicalclocks.com
44#EUai8
Jim Dowling, Seif Haridi, Gautier Berthou, Salman Niazi, Mahmoud
Ismail, Theofilos Kakantousis, Ermias Gebremeskel, Antonios
Kouzoupis, Alex Ormenisan, Fabio Buso, Robin Andersso,n August
Bonds, Filotas Siskos, Mahmoud Hamed.
Active:
Alumni:
Roberto Bampi, ArunaKumari Yedurupaka, Tobias Johansson, Fanti Machmount Al Samisti,
Braulio Grana, Adam Alpire, Zahin Azher Rashid, Vasileios Giannokostas, Johan Svedlund
Nordström,Rizvi Hasan, Paul Mälzer, Bram Leenders, Juan Roca, Misganu Dessalegn, K “Sri”
Srijeyanthan, Jude D’Souza, Alberto Lorente, Andre Moré, Ali Gholami, Davis Jaunzems, Stig
Viaene, Hooman Peiro, Evangelos Savvidis, Steffen Grohsschmiedt, Qi Qi, Gayana
Chandrasekara, Nikolaos Stanogias, Daniel Bali, Ioannis Kerkinos, Peter Buechler, Pushparaj
Motamari, Hamid Afzali, Wasif Malik, Lalith Suresh, Mariano Valles, Ying Lieu.
Please Follow Us!
@hopshadoop
Hops Heads
Please Star Us!
http://github.com/
hopshadoop/hopsworks

More Related Content

What's hot (20)

PDF
[Spark Summit EU 2017] Apache spark streaming + kafka 0.10 an integration story
Joan Viladrosa Riera
 
PDF
Optimal Strategies for Large Scale Batch ETL Jobs with Emma Tang
Databricks
 
PPTX
Tuning and Monitoring Deep Learning on Apache Spark
Databricks
 
PDF
High Performance Python on Apache Spark
Wes McKinney
 
PDF
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Jen Aman
 
PDF
Spark Summit EU talk by Jorg Schad
Spark Summit
 
PDF
Memory Management in Apache Spark
Databricks
 
PDF
GPU Computing With Apache Spark And Python
Jen Aman
 
PDF
Reactive Streams, Linking Reactive Application To Spark Streaming
Spark Summit
 
PDF
Leveraging GPU-Accelerated Analytics on top of Apache Spark with Todd Mostak
Databricks
 
PDF
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Databricks
 
PDF
GPU Support In Spark And GPU/CPU Mixed Resource Scheduling At Production Scale
Spark Summit
 
PDF
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Spark Summit
 
PDF
Building a Business Logic Translation Engine with Spark Streaming for Communi...
Spark Summit
 
PDF
Elasticsearch And Apache Lucene For Apache Spark And MLlib
Jen Aman
 
PDF
Spark Summit EU talk by Steve Loughran
Spark Summit
 
PDF
Monitorama 2015 Netflix Instance Analysis
Brendan Gregg
 
PDF
Beyond unit tests: Testing for Spark/Hadoop Workflows with Shankar Manian Ana...
Spark Summit
 
PDF
Opaque: A Data Analytics Platform with Strong Security: Spark Summit East tal...
Spark Summit
 
PDF
Managing Apache Spark Workload and Automatic Optimizing
Databricks
 
[Spark Summit EU 2017] Apache spark streaming + kafka 0.10 an integration story
Joan Viladrosa Riera
 
Optimal Strategies for Large Scale Batch ETL Jobs with Emma Tang
Databricks
 
Tuning and Monitoring Deep Learning on Apache Spark
Databricks
 
High Performance Python on Apache Spark
Wes McKinney
 
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Jen Aman
 
Spark Summit EU talk by Jorg Schad
Spark Summit
 
Memory Management in Apache Spark
Databricks
 
GPU Computing With Apache Spark And Python
Jen Aman
 
Reactive Streams, Linking Reactive Application To Spark Streaming
Spark Summit
 
Leveraging GPU-Accelerated Analytics on top of Apache Spark with Todd Mostak
Databricks
 
