SlideShare a Scribd company logo
8 ,1. 1 1 8 22 1 1 1 10
, 1 8 18 1 : 1
C GA I W
SA A F
1 18 ..121 8 22 1 08 ,
• AWS re:Invent 2018
• A S I
• A
1 18 ..121 8 22 1 08 ,
1 18 ..121 8 22 1 08 ,
v
• AWS sl sc
bhc I
S A
ü 2018 11 25 11 30
ü 7 +7
ü 50,000
ü 1,000
ü 2,100
• a c z
g m c isd s m g
sn t v
• re:PLAY f Pub Crawl heg
r s osg W
8 , 8 00 12 .
1. AWS RoboMaker MN
2. AWS Amplify Console MN
3. AWS Transfer for SFTP MN
4. AWS DataSync MN
5. AWS S3 Batch Operations MN
6. Amazon S3 Intelligent Tiering MN
7. Amazon EFS Infrequent Access(EFS-IA) MN
8. Snowball Edge Compute Optimized MN
9. Amazon EBSAPIOPS AI
8 1 8 MN
1 18 ..121 8 22 1 08 ,
( )
1. AWS Global Accelerator
2. AWS Transit Gateway
3. Amazon EC2 A1
4. Amazon EC2 C5n
5. Elastic Fabric Adapter
6. Firecracker
7. Dynamic Training for Deep Learning Model
8. AWS IoT Events
9. AWS IoT SiteWise
10. AWS IoT Thing Graph
11. AWS IoT Greengrass 3
12. AWS IoT Device Tester
13. Amazon FreeRTOS Bluetooth Low Energy
14. IoT A3 AWS I S
1 18 ..121 8 22 1 08 ,
( )
15. AWS KMS Custom Key StoreA
16. Amazon S3 Object LockA
17. Amazon S3-Glacier 3
18. Amazon Kinesis Data Analytics Java I A
1 18 ..121 8 22 1 08 ,
1. AWS Container Competency I lm
2. AWS Device Qualification Program
AWS Partner Device Catalog lm
3. AWS Marketplace W S hg A
4. AWS Marketplace Private Marketplace lm
5. AWS Ground Station lm
6. Amazon Comprehend Medical lm
7. Amazon Translate deAf
8. Amazon QuickSight n b Sa Af
9. Amazon DynamoDB Transactions lm
10. AWS Elemental MediaConnect lm
11. Amazon CloudWatch Logs Insights lm
12. Amazon AthenaAWorkgroupa i
13. AWS CodePipeline ECRAf cACodeDeploy Blue/Green Af
14. Shared VPC lm
1 18 ..121 8 22 1 08 ,
( )
1. Amazon S3 Glacier Deep Archive
2. Amazon FSx for Windows File Server
3. Amazon FSx for Lustre
4. AWS Lake Formation
5. AWS Control Tower
6. AWS Security Hub
7. Amazon Aurora Global Database
8. Amazon DynamoDB Read/Write Capacity On Demand
9. Amazon Timestream
10. Amazon Quantum Ledger Database
11. Amazon Managed Blockchain
12. Amazon Elastic Inference
13. AWS Inferentia
14. Amazon SageMaker Ground Trouth
1 18 ..121 8 22 1 08 ,
( )
15. AWS Marketplace for Machine LearningA
16. Amazon SageMaker RLA
17. Amazon SageMaker 3 W
18. AWS DeepRacerA
19. Amazon TextractA
20. Amazon PersonalizeA
21. Amazon ForecastA
22. AWS OutpostsA
23. AWS License ManagerA
24. AWS Cloud MapA
25. AWS App MeshA
26. Amazon EC2 I A
27. Amazon Lightsail 2 W
28. Amazon RDS on VMware S A
1 18 ..121 8 22 1 08 ,
1. Amazon Redshift Concurrency Scaling S
2. PyCharm, IntelliJ, Visual Studio Code AWS Toolkits S
3. AWS Lambda Ruby
4. AWS LambdaACustom Runtimes
5. AWS Lambda Layers S
6. AWS Serverless Application Model I
7. AWS Lambda ALB
8. AWS Step Functions API Connectors S
9. Amazon API Gateway for WebSocket S
10. Amazon Managed Streaming for Kafka S
11. AWS Well-Architected Tool S
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
AD
K J
• SQL EJava e hm Wf
• n em i di E
g v N Arz
ü Apache Flink
ü AWS SDK for Java
