SlideShare a Scribd company logo
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Digital Manufacturing and
Relevant Use Cases
Douglas Bellin, AWS
장대기, GS칼텍스
발표자료 바로 공개
발표자료는 발표 종료 후 해당
사이트에서 바로 보실 수 있습니다
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
REVENUE GROWTH
OPERATIONAL OVERHEAD
Empowered
Sales Teams
Increased
Efficiency
Intelligent Decision
Making
Products that Get
Better with Time
Better Relationship
with Customers
Data Driven
Discipline
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Business Architecture – Manufacturing Operations
PLC/
CONTROLLER
IMAGE
MES
QUALITY
MANAGEMENT
SYSTEM
HMI
SCADA
GW
(OPC SRV) HISTORIAN
ASSET
MANAGEMENT
SYSTEM
Plant 1
Plant 2
Plant 3
Ingestion
Batch Process Machine Learning
Rule Engine
Optimization
Real Time Process Global
Monitoring
Dashboard
Predictive
Maintenance
Quality Control
Maintenance
Management/
Operators
Modeling
Applications
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Manufacturing Reference Architecture
Greengrass
Edge/GW
S3
Data Lake
Kinesis
MES
Factory Machines
ML
Inference
IoT Core
Sage Maker
ML
QuickSight
Business
Intelligence
Athena
Historian
Storage Gateway
EMR
EBS EC2 Batch AppStreamEBS EC2
E&D Workloads
(PLM/HPC/CAE)
Enterprise Workloads
(SAP ERP/CRM)DMS RDS
Local Servers
RedShift
Data Warehouse
DataIngestion
API
SiteWise
Snowball Edge
Smart Products
DynamoDB Lambda
IoT Core
Amazon Forecast
Plant Maint. Planning
Business Functions
Greengrass
Connectors
IoT Analytics
Timestream
Outpost
IoT Events
EC2
Lambda
Business Logic
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Use Cases for Industrial Data Platform
Visibility Production Quality
Access Critical plant information
at any time
Automate data capture Determine root cause
Measure and improve OEE Drive continuous process
improvement
Reduce scrap and defects
Compare KPIs and metrics across
the Enterprise
Predict out of control processes
and failures
Increase yield
Benchmark machines, lines and
plants
Monitor regulatory info – track
and trace, genealogy
Control processes with stricter
tolerances
Measure and trend quality
performance
Increase capacity utilization Setup alerts to maintain process
control
Improve worker safety Reduce maintenance costs Reduce rework
New services opportunities Increase in NPI time Smarter products
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Topics
• Product Shape/Size/Color Recognition
• Production Line Utilization (OEE)
• Predictive Maintenance/Quality & Alarming
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Use-Case: Object Shape/Size/Color Detection
Goal: Detect product shape/size/color, joints (weld/seam) problems as
the product moves down a conveyor and/or (vehicle) assembly line, paint
shop, etc. Industrial
Camera
NOTE: Pattern/Shape recognition is Machine Learning in it’s simplest form in seeing we have a defect but not really
predicting why it occurred.
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Use-Case: Slow Machine Cycle Time Prediction
Goal: Monitor a packaging machine for slow post cycle times, determine
root causes/contributing factors (e.g., outgoing conveyor belt issues, etc.)
then predict future slowdowns.
PLC
Packaging
Machine
PLC
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Paper & Building Product Manufacturing
• Georgia Pacific is one of the world's largest manufacturers of tissue, paper, packaging, building products, and related chemicals.
• The company employs over 35,000 people in more than 150 locations.
• Products include brand names like Angel Soft, Quilted Northern, Brawny, Dixie, Mardi Gras, PerfecTouch, Sparkle, Blue Ribbon, Clutter
Cutter, DensArmor Plus, DensDeck, DensGlass, DensShield, DryPly, FireGuard, GP Lam, Nautilus, Ply-Bead, Plytanium, Southern Gold,
Sta-Strait, Thermostat, ToughRock, Wood I Beam, and XJ 85
Client Profile
• Multiple facilities with different manufacturing
equipment
• Improving plant productivity & quality
• A retiring workforce with valuable site-specific
knowledge gained over years of experience
• Downtime costs of $250k/day, and a need to
maximize machine uptime
• Amazon Kinesis to stream data from complex
machines
• Data Lake with Amazon Simple Storage Service
(Amazon S3) to efficiently ingest and analyze
structured and unstructured data at scale.
• Amazon Elastic MapReduce (Amazon EMR) to
transform data before delivering it in a structured
fashion to data analysts through Amazon Redshift.
• Amazon SageMaker, an AWS machine-learning
solution to build, train, and deploy ML models at
scale
• 30 percent paper-product tear reduction.
• Increased profits by millions of dollars for one
production line, with hundreds of other
production ines to benefit
• Less dependence on disparate factory experts to
keep lines running efficiently.
• Predict equipment failure 60–90 days in advance,
and reduce unplanned downtime.
• Ensure the highest-quality product running at the
fastest-possible rate
Challenges Our Joint Solution Results
“Overall, using AWS, we can ensure the highest-quality product running at the fastest-possible
rate, so we can best serve our customers.” Steve Bakalar, VP of IT/digital transformation
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Bearing and Smart Product Manufacturing
• Founded in Sweden in 1907
• The world's largest bearing manufacturer (they also manufacture seals, lubrication and smart lubrication systems, maintenance products,
mechatronics products, power transmission products, and condition monitoring systems.
• SKF employs 44,000 people in 108 manufacturing units.
• Large industrial distributor network, with 17,000 distributor locations encompassing 130 countries.
Client Profile
• Move beyond selling only products, to a
“Rotating Equipment Performance” service
model
• Ensure bearings are lubricated correctly and
automatically to maximize performance and life
• Gather data from customers all over the world to
improve product design and performance
• Add new replacement part revenue streams
• Connected System 24 single point lubricator
feeding a Data Lake with Amazon Simple Storage
Service (Amazon S3) to efficiently ingest and