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Databricks
 
GPU Support In Spark And GPU/CPU Mixed Resource Scheduling At Production Scale
Spark Summit
 
Fault Tolerance in Spark: Lessons Learned from Production: Spark Summit East ...
Spark Summit
 
Building a Business Logic Translation Engine with Spark Streaming for Communi...
Spark Summit
 
Elasticsearch And Apache Lucene For Apache Spark And MLlib
Jen Aman
 
Spark Summit EU talk by Steve Loughran
Spark Summit
 
Monitorama 2015 Netflix Instance Analysis
Brendan Gregg
 
Beyond unit tests: Testing for Spark/Hadoop Workflows with Shankar Manian Ana...
Spark Summit
 
Opaque: A Data Analytics Platform with Strong Security: Spark Summit East tal...
Spark Summit
 
Managing Apache Spark Workload and Automatic Optimizing
Databricks
 

Similar to Apache Spark and Tensorflow as a Service with Jim Dowling (20)

PDF
Scaling TensorFlow with Hops, Global AI Conference Santa Clara
Jim Dowling
 
PDF
Odsc workshop - Distributed Tensorflow on Hops
Jim Dowling
 
PDF
Vertex Perspectives | AI Optimized Chipsets | Part II
Vertex Holdings
 
PDF
Deep Dive on Deep Learning (June 2018)
Julien SIMON
 
PPTX
Innovation with ai at scale on the edge vt sept 2019 v0
Ganesan Narayanasamy
 
PPTX
Explore Deep Learning Architecture using Tensorflow 2.0 now! Part 2
Tyrone Systems
 
PPTX
GPU and Deep learning best practices
Lior Sidi
 
PDF
Netflix machine learning
Amer Ather
 
PPTX
TensorFrames: Google Tensorflow on Apache Spark
Databricks
 
PDF
1605.08695.pdf
mohammadA42
 
PDF
Invited Lecture on GPUs and Distributed Deep Learning at Uppsala University
Jim Dowling
 
PDF
AI and Deep Learning
Subrat Panda, PhD
 
PDF
Austin,TX Meetup presentation tensorflow final oct 26 2017
Clarisse Hedglin
 
PPTX
AI on the Edge
Jared Rhodes
 
PDF
Distributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Databricks
 
PDF
TECHNICAL OVERVIEW NVIDIA DEEP LEARNING PLATFORM Giant Leaps in Performance ...
Willy Marroquin (WillyDevNET)
 
PPTX
Machine learning and Deep learning on edge devices using TensorFlow
Aditya Bhattacharya
 
PPTX
Deep Learning with Spark and GPUs
DataWorks Summit
 
PDF
Toward Distributed, Global, Deep Learning Using IoT Devices
Bharath Sudharsan
 
PPT
Enabling a hardware accelerated deep learning data science experience for Apa...
DataWorks Summit
 
Scaling TensorFlow with Hops, Global AI Conference Santa Clara
Jim Dowling
 
Odsc workshop - Distributed Tensorflow on Hops
Jim Dowling
 
Vertex Perspectives | AI Optimized Chipsets | Part II
Vertex Holdings
 
Deep Dive on Deep Learning (June 2018)
Julien SIMON
 
Innovation with ai at scale on the edge vt sept 2019 v0
Ganesan Narayanasamy
 
Explore Deep Learning Architecture using Tensorflow 2.0 now! Part 2
Tyrone Systems
 
GPU and Deep learning best practices
Lior Sidi
 
Netflix machine learning
Amer Ather
 
TensorFrames: Google Tensorflow on Apache Spark
Databricks
 
1605.08695.pdf
mohammadA42
 
Invited Lecture on GPUs and Distributed Deep Learning at Uppsala University
Jim Dowling
 
AI and Deep Learning
Subrat Panda, PhD
 
Austin,TX Meetup presentation tensorflow final oct 26 2017
Clarisse Hedglin
 
AI on the Edge
Jared Rhodes
 
Distributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Databricks
 
TECHNICAL OVERVIEW NVIDIA DEEP LEARNING PLATFORM Giant Leaps in Performance ...
Willy Marroquin (WillyDevNET)
 
