SlideShare a Scribd company logo
[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기
AWS IoT와 SageMaker를 활용한
예지 정비의 구현하기
권신중 솔루션즈아키텍트
최원근 솔루션즈아키텍트
이종화 솔루션즈아키텍트
송규호 솔루션즈아키텍트
김영진 솔루션즈아키텍트
김민성 솔루션즈아키텍트
현륜식 솔루션즈아키텍트
김준형 솔루션즈아키텍트
Workshop Architecture
Workshop Architecture
Workshop Architecture
Local
Inferencing
Inferencing
결과 전송
AWS Greengrass는 AWS Cloud를 Edge로 확장합니다.
IoT 디바이스에서 발생하는 데이터는 로컬에서 처리하고
데이터 관리, 분석, 저장은 AWS Cloud에서 처리합니다.
Data processed
in the cloud
Data processed
locally
AWS 클라우드 기능을 엣지까지 확장
AWS Greengrass
Features
AWS Greengrass
데이터와 상태
동기화
보안 Over-the-air
updates
프로토콜 어뎁터Local
actions
로컬 메시지
브로커
머신러닝
유추
로컬 리소스 억세스
Local
device shadows
Lambda
functions
Local
message broker
High-quality
AWS
security
Easily update AWS
Greengrass core
Local execution
of ML models
Lambda interacts with
peripherals
Easy integrations
with local protocols
ʥ
A
AWS IoT Analytics 는 대규모 IoT 데이터에 대한 정교한 분석을
손쉽게 실행 및 운용할 수 있게 해주는 완전관리형 서비스 입니다.
디바이스 데이터에서 가치를 창출
AWS IoT Analytics
IoT data는 잡음과
상당한 격차 및
잘못읽은 경우가 많음
이 데이터를 필터, 처리,
변환 및 보강
임시 쿼리 또는 정교한 IoT 분석 및
시각화
Raw 데이터를
저장하고 데이터 처리
수행
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0
1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0
1 0
ENRICHMENT
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1
0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0
0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0101001101001 1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 01 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
0101001010
101001
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
AWS IoT Analytics
AWS IoT Analytics에서의 데이터 흐름
AWS IoT Analytics
Collect AnalyzeStore Visualize
저장하고
분석하고 싶은
데이터만 수집
Raw 데이터를
의미있는
데이터로 변환
디바이스 데이터
분석을 위해 시계열로
저장되는 데이터
스토어에 저장
빌트인 된 IoT 분석 SQL
쿼리 엔진 혹은 Jupyter
Notebook으로 데이터셋
분석
IoT 데이터셋을
빠르게
시각화하여 분석
Process
Channels DatasetsPipelines Data stores Jupyter
Notebooks
AWS IoT Analytics에서의 데이터 흐름
Amazon SageMaker:
Build, Train, and Deploy ML Models at Scale
1
2
3
Jupyter Notebook
ML HOL overview
Classification using Mxnet and
Gluon by
HasAnomaly label
Load data & Preprocessing - normalization
Divide dataset to Training & Test – 8:2
Build Neural network
Training model
Prediction
Make Inference
[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기
Native distributed training supported
Supports distributed training on multiple CPU/GPU machines to take advantage of cloud scale
Flexible programming model
Supports both imperative and symbolic programming maximizing efficiency and productivity
Portable from the cloud to the client
Runs on CPUs or GPUs, on clusters, servers, desktops, or mobile phones
Multi-lingual | No need to learn a new language
Python, R, Scala, Julia, C++, Matlab, or Javascript
Performance 0ptimized
Optimized C++ backend engine parallelizes both I/O regardless of source language
Introducing Gluon
Simple, easy-to-
understand code
Flexible, imperative
structure
Dynamic graphs
High performance
§ Neural networks can be defined using simple, clear, concise code
§ Plug-and-play neural network building blocks—including predefined layers,
optimizers, and initializers
§ Eliminates rigidity of neural network model definition and brings together
the model with the training algorithm
§ Intuitive, easy-to-debug, familiar code
§ Neural networks can change in shape or size during the training process to
address advanced use cases where the size of data feed is variable
§ Important area of innovation in natural language processing (NLP)
§ There is no sacrifice with respect to training speed
§ When it is time to move from prototyping to production, easily cache
neural networks for high performance and a reduced memory footprint
[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기
여러분의 피드백을 기다립니다!
#AWSDEVDAYSEOUL

More Related Content

What's hot (7)

PDF
merdian layout-5K hubbell - T4
Christine Emad Youssef , Assoc. AIA
 
PPTX
Genetik Algoritma Nasıl Çalışır
Emre Akadal
 
PDF
Revolucion Rails
Xavier Noria
 
PDF
Portuguese Home Language - 2006
Instituto Diáspora Brasil (IDB)
 