analyze structured and unstructured data at scale.
• AWS machine learning to help analyze products in
the field
• AWS Database services to manage large amounts
of complex vibration and equipment condition
data
• AWS IoT services, and Lambda to speed time to
market and lower costs on new product designs
• Expand their revenue beyond a ship-and-forget
model, to a services enhanced revenue stream
• Grow sales, even if their raw product shipment
numbers do not increase.
• Innovate faster, with lower costs.
• Concentrate on the value they can provide for
their customers, instead of setting up the
hardware and compute resources required to
make it happen
Challenges Our Joint Solution Results
“I see a lot of speed of innovation coming from AWS, and we are confident that this is the
platform we are going forward with.” Johan Tommervik, CIO
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Problem
Wärtsilä needed to accurately predict, when the
marine engines they manufactured needed to
get serviced. Understanding and predicting the
service schedule is vital for Wärtsilä to increase
their service and parts revenue.
Solution
Accenture worked with AWS account SAs, AoD
SAs, and Salesforce SAs to architect an IoT
solution using Salesforce and AWS IoT Core to
collect data and build predictive models. The
solution developed is scalable and extensible
beyond just this use case, as Wärtsilä has 14,000
ships with 35,000 engines installed. There are
great possibilities for sensor driven IoT use
cases.
Impact
The entire solution should result in an increase
in parts/service sales for Wärtsilä and higher
customer retention.
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Problem
As Konecranes specializes in the
manufacturing and service of cranes
globally, they discovered that when they
needed to make updates to their
machinery it meant downtime and local
presence onsite.
Solution
Using Greengrass has enabled them to
deploy updates using cloud models that
continually get smarter over time as they
sync with the local environments.
Impact
This allows them to simplify their current
crane architecture and make it possible
to update calculations to the cranes in a
secure way even after the installation
has taken place.
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Problem
Stanley Black and Decker finds it unsustainable to ingest,
transmit, store, query and analyze all data generated at
the edge and more specifically on construction sites or
rural areas with constrained network resources.
Solution
AWS Greengrass enables Stanley Black and Decker to
monitor and filter data at the edge of the network
enabling applications to send asset health and predict
any mechanical failures before they occur. Edge-based
applications built on Greengrass will help detect and
compare vibrations emitted by high value tools to
historical signatures that indicate everything from
normal operations to imminent failure.
Impact
Instead of trying to use all the data Stanley Black and
Decker will utilize Greengrass to focus on the right data.
Applications include remote troubleshooting of hydraulic
assets by technicians, maintenance interval tracking, fuel
savings, and alerts.
S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
장대기, 경영정보화팀
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Oil & Gas Industry,
Refinery에 대한 이미지?
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
정유업에서의 Data Analytics
Energy
Health care
Logistics
Automotive
Consumer Packed
goods
Telecom, Insurance,
Banking
Retail
Media
Extremely limited Use of digital,
primarily in internal operation
수 십 년간의 사업 운영을 통해 축적된
(Big) Data
오랜 시간 검증된 분석 솔루션
이미 Data Analytics를 적용
추가 개선이 가능한지에 대한 의문
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용의 시작 그리고 Cloud
[생산 영역] 정형화된 Data 풍부
[생산 외 영역]
Planning
Scheduling
Optimization
Operation
Reliability/SHE
Sales/Marketing
Logistics/Procurement
Finance/Corporate Strategy
시범 과제
[알고리즘 활용]
Anomaly Detection
Cloud 도입의 필요성
• Pilot이었기 때문에 거대한
리소스를 필요 시에만 사용
• 공장 시스템에 영향을
주지 않아야 하는 제약
AWS Cloud 도입
• 다양한 가격 정책
• Cloud 대부분의 서비스가
Korea Region에서 운영
• 다양한 Data Analytics
Tool 보유
• 높은 보안 수준 수 천 개의 제어 장치와 수 만개의
유관 장치 테스트 시, 머신러닝을 위한
Computing 자원 필요
Optimization
4.52
4.53
4.53
4.54
4.54
4.55
현재 값 목표 값
Anomaly Point
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용 영역의 확대 – 생산 영역
과제 발굴 영역
공정 수율/성상 예측
공정 운영 최적화
Trouble 원인 분석
이상 감지
우선 수행
과제 도출
업무 포털을 통한 예측 결과 조회
- 배치 분석 수행 및 결과 저장(DB)
업무포털
Cloud에 접속 후 분석 환경을 직접 활용
Use Case 예시 3
Use Case 예시 1
End-Point를 이용한 실시간 결과 조회
Use Case 예시 2
Inference
(Response)
Input Data
(Request)
1) 분석 환경 구축
2) 모델 개발
“정형화된 분석”
“계획적 반복 분석”
“On-Demand 분석”
“다수 Point에서 활용”
“신규 모델 개발”
“데이터 탐색 및 시각화”
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용 영역의 확대 – 고객 영역 ①
주유소 CCTV 영상을 통한 차량 인식 및 분석 예시
주유소 영상
차량 인식
모델
통계 Data 추출 및 분석
(방문 차량 모델 비율 등)
Data Point 추출
(차종, 연식만)
Privacy Data 원천 제외
고객 마케팅/주유소
운영전략
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용 영역의 확대 – 고객 영역 ①
주유 /세차 차량 인식 영상
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용 영역의 확대 – 고객 영역 ①
주유소 인근 교통량 인식 영상
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용 영역의 확대 – 고객 영역 ②
경쟁 주유소 파악 (예시)
GS 칼텍스 주유소
주유소 Coverage (예시)
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics 적용 영역의 확대 – Risk Management 영역
100
110
120
130
140
150
160
170
180
p10
p50
p90
Actual
Amazon Forecast
<결과 예시>
RM의 고민
• 급변하는 시장 상황
(변수의 증가)
• 담당자 별 숙련도에
따른 예측 정확도 차이
 다양한 변수를
고려한 방향성 예측
Logic이 필요
활용범위 확산검토
• 데이터만 잘 준비되면
코딩 없이 분석 가능
• Case 별 분석을 통해
영향력 있는 변수
산출 가능
 비전문가도 활용 가능
 확산 검토 중
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Data Analytics를 위한 AWS 활용
Industrial equipment
Factory Data
Interface
Server
S3
AURORA
DB
EBSEC2
Existing Analytics Tools (SAS)
sas
SageMaker EC2
기타 Data
CRM
CRM
CRM
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Digitalization에 대응한 진화의 시작
여러분의 피드백을 기다립니다!
#AWSSummit 해시태그로
소셜미디어에 여러분의
행사소감을 올려주세요.
AWS Summit Seoul 2019
모바일 앱과 QR코드를 통해
강연평가 및 설문조사에
참여하시고 재미있는 기념품을
받아가세요.
내년 Summit을 만들 여러분의
소중한 의견 부탁 드립니다.
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
감사합니다!
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