Machine learning and Deep learning on edge devices using TensorFlow
Aditya Bhattacharya
 
Deep Learning with Spark and GPUs
DataWorks Summit
 
Toward Distributed, Global, Deep Learning Using IoT Devices
Bharath Sudharsan
 
Enabling a hardware accelerated deep learning data science experience for Apa...
DataWorks Summit
 
Ad

More from Spark Summit (20)

PDF
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
PDF
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
PDF
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
PDF
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
PDF
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
PDF
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
PDF
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
PDF
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
PDF
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
PDF
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
PDF
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
PDF
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
PDF
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
PDF
Goal Based Data Production with Sim Simeonov
Spark Summit
 
PDF
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
PDF
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
PDF
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
PDF
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
PDF
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Spark Summit
 
PDF
Variant-Apache Spark for Bioinformatics with Piotr Szul
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Spark Summit
 
Variant-Apache Spark for Bioinformatics with Piotr Szul
Spark Summit
 
Ad

Recently uploaded (20)

PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PDF
Avatar for apidays apidays PRO June 07, 2025 0 5 apidays Helsinki & North 2...
apidays
 
PDF
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
PPTX
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PDF
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
PPTX
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
PPTX
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
PDF
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
PDF
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PPTX
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
PPTX
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PDF
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
PDF
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Avatar for apidays apidays PRO June 07, 2025 0 5 apidays Helsinki & North 2...
apidays
 
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
apidays Helsinki & North 2025 - REST in Peace? Hunting the Dominant Design fo...
apidays
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 