• Kinesis S3 DynamoDB I AWSW c
t E Java S E
Cassandra RabbitMQ I OSS t rz
• b a l m
im s hm o rz
( 2E 1 3 0 D A A 2 2 A ( 8 A A D
A P
Q
.
1
• i eus m 1 3
ü W I a
ü 0 8 W )
• L ,Mr gWc dcl
Q ou
ü ,r gWz z
ü ,r gW W
ü nvkb SNt h f
, 8 8 00 8 12 8 8 .
A
C
• AWS W A b l o
a cs z Wnv
d b me
• CloudWatch Logs
g e n vh
mdr t f EW
• Dashboard W NS
• ds
e i h I
$0.0076/GB( )N W
, 8 8 00 8 12 8 8 .
1
A
• S3 g i h S
z E N I b l
S I A
• AWS Lake FormationSCloudFormation
g b l
ovnds I g NE
• AWS gf e W
gva g m i cs
• o nr Lake Formation
S N tf e I
, 8 8 00 8 12 8 8 .
A
• Apache Kafka E ao h
i l v Apache
Kafka gc b d t
• r IKafka n t Kafkav eo
m IA
• E S z Kinesis
Data Streams ndo NW a
s f I I
• e d
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
3 B 3
A
• r E W g mh AA i
I veN Batch Operations
c a fl st
• S3 n W N E c
bd b o S N I
ü ACL
Glacier
ü CSV S3
ü CloudTrail
8. 2 2 02 0 . . 2 2 2 21
,
A 3
• S3 PUT t bc a ib I
Glacier o v S3 lb ahm
f hm A d ahm
Glacier ib S
• S3-Glacier ea c v SNS/SQS
E r W g m E
• n rI bc ATUs P U
I f hm z TD P
ü
ü
Queue
,
, 8 8 00 8 12 8 8 .
( ) 3, 3 )
3 ( , ,
• S3 WORMW Wm nb 2
e vE
•
• IAM
• Object Lock f cd o r g l
t W IS h
d o s
• ni na eN
A s z W Bucket with objects
, 8 0 0 4.0 . 8 4 ,114 4, 0 42 0 0 0
G AD 3
• I E E S I
hAe Glacierv
• E oh ctgtf A m
z sa E bAd N
• hAe W v E E
l A W
W I
• nr tdoti 2019
, 8 8 00 8 12 8 8 .
A
F
• AZ E me n s
S3 d W e
• Windowsf E DFS Replication Active
Directory z Ib ihna W
• 10GB/s l e a g mS
n E l e aI v s
• aIo NArtId c
ü 1GB $0.13/
ü 1MBps $2.2/
ü 1GB $0.050/
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
A
• ISN m
b af I cvz
(Custom Terminology) N
• n N g E hNl r
A I rN cvz
g iSI
• cvz TMX I CSV m
o Wd t
s edf
https://docs.aws.amazon.com/translate/latest/dg/creating-custom-terminology.html
1 . E C C 88 C C C E
E E GI C AE
2 E
• XE 0 r NS eg e
gih W c oe
ü eia1.medium: 8TFLOPs(Mixed precision)
ü eia1.large: 16TFLOPs(Mixed precision)
ü eia1.xlarge: 32TFLOPs(Mixed precision)
• A 2 W, 2I/ C 8 cp
. O P M XTU
• n dl Iawb I vt kIam aI
f vI ds z
1
, 8 8 00 8 12 8 8 .
LA
• t b z N N
S 3rd partyE s W o
• SageMakerE s W z md
g mc r W
• 200n z l h zv ib
lE meafI WS E
A EN
ü
ü
ü
, 8 8 00 8 12 8 8 .
A
• t S N E
Wiba f c gm S
N
• v Sc do A l
v S t N
• N r
• hne OCR N
N z S r
I szS z
, 8 8 00 8 12 8 8 .
• s zv E AN
t
I
• s E fb A W N
hloA m rN
• Open AI Gym/Intel Coach/RLLib MXNet
Tensorflow E ce ai ce
S gAd
• SageMaker N nA m
, 8 8 00 8 12 8 8 .
A
• Amazon A v i s lvf
a nb I l
vfa NI N
• i e IW b
ENm dlt c E W
• r Si e I z h
g E IW A
• NSovn fo
i e v
TPS z
, 8 8 00 8 12 8 8 .
A
• h lvc W iAf
Amazon
gc I z
• I iAf
rn g
S E
• a eAt I z
s dW
• b o m A W
iAf N S
, 8 8 00 8 12 8 8 .
A D / 8 1
• z IA s cf N
Ad daf N
v E W
• AWS DeepRacer NSDK lmr b
eg a S hc
• SageMaker RL Wz AWS RoboMaker
W3D lmr nt W
• io t to tNDeepRacer
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
• Cloud9dA N me
fglA hn cmS
WAb
• ROS(Robot Operating System) AWS t
z WAb r ROS
a A o I
• fglA hn 1SU(Simulation Unit) E