More Related Content

PPTX
Microsoft Azure Technical Overview
gjuljo
 
PDF
AWS와 함께 하는 클라우드 컴퓨팅 - 홍민우 AWS 매니저
Amazon Web Services Korea
 
PDF
세션 3: IT 담당자를 위한 Cloud 로의 전환
Amazon Web Services Korea
 
PDF
AWS에서 Kubernetes 실행하기 - 황경태 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
Amazon Web Services Korea
 
PDF
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
Amazon Web Services Korea
 
PPTX
글로벌 기업들의 효과적인 데이터 분석을 위한 Data Lake 구축 및 분석 사례 - 김준형 (AWS 솔루션즈 아키텍트)
Amazon Web Services Korea
 
PDF
AWS CLOUD 2017 - AWS 기반 하이브리드 클라우드 환경 구성 전략 (김용우 솔루션즈 아키텍트)
Amazon Web Services Korea
 
PDF
Azure vm introduction
Lalit Rawat
 
Microsoft Azure Technical Overview
gjuljo
 
AWS와 함께 하는 클라우드 컴퓨팅 - 홍민우 AWS 매니저
Amazon Web Services Korea
 
세션 3: IT 담당자를 위한 Cloud 로의 전환
Amazon Web Services Korea
 
AWS에서 Kubernetes 실행하기 - 황경태 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
Amazon Web Services Korea
 
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
Amazon Web Services Korea
 
글로벌 기업들의 효과적인 데이터 분석을 위한 Data Lake 구축 및 분석 사례 - 김준형 (AWS 솔루션즈 아키텍트)
Amazon Web Services Korea
 
AWS CLOUD 2017 - AWS 기반 하이브리드 클라우드 환경 구성 전략 (김용우 솔루션즈 아키텍트)
Amazon Web Services Korea
 
Azure vm introduction
Lalit Rawat
 

What's hot (20)

PDF
Amazon SageMaker 모델 배포 방법 소개::김대근, AI/ML 스페셜리스트 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Web Services Korea
 