Apache Spark and Tensorflow as a Service with Jim Dowling

  • 1. Jim Dowling Assoc Prof, KTH Senior Researcher, RISE SICS CEO, Logical Clocks AB SPARK & TENSORFLOW AS-A-SERVICE #EUai8 Hops
  • 2. Newton confirmed what many suspected • In August 1684, Halley visited Newton: “What type of curve does a planet describe in its orbit about the sun, assuming an inverse square law of attraction?” 2#EUai8
  • 3. • In June 2017, Facebook showed how to reduce training time on ImageNet for a Deep CNN from 2 weeks to 1 hour by scaling out to 256 GPUs. 3#EUai8 https://arxiv.org/abs/1706.02677 Facebook confirmed what many suspected
  • 4. AI Hierarchy of Needs 5 DDL (Distributed Deep Learning) Deep Learning, RL, Automated ML A/B Testing, Experimentation, ML B.I. Analytics, Metrics, Aggregates, Features, Training/Test Data Reliable Data Pipelines, ETL, Unstructured and Structured Data Storage, Real-Time Data Ingestion [Adapted from https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007?gi=7e13a696e469 ]
  • 5. AI Hierarchy of Needs 6 DDL (Distributed Deep Learning) Deep Learning, RL, Automated ML A/B Testing, Experimentation, ML B.I. Analytics, Metrics, Aggregates, Features, Training/Test Data Reliable Data Pipelines, ETL, Unstructured and Structured Data Storage, Real-Time Data Ingestion [Adapted from https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007?gi=7e13a696e469 ] Analytics Prediction
  • 6. AI Hierarchy of Needs 7 DDL (Distributed Deep Learning) Deep Learning, RL, Automated ML A/B Testing, Experimentation, ML B.I. Analytics, Metrics, Aggregates, Features, Training/Test Data Reliable Data Pipelines, ETL, Unstructured and Structured Data Storage, Real-Time Data Ingestion Hops [Adapted from https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007?gi=7e13a696e469 ]
  • 7. Deep Learning Hierarchy of Scale 8#EUai8 DDL AllReduce on GPU Servers DDL with GPU Servers and Parameter Servers Parallel Experiments on GPU Servers Single GPU Many GPUs on a Single GPU Server Days/Hours Days Weeks Minutes Training Time for ImageNet Hours
  • 8. Deep Learning Hierarchy of Scale 9#EUai8 Public Clouds On-Premise Single GPU Multiple GPUs on a Single GPU Server DDL AllReduce on GPU Servers DDL with GPU Servers and Parameter Servers Single GPU Many GPUs on a Single GPU Server Parallel Experiments on GPU Servers Single Host DL Distributed DL
  • 9. DNN Training Time and Researcher Productivity • Distributed Deep Learning – Interactive analysis! – Instant gratification! • Single Host Deep Learning – Google-Envy 10 “My Model’s Training.” Training
  • 10. What Hardware do you Need? • SingleRoot PCI Complex Server* – 10 Nvidia GTX 1080Ti • 11 GB Memory – 256 GB Ram – 2 Intel Xeon CPUs – 2x56 Gb Infiniband 15K Euro • Nvidia DGX-1 – 8 Nvidia Tesla P100/V100 • 16 GB Memory – 512 GB Ram – 2 Intel Xeon CPUs – 4x100 Gb Infiniband – NVLink** up to 150K Euro *https://www.servethehome.com/single-root-or-dual-root-for-deep-learning-gpu-to-gpu-systems **https://www.microway.com/hpc-tech-tips/comparing-nvlink-vs-pci-e-nvidia-tesla-p100-gpus-openpower-servers/
  • 11. 12#EUai8 SingleRoot Complex Server with 10 GPUs [Images from: https://www.microway.com/product/octoputer-4u-10-gpu-server-single-root-complex/ ]
  • 12. Tensorflow GAN Training Example* 13#EUai8 *https://www.servethehome.com/deeplearning11-10x-nvidia-gtx-1080-ti-single-root-deep-learning-server-part-1/
  • 13. Cluster of Commodity GPU Servers 14#EUai8 InfiniBand Max 1-2 GPU Servers per Rack (2-4 KW per server)
  • 14. Spark and TF – Cluster Integration 15#EUai8 Training Data and Model Store Cluster Manager Single GPU Experiment Parallel Experiments (HyperParam Tuning) Distributed Training Job Deprecated Mix of commodity GPUs and more powerful GPUs good for (1) parallel experiments and (2) distributed training