A $0.40/ WAb
• A l n S in v A h
n s 2019
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
• CubeSat/PocketQube N n stN
n A N S e
• n A E d EC2
Ib io Kinesis Data Streams Redshift S3
Nz e I S
• NORAD ID FCCNg N S
AWSa f c
• S I 2 2019
12 Im
• v W h r E l v
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
A
• AWSb We cdi W
a v l t AE f
s m I
• r g IPS iW
A A ni h ALB/NLB/EIPI A
• o 8 i h m
• 2 z Ns
ü Global Accelerator : $0.025/Accelerator/
ü : IN/OUT
APAC
$0.015/GB $0.015/GB $0.035/GB
$0.015/GB $0.015/GB $0.043/GB
APAC $0.012/GB $0.043/GB $0.010/GB
, 8 8 00 8 12 8 8 .
A C
G
• big oAc IW N
VPC IW
• CloudWatch W gn a VPC Flow Logs
Ag SG/NACL W St
• Transit Gateway s N
50Gbps hAaggmi e EW
• Direct Connect TGW cedIW
EN r v
• znA l
fAc 2 NW
, 8 8 00 8 12 8 8 .
C A
• e i d Nl rt SN
d S
AS E nv SN d aW ch
• d Ni f d
bg d aW chN
• SDK/CLI DNS z m
d Cloud Map z E
SE m
• Ih $0.10/ oNaW
chAPI $1.00N s
, 8 8 00 8 12 8 8 .
A
• AWS o crd me
W d me
• o crd me bicg
A d me E S E N
z I v E t S
• App Mesh a nsf e Envoy Proxy
ASa nf eh l
• App Mesh
, 8 8 00 8 12 8 8 .
A
• WebSocket m na l
v z A API API GatewayN
• hn e dNWebSocketi API
I
• fb od SAWS Lambda S
AWS g EC2i
W s od oc NE
• r t S
1 18 ..121 8 22 1 08 ,
8 ,1. 1 /1 8/ 22 1 1 1 10
A C A
• m Web e i w q
S nc N p
• Amplify Console N W E z
q N f nq w qa
rS nca r Wp
• v r $0.01/ y o d
W q $0.023/GB p l
$0.15/GB I
• s b g r bt b
irs W
,
hz qN w c : 8 / : 2A / 8 1 2
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
3
• S3 API IW N E SFTP S3g cd
ba W z IAM
o n IW
• hn f e a
n s AW
• ei d $0.30/ UP/DOWN
$0.04/GB IS m
l v
• t IS m l r
, 8 8 00 8 12 8 8 .
• b sh s lc g d
NS3S EFSN I b s
h msfisc
• t v rh
b sh 10Gbps E
crehos NW a h
• 1GB $0.04 A o bn
s
• z o bns
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
• i g d bgz t e
cg W bgr
• s 2 f bg E v10
S aI4MB NhA
ü TransactWriteItems: PutItem/UpdateItem/DeleteItem
ü TransactGetItems: GetItem
Read
• o n m ld bg
, 8 8 00 8 12 8 8 .
DA
G
• Amazon Aurora(MySQL ) bo
gsl W Aurora
Global DatabaseN c
• t sl ao cf
s b I v 1
s e a z N A
• mibn f d rS SDK/CLI
• bh s r g
bo E
Writer
Reader
, 8 8 00 8 12 8 8 .
BA C D
/
• h m ga I c eS
a eh Ss n i
• On-Demandn i Sec rb E
S l a
S f e
• Provisioned Capacityn i zN
On-Demand 1 S1v
• W dor t S
$1.25/1M write request unit $0.25/1M read
request unit A d
, 8 8 00 8 12 8 8 .
A
• IoTim eE SfvcvaiAg Sh
so riAg nrbAc v lgrva
iAg E S
• Amazon Timestream iAg E z
N W N
SiAg N RDBS1/10S
• S SiAg
W A tA
• Write/Queryr e e sAd I
e sAd Memory/SSD/MagneticS3
, 8 8 00 8 12 8 8 .
BA D
)( ) )
• rzdAf lAi EN
W m a c sz
I lAisAheAoh
• S gvAn
EN W
• SQL b b z etAm b
A A AbN
• r o A I/O W
gvAn hm Ag l bhhm Ag
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
A 2 C
2
• g hfA mo ln d
a z oacoa r
• Ah W in A mo
W N E oacoa W
• g hfA mo oacoa b v
W NS ln bNEBS I
t S s W
• M3/M4/M5/C3/C4/C5/R3/R4/R5 oacoa
r Windows ServerNAmazon Linux 1
Ae Amazon Linux 2
N , C ME 8 6 G A 2 EG AI ABA I BB GA I G G
2 C E
1 G
• bg Pum cd Pt