PDF
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
PDF
AWS Summit Seoul 2023 | 가격은 저렴, 성능은 최대로! 확 달라진 Amazon EC2 알아보기
Amazon Web Services Korea
 
PDF
Amazon Personalize Event Tracker 실시간 고객 반응을 고려한 추천::김태수, 솔루션즈 아키텍트, AWS::AWS ...
Amazon Web Services Korea
 
PDF
[115]쿠팡 서비스 클라우드 마이그레이션 통해 배운것들
NAVER D2
 
PPTX
Azure Compute, Networking and Storage Overview
Azure Riyadh User Group
 
PDF
성공적인 AWS Cloud 마이그레이션 전략 및 사례 - 방희란 매니저:: AWS Cloud Track 1 Intro
Amazon Web Services Korea
 
PDF
누가 내 엔터프라이즈 고객을 클라우드로 옮겼을까?-양승호, Head of Cloud Modernization,AWS::AWS 마이그레이션 ...
Amazon Web Services Korea
 
PDF
AWS Summit Seoul 2023 | 데이터, 분석 및 AI를 통합하는 단 하나의 레이크하우스, Databricks on AWS 로 ...
Amazon Web Services Korea
 
PDF
AWS로 사용자 천만 명 서비스 만들기 (윤석찬)- 클라우드 태권 2015
Amazon Web Services Korea
 
PDF
높은 가용성과 성능 향상을 위한 ElastiCache 활용 팁 - 임근택, SendBird :: AWS Summit Seoul 2019
Amazon Web Services Korea
 
PDF
AWS Summit Seoul 2023 | 삼성전자/쿠팡의 대규모 트래픽 처리를 위한 클라우드 네이티브 데이터베이스 활용
Amazon Web Services Korea
 
PDF
보안 사고 예방을 위한 주요 AWS 모범 사례 – 신은수, AWS 보안 담당 솔루션즈 아키텍트:: AWS 온라인 이벤트 – 클라우드 보안 특집
Amazon Web Services Korea
 
PPTX
Azure Migration Program Pitch Deck
Nicholas Vossburg
 
PDF
서버리스 기반의 프론트엔드 서버 구축(Serverless frontend web server)
ChanMin Park
 
PDF
대용량 데이터레이크 마이그레이션 사례 공유 [카카오게임즈 - 레벨 200] - 조은희, 팀장, 카카오게임즈 ::: Games on AWS ...
Amazon Web Services Korea
 
PDF
AWS Summit Seoul 2023 | KB의 통합 음성 AI서비스의 현재와 미래 - 하이브리드 클라우드 기반의 똑똑한 AI상담원 콜봇
Amazon Web Services Korea
 
PDF
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
Amazon Web Services Korea
 
PDF
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
Amazon Web Services Korea
 
PDF
AWS Fargate on EKS 실전 사용하기
AWSKRUG - AWS한국사용자모임
 
Amazon SageMaker 모델 배포 방법 소개::김대근, AI/ML 스페셜리스트 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Web Services Korea
 
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
AWS Summit Seoul 2023 | 가격은 저렴, 성능은 최대로! 확 달라진 Amazon EC2 알아보기
Amazon Web Services Korea
 
Amazon Personalize Event Tracker 실시간 고객 반응을 고려한 추천::김태수, 솔루션즈 아키텍트, AWS::AWS ...
Amazon Web Services Korea
 
[115]쿠팡 서비스 클라우드 마이그레이션 통해 배운것들
NAVER D2
 
Azure Compute, Networking and Storage Overview
Azure Riyadh User Group
 
성공적인 AWS Cloud 마이그레이션 전략 및 사례 - 방희란 매니저:: AWS Cloud Track 1 Intro
Amazon Web Services Korea
 
누가 내 엔터프라이즈 고객을 클라우드로 옮겼을까?-양승호, Head of Cloud Modernization,AWS::AWS 마이그레이션 ...
Amazon Web Services Korea
 
AWS Summit Seoul 2023 | 데이터, 분석 및 AI를 통합하는 단 하나의 레이크하우스, Databricks on AWS 로 ...
Amazon Web Services Korea
 
AWS로 사용자 천만 명 서비스 만들기 (윤석찬)- 클라우드 태권 2015
Amazon Web Services Korea
 
높은 가용성과 성능 향상을 위한 ElastiCache 활용 팁 - 임근택, SendBird :: AWS Summit Seoul 2019
Amazon Web Services Korea
 
AWS Summit Seoul 2023 | 삼성전자/쿠팡의 대규모 트래픽 처리를 위한 클라우드 네이티브 데이터베이스 활용
Amazon Web Services Korea
 
보안 사고 예방을 위한 주요 AWS 모범 사례 – 신은수, AWS 보안 담당 솔루션즈 아키텍트:: AWS 온라인 이벤트 – 클라우드 보안 특집
Amazon Web Services Korea
 