  • 15. GPU Resource Requests in Hops 16#EUai8 HopsYARN (Supports GPUs-as-a-Resource) 4 GPUs on any host 10 GPUs on 1 host 100 GPUs on 10 hosts with ‘Infiniband’ 20 GPUs on 2 hosts with ‘Infiniband_P100’ Hops HopsFS
  • 16. HopsFS: Next Generation HDFS* 17 16x Throughput FasterBigger *https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi **https://eurosys2017.github.io/assets/data/posters/poster09-Niazi.pdf 37x Number of files Scale Challenge Winner (2017) Small Files**
  • 17. TensorFlow Spark API Integration • Tight Integration – Databricks’ Tensorframes and Deep Learning Pipelines • Loose Integration – TensorFlow-on-Spark, Hops TfLauncher • PySpark as a wrapper for TensorFlow 18#EUai8
  • 18. Deep Learning Pipelines 19#EUai8 graph = tf.Graph() with tf.Session(graph=graph) as sess: image_arr = utils.imageInputPlaceholder() frozen_graph = tfx.strip_and_freeze_until(…) transformer = TFImageTransformer(…) image_df = readImages("/data/myimages") processed_image_df = transformer.transform(image_df) … select image, driven_by_007(image) as probability from car_examples order by probability desc limit 6 Inferencing possible with SparkSQL
  • 19. Hops TfLauncher – TF in Spark def model_fn(learning_rate, dropout): import tensorflow as tf from hops import tensorboard, hdfs, devices ….. from hops import tflauncher args_dict = {'learning_rate': [0.001], 'dropout': [0.5]} tflauncher.launch(spark, model_fn, args_dict) 20 Launch TF jobs as Mappers in Spark “Pure” TensorFlow code in the Executor
  • 20. Hops TfLauncher – Parallel Experiments 21#EUai8 def model_fn(learning_rate, dropout): ….. from hops import tflauncher args_dict = {'learning_rate': [0.001, 0.005, 0.01], 'dropout': [0.5, 0.6, 0.7]} tflauncher.launch(spark, model_fn, args_dict) Launches 3 Executors with 3 different Hyperparameter settings. Each Executor can have 1-N GPUs.
  • 21. New TensorFlow APIs tf.data.Dataset tf.estimator.Estimator tf.data.Iterator 22#EUai8 def model_fn(features, labels, mode, params): … dataset = tf.data.TFRecordDataset([“/v/f1.tfrecord", “/v/f2.tfrecord"]) dataset = dataset.map(...) dataset = dataset.shuffle(buffer_size=10000) dataset = dataset.batch(32) iterator = Iterator.from_dataset(dataset) …. nn = tf.estimator.Estimator(model_fn=model_fn, params=dict_hyp_params) Prefer over RDDs-to-feed_dict
  • 22. Distributed TensorFlow • AllReduce – Horovod by Uber with MPI/NCCL – Baidu AllReduce/MPI in TensorFlow/contrib • Distributed Parameter Servers – TensorFlow-on-Spark – Distributed TensorFlow 23#EUai8 DDL AllReduce on GPU Servers DDL with GPU Servers and Parameter Servers
  • 23. Asynchronous SGD vs Synchronous SGD • Synchronous Stochastic Gradient Descent (SGD) now dominant, due to improved convergence guarantees: – “Revisiting Synchronous SGD”, Chen et al, ICLR 2016 https://research.google.com/pubs/pub45187.html 24
  • 24. Distributed TF with Parameter Servers 25 Synchronous SGD with Data Parallelism
  • 25. Tensorflow-on-Spark (Yahoo!) • Rewrite TensorFlow apps to Distributed TensorFlow • Two modes: 1. feed_dict: RDD.mapPartitions() 2. TFReader + queue_runner: direct HDFS access from Tensorflow 26[Image from https://www.slideshare.net/Hadoop_Summit/tensorflowonspark-scalable-tensorflow-learning-on-spark-clusters]
  • 26. TFonSpark with Spark Streaming 27#EUai8 [Image from https://www.slideshare.net/Hadoop_Summit/tensorflowonspark-scalable-tensorflow-learning-on-spark-clusters]
  • 27. All-Reduce/MPI 28 GPU 0 GPU 1 GPU 2 GPU 3 send send send send recv recv recv recv
  • 28. AllReduce: Minimize Inter-Host B/W 29 Only one slow worker or comms link is needed to bottleneck DNN training time.
  • 29. AllReduce Algorithm • AllReduce sums all Gradients in N Layers (L1..LN) using N GPUs in parallel (simplified steps shown). GPU 0 GPU 1 GPU 2 GPU 3 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 Backprop