f o Pt b
mn m
• v z W SU 45% h
mp
• Amazon Linux 2, RHEL, Ubuntu
AMI
xPp
• tPlra e i ab
esbe
4
08
A /5
1A.
0.6
1
48
1
hmp
$
C A C 3 ( 3
B G ) 3 ( 3
B G ) , 3 ( 3
B G , 3 ( 3 )
) B G ( ( 3 ) ,
M C9 E 8 6 G A 2 EG AI 9 ABA9I BB GA I G G
EG 0 5 21
C C 5
• mn Pg tnz mg a
Pg Po NC5 mn Pg
c SUC5nc P l
• c aU ENAoxes
1 mi W 10Gbps/5Gbps
U N a
• b N P EC2
S3/RDS/EMR 100GbpsW
• sP pdNf h Ndezx oN
frefNGovCloud(US-West)
4
08
A 57 v
1A.
0.6
1
48
1
( B9G ( ( 39 ( 39 (
( B9G ( 39 ( 39 (
( B9G 39 ( 39 (
( B9G ) ( 39 (
( , B9G ) ,) (
( B9G ,
, 8 8 00 8 12 8 8 .
• fi sdAb A c r
sf KVMf tanAb
o tVMf ta
• Lambda Fargate v
N S
• z 125ms o
tVM I W E5MiB s A Ameh
• Al dAblta g
https://github.com/firecracker-microvm/firecracker
, 8 0 0 .0 . 8 ,11 , 0 2 0 0 0
• AWS Lambda S Ruby d
A I E
• cg hI aL fN
ü Python 2.7, 3.6, 3.7
ü Node.js 4.3, 6.10, 8.10
ü .NET Core 1.0(C#), 2.0(C#), 2,1(C#/PowerShell)
ü Go 1.x
ü Java 8
ü Ruby
• , ,A hIeW i b
Lambda Function
L BA : : H 8:E .A8 B E :E E :E: H:
C A C
0
,
• Linux zt o ifne W r
eLambdau ev ScaP
• ppOh d Runtime API a s
NRuby gmO ac
• x b+ E ppOhe NlO
O b 2-2 , A , +1 1/R w d
c
• + E 1 c
ü CE 8B IE E IE 8CC A :
ü https://github.com/awslabs/aws-lambda-rust-runtime
, 8 8 00 8 12 8 8 .
• ALB hea ng Lambdai nacln
I Lambda
HTTP ng nf
• t Web mb cln Lambdai
nacln W E
• i naclnSALB N Nv
A S o
• ALB Lambda r m dlnN
sz
, 8 8 00 8 12 8 8 .
A
• z i bma o i bma
v I
• AMI Launch Template A
I Ndic m dic m
mflga Ae W n
• vCPU I Dedicated
I Ni bma S
t
• A hm s r A hm E
N N
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
• AWS Marketplacel ohf E d
ig N A
N A r IWv S
• A b mcg f
ena W N W
• AWS Organization W ogs
W
• Private Marketplace dig
zt
1 18 ..121 8 22 1 08 ,
8. 2 2 02 0 . . 2 2 2 21
/ / CD E BA
, / E , / /
• AWS CodePipeline Amazon ECRU A c
Ir DS
• o AWS CodeDeploy Amazon ECS AWS
Fargate Blue/Green c d g
• ET ef cAUlm DS
• ECR
• CodePipeline
• CodeBuild
• CodeDeploy Blue/Green
• n UiPhbAWad r g
,
, 8 8 00 8 12 8 8 .
, A
C
• s EIDE W i cg f o
z g f t E c S n
AWS Toolkits
• Apache License, Version 2.0 N c
• PyCharmr GA IntelliJ Visual Studio
Coder d a cibe l I
• AWS Serverless Application Model(SAM) CLI mv
E S hA
1 18 ..121 8 22 1 08 ,
, 8 8 00 8 12 8 8 .
H EB A
/ / /
• ie em W oc an z
N v Amazon Managed
Blockechain S s
• a f t E aio
ho r I
• Amazon Quantum Ledger Database em
W oN d
alobN
• fldg AI Web
https://aws.amazon.com/managed-blockchain/
1 18 ..121 8 22 1 08 ,
2 1 / : A , :BA 2 : :2B A :8 BA A
1
• Nb VPCVpdtwh P
a VPC
• 1VPC PaNV i
m s AWSdgewnc
n z c a
• VPC f o VPCvru (RouteTable
Subnet W)c I Security Group
tl c S
• Padgewn AWS Organizationh
u a a
-
1
/ 2 0.
C B C B
BB A A 2EA 2 2
2B AB CA 8C: A 2 : 8 B
, 8 8 00 8 12 8 8 .
- A
• Well-ArchitectedhrA sA af N
agio f a N WE IW S
• SA z N baltg eA SmA
c d W A ntS af c d v
1 18 ..121 8 22 1 08 ,
8 1 02
https://amzn.to/2R23scQhttps://amzn.to/2S4F1eN
. . 2,.8 , 2 8 2 2 .8 201 8 .8. .-
. ,12 ., .- A
n : ]m[e : cb
• W S
h A
• S j S
. / - -
( a)S
2 8
8 , ! 8 00 ! 12 .!