PDF
In-silico study of ToxCast GPCR assays by quantitative structure-activity rel...
Kamel Mansouri
 
PDF
Respuetas evaluacion septimo
Cesar Estrada
 
PPT
En artikkel - et døgn
haavso
 
merdian layout-5K hubbell - T4
Christine Emad Youssef , Assoc. AIA
 
Genetik Algoritma Nasıl Çalışır
Emre Akadal
 
Revolucion Rails
Xavier Noria
 
Portuguese Home Language - 2006
Instituto Diáspora Brasil (IDB)
 
In-silico study of ToxCast GPCR assays by quantitative structure-activity rel...
Kamel Mansouri
 
Respuetas evaluacion septimo
Cesar Estrada
 
En artikkel - et døgn
haavso
 

Similar to [AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기 (20)

PDF
TARJETA MADRE
MiguelngelGozaineArr
 
PDF
lastline-breach-detection-platform-datasheet
Serhat Cakmakoglu
 
PPT
SMART CITY 3 novembre
canaleenergia
 
PDF
Let´s Fight for Human Unintelligence
Robin-Boris Kasper
 
PDF
Intro to Deep Learning April 2017
Francesco Mosconi
 
PPTX
High-Volume Data Collection and Real Time Analytics Using Redis
cacois
 
PPT
Cdma basics
uday joshi
 
PPTX
Artificial intelligence (ai)
Khushbu Arora
 
PPTX
Getting Started with AWS IoT
AWS Summits
 
PDF
Scaling IoT: Telemetry, Command & Control, Analytics and the Cloud
Nick Landry
 
PPTX
Introduction to IoT unit II
Dr.M.Karthika parthasarathy
 
DOCX
X1
Maxim Petrov
 
PDF
AWS IoT Services Overview- IoT Core, Monitoring, Analytics by Jake Scherrer
AWS Chicago
 
PDF
Introduction to Keras / Global Artificial Intelligence Conference / Santa Cla...
Francesco Mosconi
 
PPTX
Introduction to IoT - Unit II.pptx
Dr.M.Karthika parthasarathy
 
PDF
Sensor Data in InfluxDB by David Simmons, IoT Developer Evangelist | InfluxData
InfluxData
 
KEY
Digital Cameras
Mister D
 
PPTX
Reply Webinar Online - Mastering AWS - IoT Foundations
Andrea Mercanti
 
DOCX
An effecient spam detection technique for io t devices using machine learning
Venkat Projects
 
PDF
Devday 2017 Hands On Presentation
Tom Luczak
 
TARJETA MADRE
MiguelngelGozaineArr
 
lastline-breach-detection-platform-datasheet
Serhat Cakmakoglu
 
SMART CITY 3 novembre
canaleenergia
 
Let´s Fight for Human Unintelligence
Robin-Boris Kasper
 
Intro to Deep Learning April 2017
Francesco Mosconi
 
High-Volume Data Collection and Real Time Analytics Using Redis
cacois
 
Cdma basics
uday joshi
 
Artificial intelligence (ai)
Khushbu Arora
 
Getting Started with AWS IoT
AWS Summits
 
Scaling IoT: Telemetry, Command & Control, Analytics and the Cloud
Nick Landry
 
Introduction to IoT unit II
Dr.M.Karthika parthasarathy
 
AWS IoT Services Overview- IoT Core, Monitoring, Analytics by Jake Scherrer
AWS Chicago
 
Introduction to Keras / Global Artificial Intelligence Conference / Santa Cla...
Francesco Mosconi
 
Introduction to IoT - Unit II.pptx
Dr.M.Karthika parthasarathy
 
Sensor Data in InfluxDB by David Simmons, IoT Developer Evangelist | InfluxData
InfluxData
 
Digital Cameras
Mister D
 
Reply Webinar Online - Mastering AWS - IoT Foundations
Andrea Mercanti
 
An effecient spam detection technique for io t devices using machine learning
Venkat Projects
 
Devday 2017 Hands On Presentation
Tom Luczak
 
Ad

More from Amazon Web Services Korea (20)

PDF
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
Amazon Web Services Korea
 
PDF
[D3T1S06] Neptune Analytics with Vector Similarity Search
Amazon Web Services Korea
 
PDF
[D3T1S03] Amazon DynamoDB design puzzlers
Amazon Web Services Korea
 
PDF
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
Amazon Web Services Korea
 
PDF
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
Amazon Web Services Korea
 
PDF
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
Amazon Web Services Korea
 
PDF
[D3T1S02] Aurora Limitless Database Introduction
Amazon Web Services Korea
 
PDF
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
Amazon Web Services Korea
 