  • 30. AllReduce Algorithm GPU 0 GPU 1 GPU 2 GPU 3 L10+L11+L12+L13 L2 L3 L4 Backprop L10+L11+L12+L13 L2 L3 L4 L10+L11+L12+L13 L2 L3 L4 L10+L11+L12+L13 L2 L3 L4 • Aggregate Gradients from the first layer (L1) while sending Gradients for L2
  • 31. AllReduce Algorithm GPU 0 GPU 1 GPU 2 GPU 3 Backprop L10+L11+L12+L13 L20+L21+L22+L23 L3 L4 L10+L11+L12+L13 L20+L21+L22+L23 L3 L4 L10+L11+L12+L13 L20+L21+L22+L23 L3 L4 L10+L11+L12+L13 L20+L21+L22+L23 L3 L4 • Broadcast Gradients from higher layers while computing Gradients at lower layers.
  • 32. AllReduce Algorithm GPU 0 GPU 1 GPU 2 GPU 3 Backprop L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L4 • Nearly there.
  • 33. AllReduce Algorithm GPU 0 GPU 1 GPU 2 GPU 3 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43 L10+L11+L12+L13 L20+L21+L22+L23 L30+L31+L32+L33 L40+L41+L42+L43 • Finished an iteration.
  • 34. Hops AllReduce/Horovod/TensorFlow 35#EUai8 import horovod.tensorflow as hvd def conv_model(feature, target, mode) ….. def main(_): hvd.init() opt = hvd.DistributedOptimizer(opt) if hvd.local_rank()==0: hooks = [hvd.BroadcastGlobalVariablesHook(0), ..] ….. else: hooks = [hvd.BroadcastGlobalVariablesHook(0), ..] ….. from hops import allreduce allreduce.launch(spark, 'hdfs:///Projects/…/all_reduce.ipynb') “Pure” TensorFlow code
  • 35. Parameter Server vs AllReduce (Uber)* 36 *https://github.com/uber/horovod Setup: 16 servers with 4 P100 GPUs each connected by 40 Gbit/s network (synthetic data). VGG model is larger
  • 36. Dist. Synchnrous SGD: N/W is the Bottleneck 37 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 1 2 3 4 5 6 7 8 9 10 1 GPU 4 GPUs N/W N/W N/W N/W N/W Amount Work Time Reduce N/W Comms Time, Increase Computation Time Amdahl’s Law
  • 38. Hopsworks: Full AI Hierarchy of Needs 39 Develop Train Test Deploy MySQL Cluster Hive InfluxDB ElasticSearch KafkaProjects,Datasets,Users HopsFS / YARN Spark, Flink, Tensorflow Jupyter, Zeppelin Jobs, Kibana, Grafana REST API Hopsworks
  • 39. Proj-42 Hopsworks Abstractions 40 A Project is a Grouping of Users and Data Proj-X Shared TopicTopic /Projs/My/Data Proj-AllCompanyDB Ismail et al, Hopsworks: Improving User Experience and Development on Hadoop with Scalable, Strongly Consistent Metadata, ICDCS 2017
  • 40. Per-Project Conda Libs in Hopsworks 41#EUai8
  • 41. Dela* 42 Peer-to-Peer Search and Download for Huge DataSets (ImageNet, YouTube8M, MsCoCo, Reddit, etc) *http://ieeexplore.ieee.org/document/7980225/ (ICDCS 2017)
  • 42. DEMO 43#EUai8 Register and Play for today: http://spark.hops.site
  • 43. Conclusions • Many good frameworks for TF and Spark – TensorFlowOnSpark, Deep Learning Pipelines • Hopsworks support for TF and Spark – GPUs-as-a-Resource in HopsYARN – TfLauncher, TensorFlow-on-Spark, Horovod – Jupyter with Conda Support • More on GPU-Servers at www.logicalclocks.com 44#EUai8
  • 44. Jim Dowling, Seif Haridi, Gautier Berthou, Salman Niazi, Mahmoud Ismail, Theofilos Kakantousis, Ermias Gebremeskel, Antonios Kouzoupis, Alex Ormenisan, Fabio Buso, Robin Andersso,n August Bonds, Filotas Siskos, Mahmoud Hamed. Active: Alumni: Roberto Bampi, ArunaKumari Yedurupaka, Tobias Johansson, Fanti Machmount Al Samisti, Braulio Grana, Adam Alpire, Zahin Azher Rashid, Vasileios Giannokostas, Johan Svedlund Nordström,Rizvi Hasan, Paul Mälzer, Bram Leenders, Juan Roca, Misganu Dessalegn, K “Sri” Srijeyanthan, Jude D’Souza, Alberto Lorente, Andre Moré, Ali Gholami, Davis Jaunzems, Stig Viaene, Hooman Peiro, Evangelos Savvidis, Steffen Grohsschmiedt, Qi Qi, Gayana Chandrasekara, Nikolaos Stanogias, Daniel Bali, Ioannis Kerkinos, Peter Buechler, Pushparaj Motamari, Hamid Afzali, Wasif Malik, Lalith Suresh, Mariano Valles, Ying Lieu. Please Follow Us! @hopshadoop Hops Heads Please Star Us! http://github.com/ hopshadoop/hopsworks