Azure Migration Program Pitch Deck
Nicholas Vossburg
 
서버리스 기반의 프론트엔드 서버 구축(Serverless frontend web server)
ChanMin Park
 
대용량 데이터레이크 마이그레이션 사례 공유 [카카오게임즈 - 레벨 200] - 조은희, 팀장, 카카오게임즈 ::: Games on AWS ...
Amazon Web Services Korea
 
AWS Summit Seoul 2023 | KB의 통합 음성 AI서비스의 현재와 미래 - 하이브리드 클라우드 기반의 똑똑한 AI상담원 콜봇
Amazon Web Services Korea
 
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
Amazon Web Services Korea
 
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
Amazon Web Services Korea
 
AWS Fargate on EKS 실전 사용하기
AWSKRUG - AWS한국사용자모임
 
Ad

Similar to AWS를 활용한 Digital Manufacturing 실현 방법 및 사례 소개 - Douglas Bellin, 월드와이드 제조 솔루션 담당 디렉터, AWS / 장대기 대리, GS Caltex :: AWS Summit Seoul 2019 (20)

PDF
Why customers run SAP on AWS for Industry 4.0::Douglas Bellin::제조업 이노베이션 데이 S...
Amazon Web Services Korea
 
PDF
AWS O&G Day - Ambyint and AWS
AWS Summits
 
PPTX
Breaking down an Industrial IoT reference architecture.pptx
Neel Sendas
 
PDF
Miguel Angel Perdiguero - Head of BIG data & analytics Atos Iberia - semanain...
COIICV
 
PDF
How AWS can help you on quality and data products
Amazon Web Services LATAM
 
PDF
Cloud & AI Master Class: IA na indústria de Manufatura
BrunaLanzarini1
 
PDF
Inawisdom Overview - construction.pdf
PhilipBasford
 
PPTX
AI, ML ,IIOT in steel plant
Parag Jyoti Borah
 
PPTX
Smart Manufacturing Presentation
Merve Nur Taş
 
PPTX
Digital transformation and AI @Edge
Institute of Contemporary Sciences
 
PDF
Integrierte Anwendungsfälle - Von der einzelnen Nachricht, über zeitnahe Anal...
AWS Germany
 
PDF
The Industrialist: Trends and Innovations That Matter - July 2021
accenture
 
PDF
Machine learning in the physical world by Kip Larson from AWS IoT
Bill Liu
 
PDF
IoT Predictions for 2019 and Beyond: Data at the Heart of Your IoT Strategy
Hortonworks
 
PDF
A Data Journey With AWS
Julien SIMON
 
PDF
IoT from Cloud to Edge & Back Again - WebSummit 2018
Boaz Ziniman
 
PDF
Machine Learning for everyone
Julien SIMON
 
PDF
Application of AI in manufacturing
Antenna Manufacturer Coco
 
PDF
Connecting the manufacturing industry
Hewlett Packard Enterprise Business Value Exchange
 
PPTX
Smart manufacturing
swati singh
 
Why customers run SAP on AWS for Industry 4.0::Douglas Bellin::제조업 이노베이션 데이 S...
Amazon Web Services Korea
 
AWS O&G Day - Ambyint and AWS
AWS Summits
 
Breaking down an Industrial IoT reference architecture.pptx
Neel Sendas
 
Miguel Angel Perdiguero - Head of BIG data & analytics Atos Iberia - semanain...
COIICV
 
How AWS can help you on quality and data products
Amazon Web Services LATAM
 
Cloud & AI Master Class: IA na indústria de Manufatura
BrunaLanzarini1
 
Inawisdom Overview - construction.pdf
PhilipBasford
 
AI, ML ,IIOT in steel plant
Parag Jyoti Borah
 
Smart Manufacturing Presentation
Merve Nur Taş
 
Digital transformation and AI @Edge
Institute of Contemporary Sciences
 
Integrierte Anwendungsfälle - Von der einzelnen Nachricht, über zeitnahe Anal...
AWS Germany
 
The Industrialist: Trends and Innovations That Matter - July 2021
accenture
 
Machine learning in the physical world by Kip Larson from AWS IoT
Bill Liu
 
IoT Predictions for 2019 and Beyond: Data at the Heart of Your IoT Strategy
Hortonworks
 
A Data Journey With AWS
Julien SIMON
 
IoT from Cloud to Edge & Back Again - WebSummit 2018
Boaz Ziniman
 
Machine Learning for everyone
Julien SIMON
 
Application of AI in manufacturing
Antenna Manufacturer Coco
 
Connecting the manufacturing industry
Hewlett Packard Enterprise Business Value Exchange
 
Smart manufacturing
swati singh
 
Ad

More from Amazon Web Services Korea (20)

PDF
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
Amazon Web Services Korea
 
PDF
[D3T1S06] Neptune Analytics with Vector Similarity Search
Amazon Web Services Korea
 
PDF
[D3T1S03] Amazon DynamoDB design puzzlers
Amazon Web Services Korea
 
PDF
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
Amazon Web Services Korea
 
PDF
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
Amazon Web Services Korea
 
PDF
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
Amazon Web Services Korea
 