PDF
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
Amazon Web Services Korea
 
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
PDF
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
PDF
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
PDF
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
PDF
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
PDF
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
PDF
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
PDF
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
PDF
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
PDF
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
Amazon Web Services Korea
 
[D3T1S06] Neptune Analytics with Vector Similarity Search
Amazon Web Services Korea
 
[D3T1S03] Amazon DynamoDB design puzzlers
Amazon Web Services Korea
 
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
Amazon Web Services Korea
 
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
Amazon Web Services Korea
 
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
Amazon Web Services Korea
 
[D3T1S02] Aurora Limitless Database Introduction
Amazon Web Services Korea
 
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
Amazon Web Services Korea
 
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 
Ad

Recently uploaded (20)

PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PPTX
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
PDF
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
PPTX
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PDF
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
DOCX
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 

[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기

  • 2. AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기 권신중 솔루션즈아키텍트 최원근 솔루션즈아키텍트 이종화 솔루션즈아키텍트 송규호 솔루션즈아키텍트 김영진 솔루션즈아키텍트 김민성 솔루션즈아키텍트 현륜식 솔루션즈아키텍트 김준형 솔루션즈아키텍트
  • 6. AWS Greengrass는 AWS Cloud를 Edge로 확장합니다. IoT 디바이스에서 발생하는 데이터는 로컬에서 처리하고 데이터 관리, 분석, 저장은 AWS Cloud에서 처리합니다. Data processed in the cloud Data processed locally AWS 클라우드 기능을 엣지까지 확장 AWS Greengrass
  • 7. Features AWS Greengrass 데이터와 상태 동기화 보안 Over-the-air updates 프로토콜 어뎁터Local actions 로컬 메시지 브로커 머신러닝 유추 로컬 리소스 억세스 Local device shadows Lambda functions Local message broker High-quality AWS security Easily update AWS Greengrass core Local execution of ML models Lambda interacts with peripherals Easy integrations with local protocols ʥ A
  • 8. AWS IoT Analytics 는 대규모 IoT 데이터에 대한 정교한 분석을 손쉽게 실행 및 운용할 수 있게 해주는 완전관리형 서비스 입니다. 디바이스 데이터에서 가치를 창출 AWS IoT Analytics IoT data는 잡음과 상당한 격차 및 잘못읽은 경우가 많음 이 데이터를 필터, 처리, 변환 및 보강 임시 쿼리 또는 정교한 IoT 분석 및 시각화 Raw 데이터를 저장하고 데이터 처리 수행 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 ENRICHMENT 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0101001101001 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 01 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0101001010 101001 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0
  • 9. AWS IoT Analytics AWS IoT Analytics에서의 데이터 흐름
  • 10. AWS IoT Analytics Collect AnalyzeStore Visualize 저장하고 분석하고 싶은 데이터만 수집 Raw 데이터를 의미있는 데이터로 변환 디바이스 데이터 분석을 위해 시계열로 저장되는 데이터 스토어에 저장 빌트인 된 IoT 분석 SQL 쿼리 엔진 혹은 Jupyter Notebook으로 데이터셋 분석 IoT 데이터셋을 빠르게 시각화하여 분석 Process Channels DatasetsPipelines Data stores Jupyter Notebooks AWS IoT Analytics에서의 데이터 흐름
  • 11. Amazon SageMaker: Build, Train, and Deploy ML Models at Scale 1 2 3
  • 13. ML HOL overview Classification using Mxnet and Gluon by HasAnomaly label Load data & Preprocessing - normalization Divide dataset to Training & Test – 8:2 Build Neural network Training model Prediction Make Inference
  • 15. Native distributed training supported Supports distributed training on multiple CPU/GPU machines to take advantage of cloud scale Flexible programming model Supports both imperative and symbolic programming maximizing efficiency and productivity Portable from the cloud to the client Runs on CPUs or GPUs, on clusters, servers, desktops, or mobile phones Multi-lingual | No need to learn a new language Python, R, Scala, Julia, C++, Matlab, or Javascript Performance 0ptimized Optimized C++ backend engine parallelizes both I/O regardless of source language
  • 16. Introducing Gluon Simple, easy-to- understand code Flexible, imperative structure Dynamic graphs High performance § Neural networks can be defined using simple, clear, concise code § Plug-and-play neural network building blocks—including predefined layers, optimizers, and initializers § Eliminates rigidity of neural network model definition and brings together the model with the training algorithm § Intuitive, easy-to-debug, familiar code § Neural networks can change in shape or size during the training process to address advanced use cases where the size of data feed is variable § Important area of innovation in natural language processing (NLP) § There is no sacrifice with respect to training speed § When it is time to move from prototyping to production, easily cache neural networks for high performance and a reduced memory footprint