More Related Content

Similar to AWS re:Invent 2018 re:cap for Gaming (Amazon Game Developers Day) (20)

PDF
20180512 AWS SageMakerを初めて使うガイド
Yasuhiro Matsuo
 
PDF
AWSでの情報システムの可用性確保ポイント
Ganota Ichida
 
PDF
IVS CTO Night And Day 2018 Winter - AWS Startup Tech Office Hours
Amazon Web Services Japan
 
PDF
AWS モニタリングソリューションのご紹介
Takanori Ohba
 
PDF
Edge trends mizuno-template
shintaro mizuno
 
PDF
AWS re:Invent 특집 세미나 - (2) DB/분석 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
PDF
サービスをスケールさせるために AWSと利用者の技術
Yasuhiro Araki, Ph.D
 
PDF
Amazon Connect 導入支援のご紹介
Serverworks Co.,Ltd.
 
PDF
Eficiency and Low Cost: Pro Tips for you to save 50% of your money with Googl...
Daniel Cukier
 
PDF
JTF2018_B30_k8s_operator_nobusue
Nobuhiro Sue
 
PPT
Faceted Search – the 120 Million Documents Story
Sourcesense
 
PPT
Code4Lib 2007: MyResearch Portal
eby
 
PDF
[db tech showcase Tokyo 2018] #dbts2018 #C32 『Deep Dive on the Amazon Aurora ...
Insight Technology, Inc.
 