PDF
[D3T1S02] Aurora Limitless Database Introduction
Amazon Web Services Korea
 
PDF
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
Amazon Web Services Korea
 
PDF
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
Amazon Web Services Korea
 
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
PDF
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
PDF
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
PDF
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
PDF
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
PDF
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
PDF
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
PDF
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
PDF
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
PDF
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
Amazon Web Services Korea
 
[D3T1S06] Neptune Analytics with Vector Similarity Search
Amazon Web Services Korea
 
[D3T1S03] Amazon DynamoDB design puzzlers
Amazon Web Services Korea
 
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
Amazon Web Services Korea
 
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
Amazon Web Services Korea
 
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
Amazon Web Services Korea
 
[D3T1S02] Aurora Limitless Database Introduction
Amazon Web Services Korea
 
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
Amazon Web Services Korea
 
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 

Recently uploaded (20)

PDF
This slide provides an overview Technology
mineshkharadi333
 
PPTX
How to Build a Scalable Micro-Investing Platform in 2025 - A Founder’s Guide ...
Third Rock Techkno
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
PDF
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
PDF
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
PDF
How-Cloud-Computing-Impacts-Businesses-in-2025-and-Beyond.pdf
Artjoker Software Development Company
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PPTX
Coupa-Overview _Assumptions presentation
annapureddyn
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PPTX
IoT Sensor Integration 2025 Powering Smart Tech and Industrial Automation.pptx
Rejig Digital
 
PDF
Architecture of the Future (09152021)
EdwardMeyman
 
PDF
REPORT: Heating appliances market in Poland 2024
SPIUG
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
PDF
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
This slide provides an overview Technology
mineshkharadi333
 
How to Build a Scalable Micro-Investing Platform in 2025 - A Founder’s Guide ...
Third Rock Techkno
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
How-Cloud-Computing-Impacts-Businesses-in-2025-and-Beyond.pdf
Artjoker Software Development Company
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
Coupa-Overview _Assumptions presentation
annapureddyn
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
IoT Sensor Integration 2025 Powering Smart Tech and Industrial Automation.pptx
Rejig Digital
 
Architecture of the Future (09152021)
EdwardMeyman
 
REPORT: Heating appliances market in Poland 2024
SPIUG
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 

AWS를 활용한 Digital Manufacturing 실현 방법 및 사례 소개 - Douglas Bellin, 월드와이드 제조 솔루션 담당 디렉터, AWS / 장대기 대리, GS Caltex :: AWS Summit Seoul 2019

