This document discusses architecting a data lake. It begins by introducing the speaker and topic. It then defines a data lake as a repository that stores enterprise data in its raw format including structured, semi-structured, and unstructured data. The document outlines some key aspects to consider when architecting a data lake such as design, security, data movement, processing, and discovery. It provides an example design and discusses solutions from vendors like AWS, Azure, and GCP. Finally, it includes an example implementation using Azure services for an IoT project that predicts parts failures in trucks.