  • 1. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Digital Manufacturing and Relevant Use Cases Douglas Bellin, AWS 장대기, GS칼텍스
  • 2. 발표자료 바로 공개 발표자료는 발표 종료 후 해당 사이트에서 바로 보실 수 있습니다 © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  • 3. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  • 4. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. REVENUE GROWTH OPERATIONAL OVERHEAD Empowered Sales Teams Increased Efficiency Intelligent Decision Making Products that Get Better with Time Better Relationship with Customers Data Driven Discipline
  • 5. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Business Architecture – Manufacturing Operations PLC/ CONTROLLER IMAGE MES QUALITY MANAGEMENT SYSTEM HMI SCADA GW (OPC SRV) HISTORIAN ASSET MANAGEMENT SYSTEM Plant 1 Plant 2 Plant 3 Ingestion Batch Process Machine Learning Rule Engine Optimization Real Time Process Global Monitoring Dashboard Predictive Maintenance Quality Control Maintenance Management/ Operators Modeling Applications
  • 6. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Manufacturing Reference Architecture Greengrass Edge/GW S3 Data Lake Kinesis MES Factory Machines ML Inference IoT Core Sage Maker ML QuickSight Business Intelligence Athena Historian Storage Gateway EMR EBS EC2 Batch AppStreamEBS EC2 E&D Workloads (PLM/HPC/CAE) Enterprise Workloads (SAP ERP/CRM)DMS RDS Local Servers RedShift Data Warehouse DataIngestion API SiteWise Snowball Edge Smart Products DynamoDB Lambda IoT Core Amazon Forecast Plant Maint. Planning Business Functions Greengrass Connectors IoT Analytics Timestream Outpost IoT Events EC2 Lambda Business Logic
  • 7. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Use Cases for Industrial Data Platform Visibility Production Quality Access Critical plant information at any time Automate data capture Determine root cause Measure and improve OEE Drive continuous process improvement Reduce scrap and defects Compare KPIs and metrics across the Enterprise Predict out of control processes and failures Increase yield Benchmark machines, lines and plants Monitor regulatory info – track and trace, genealogy Control processes with stricter tolerances Measure and trend quality performance Increase capacity utilization Setup alerts to maintain process control Improve worker safety Reduce maintenance costs Reduce rework New services opportunities Increase in NPI time Smarter products
  • 8. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Topics • Product Shape/Size/Color Recognition • Production Line Utilization (OEE) • Predictive Maintenance/Quality & Alarming
  • 9. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Use-Case: Object Shape/Size/Color Detection Goal: Detect product shape/size/color, joints (weld/seam) problems as the product moves down a conveyor and/or (vehicle) assembly line, paint shop, etc. Industrial Camera NOTE: Pattern/Shape recognition is Machine Learning in it’s simplest form in seeing we have a defect but not really predicting why it occurred.
  • 10. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Use-Case: Slow Machine Cycle Time Prediction Goal: Monitor a packaging machine for slow post cycle times, determine root causes/contributing factors (e.g., outgoing conveyor belt issues, etc.) then predict future slowdowns. PLC Packaging Machine PLC
  • 11. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Paper & Building Product Manufacturing • Georgia Pacific is one of the world's largest manufacturers of tissue, paper, packaging, building products, and related chemicals. • The company employs over 35,000 people in more than 150 locations. • Products include brand names like Angel Soft, Quilted Northern, Brawny, Dixie, Mardi Gras, PerfecTouch, Sparkle, Blue Ribbon, Clutter Cutter, DensArmor Plus, DensDeck, DensGlass, DensShield, DryPly, FireGuard, GP Lam, Nautilus, Ply-Bead, Plytanium, Southern Gold, Sta-Strait, Thermostat, ToughRock, Wood I Beam, and XJ 85 Client Profile • Multiple facilities with different manufacturing equipment • Improving plant productivity & quality • A retiring workforce with valuable site-specific knowledge gained over years of experience • Downtime costs of $250k/day, and a need to maximize machine uptime • Amazon Kinesis to stream data from complex machines • Data Lake with Amazon Simple Storage Service (Amazon S3) to efficiently ingest and analyze structured and unstructured data at scale. • Amazon Elastic MapReduce (Amazon EMR) to transform data before delivering it in a structured fashion to data analysts through Amazon Redshift. • Amazon SageMaker, an AWS machine-learning solution to build, train, and deploy ML models at scale • 30 percent paper-product tear reduction. • Increased profits by millions of dollars for one production line, with hundreds of other production ines to benefit • Less dependence on disparate factory experts to keep lines running efficiently. • Predict equipment failure 60–90 days in advance, and reduce unplanned downtime. • Ensure the highest-quality product running at the fastest-possible rate Challenges Our Joint Solution Results “Overall, using AWS, we can ensure the highest-quality product running at the fastest-possible rate, so we can best serve our customers.” Steve Bakalar, VP of IT/digital transformation
  • 12. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Bearing and Smart Product Manufacturing • Founded in Sweden in 1907 • The world's largest bearing manufacturer (they also manufacture seals, lubrication and smart lubrication systems, maintenance products, mechatronics products, power transmission products, and condition monitoring systems. • SKF employs 44,000 people in 108 manufacturing units. • Large industrial distributor network, with 17,000 distributor locations encompassing 130 countries. Client Profile • Move beyond selling only products, to a “Rotating Equipment Performance” service model • Ensure bearings are lubricated correctly and automatically to maximize performance and life • Gather data from customers all over the world to improve product design and performance • Add new replacement part revenue streams • Connected System 24 single point lubricator feeding a Data Lake with Amazon Simple Storage Service (Amazon S3) to efficiently ingest and analyze structured and unstructured data at scale. • AWS machine learning to help analyze products in the field • AWS Database services to manage large amounts of complex vibration and equipment condition data • AWS IoT services, and Lambda to speed time to market and lower costs on new product designs • Expand their revenue beyond a ship-and-forget model, to a services enhanced revenue stream • Grow sales, even if their raw product shipment numbers do not increase. • Innovate faster, with lower costs. • Concentrate on the value they can provide for their customers, instead of setting up the hardware and compute resources required to make it happen Challenges Our Joint Solution Results “I see a lot of speed of innovation coming from AWS, and we are confident that this is the platform we are going forward with.” Johan Tommervik, CIO
  • 13. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Problem Wärtsilä needed to accurately predict, when the marine engines they manufactured needed to get serviced. Understanding and predicting the service schedule is vital for Wärtsilä to increase their service and parts revenue. Solution Accenture worked with AWS account SAs, AoD SAs, and Salesforce SAs to architect an IoT solution using Salesforce and AWS IoT Core to collect data and build predictive models. The solution developed is scalable and extensible beyond just this use case, as Wärtsilä has 14,000 ships with 35,000 engines installed. There are great possibilities for sensor driven IoT use cases. Impact The entire solution should result in an increase in parts/service sales for Wärtsilä and higher customer retention.
  • 14. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Problem As Konecranes specializes in the manufacturing and service of cranes globally, they discovered that when they needed to make updates to their machinery it meant downtime and local presence onsite. Solution Using Greengrass has enabled them to deploy updates using cloud models that continually get smarter over time as they sync with the local environments. Impact This allows them to simplify their current crane architecture and make it possible to update calculations to the cranes in a secure way even after the installation has taken place.
  • 15. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Problem Stanley Black and Decker finds it unsustainable to ingest, transmit, store, query and analyze all data generated at the edge and more specifically on construction sites or rural areas with constrained network resources. Solution AWS Greengrass enables Stanley Black and Decker to monitor and filter data at the edge of the network enabling applications to send asset health and predict any mechanical failures before they occur. Edge-based applications built on Greengrass will help detect and compare vibrations emitted by high value tools to historical signatures that indicate everything from normal operations to imminent failure. Impact Instead of trying to use all the data Stanley Black and Decker will utilize Greengrass to focus on the right data. Applications include remote troubleshooting of hydraulic assets by technicians, maintenance interval tracking, fuel savings, and alerts.
  • 16. S U M M I T © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. 장대기, 경영정보화팀
  • 17. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Oil & Gas Industry, Refinery에 대한 이미지?
  • 18. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. 정유업에서의 Data Analytics Energy Health care Logistics Automotive Consumer Packed goods Telecom, Insurance, Banking Retail Media Extremely limited Use of digital, primarily in internal operation 수 십 년간의 사업 운영을 통해 축적된 (Big) Data 오랜 시간 검증된 분석 솔루션 이미 Data Analytics를 적용 추가 개선이 가능한지에 대한 의문
  • 19. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용의 시작 그리고 Cloud [생산 영역] 정형화된 Data 풍부 [생산 외 영역] Planning Scheduling Optimization Operation Reliability/SHE Sales/Marketing Logistics/Procurement Finance/Corporate Strategy 시범 과제 [알고리즘 활용] Anomaly Detection Cloud 도입의 필요성 • Pilot이었기 때문에 거대한 리소스를 필요 시에만 사용 • 공장 시스템에 영향을 주지 않아야 하는 제약 AWS Cloud 도입 • 다양한 가격 정책 • Cloud 대부분의 서비스가 Korea Region에서 운영 • 다양한 Data Analytics Tool 보유 • 높은 보안 수준 수 천 개의 제어 장치와 수 만개의 유관 장치 테스트 시, 머신러닝을 위한 Computing 자원 필요 Optimization 4.52 4.53 4.53 4.54 4.54 4.55 현재 값 목표 값 Anomaly Point
  • 20. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용 영역의 확대 – 생산 영역 과제 발굴 영역 공정 수율/성상 예측 공정 운영 최적화 Trouble 원인 분석 이상 감지 우선 수행 과제 도출 업무 포털을 통한 예측 결과 조회 - 배치 분석 수행 및 결과 저장(DB) 업무포털 Cloud에 접속 후 분석 환경을 직접 활용 Use Case 예시 3 Use Case 예시 1 End-Point를 이용한 실시간 결과 조회 Use Case 예시 2 Inference (Response) Input Data (Request) 1) 분석 환경 구축 2) 모델 개발 “정형화된 분석” “계획적 반복 분석” “On-Demand 분석” “다수 Point에서 활용” “신규 모델 개발” “데이터 탐색 및 시각화”
  • 21. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용 영역의 확대 – 고객 영역 ① 주유소 CCTV 영상을 통한 차량 인식 및 분석 예시 주유소 영상 차량 인식 모델 통계 Data 추출 및 분석 (방문 차량 모델 비율 등) Data Point 추출 (차종, 연식만) Privacy Data 원천 제외 고객 마케팅/주유소 운영전략
  • 22. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용 영역의 확대 – 고객 영역 ① 주유 /세차 차량 인식 영상
  • 23. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용 영역의 확대 – 고객 영역 ① 주유소 인근 교통량 인식 영상
  • 24. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용 영역의 확대 – 고객 영역 ② 경쟁 주유소 파악 (예시) GS 칼텍스 주유소 주유소 Coverage (예시)
  • 25. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics 적용 영역의 확대 – Risk Management 영역 100 110 120 130 140 150 160 170 180 p10 p50 p90 Actual Amazon Forecast <결과 예시> RM의 고민 • 급변하는 시장 상황 (변수의 증가) • 담당자 별 숙련도에 따른 예측 정확도 차이  다양한 변수를 고려한 방향성 예측 Logic이 필요 활용범위 확산검토 • 데이터만 잘 준비되면 코딩 없이 분석 가능 • Case 별 분석을 통해 영향력 있는 변수 산출 가능  비전문가도 활용 가능  확산 검토 중
  • 26. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Data Analytics를 위한 AWS 활용 Industrial equipment Factory Data Interface Server S3 AURORA DB EBSEC2 Existing Analytics Tools (SAS) sas SageMaker EC2 기타 Data CRM CRM CRM
  • 27. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Digitalization에 대응한 진화의 시작
  • 28. 여러분의 피드백을 기다립니다! #AWSSummit 해시태그로 소셜미디어에 여러분의 행사소감을 올려주세요. AWS Summit Seoul 2019 모바일 앱과 QR코드를 통해 강연평가 및 설문조사에 참여하시고 재미있는 기념품을 받아가세요. 내년 Summit을 만들 여러분의 소중한 의견 부탁 드립니다. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  • 29. 감사합니다! © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.