PDF
Building prediction models with Amazon Redshift and Amazon ML
Julien SIMON
 
PDF
AIアプリはこう作る!-独自の識別モデル作成も簡単 Einstein Platform Services の使い方
Salesforce Developers Japan
 
PDF
Google Polymer in Action
Jeongkyu Shin
 
PDF
AWSでの機械学習におけるデータレイク・GPU実行環境
Yasuhiro Matsuo
 
PDF
[表示が崩れる場合ダウンロードしてご覧ください] 2018年のDocker・Moby
Akihiro Suda
 
PDF
20180309 DLIもくもく会 Deep Learning on AWS
Yasuhiro Matsuo
 
PDF
Automation Anywhere - Imagine New York 2019 - Verizon
Automation Anywhere
 
20180512 AWS SageMakerを初めて使うガイド
Yasuhiro Matsuo
 
AWSでの情報システムの可用性確保ポイント
Ganota Ichida
 
IVS CTO Night And Day 2018 Winter - AWS Startup Tech Office Hours
Amazon Web Services Japan
 
AWS モニタリングソリューションのご紹介
Takanori Ohba
 
Edge trends mizuno-template
shintaro mizuno
 
AWS re:Invent 특집 세미나 - (2) DB/분석 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
サービスをスケールさせるために AWSと利用者の技術
Yasuhiro Araki, Ph.D
 
Amazon Connect 導入支援のご紹介
Serverworks Co.,Ltd.
 
Eficiency and Low Cost: Pro Tips for you to save 50% of your money with Googl...
Daniel Cukier
 
JTF2018_B30_k8s_operator_nobusue
Nobuhiro Sue
 
Faceted Search – the 120 Million Documents Story
Sourcesense
 
Code4Lib 2007: MyResearch Portal
eby
 
[db tech showcase Tokyo 2018] #dbts2018 #C32 『Deep Dive on the Amazon Aurora ...
Insight Technology, Inc.
 
Building prediction models with Amazon Redshift and Amazon ML
Julien SIMON
 
AIアプリはこう作る!-独自の識別モデル作成も簡単 Einstein Platform Services の使い方
Salesforce Developers Japan
 
Google Polymer in Action
Jeongkyu Shin
 
AWSでの機械学習におけるデータレイク・GPU実行環境
Yasuhiro Matsuo
 
[表示が崩れる場合ダウンロードしてご覧ください] 2018年のDocker・Moby
Akihiro Suda
 
20180309 DLIもくもく会 Deep Learning on AWS
Yasuhiro Matsuo
 
Automation Anywhere - Imagine New York 2019 - Verizon
Automation Anywhere
 

More from Amazon Web Services Japan (20)

PDF
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
Amazon Web Services Japan
 
PDF
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
Amazon Web Services Japan
 
PDF
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
Amazon Web Services Japan
 
PDF
Infrastructure as Code (IaC) 談義 2022
Amazon Web Services Japan
 
PDF
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
Amazon Web Services Japan
 
PDF
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
Amazon Web Services Japan
 
PDF
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Web Services Japan
 
PPTX
20220409 AWS BLEA 開発にあたって検討したこと
Amazon Web Services Japan
 
PDF
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
Amazon Web Services Japan
 
PDF
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
Amazon Web Services Japan
 
PDF
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
Amazon Web Services Japan
 
PDF
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon Web Services Japan
 
PDF
マルチテナント化で知っておきたいデータベースのこと
Amazon Web Services Japan
 
PDF
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
Amazon Web Services Japan
 
PDF
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
Amazon Web Services Japan
 
PDF
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
Amazon Web Services Japan
 
PDF
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Web Services Japan
 
PDF
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
Amazon Web Services Japan
 
PPTX
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
Amazon Web Services Japan
 
PDF
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
Amazon Web Services Japan
 
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
Amazon Web Services Japan
 
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
Amazon Web Services Japan
 
Infrastructure as Code (IaC) 談義 2022
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
Amazon Web Services Japan
 
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Web Services Japan
 
20220409 AWS BLEA 開発にあたって検討したこと
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
Amazon Web Services Japan
 
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
Amazon Web Services Japan
 
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
Amazon Web Services Japan
 
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon Web Services Japan
 
マルチテナント化で知っておきたいデータベースのこと
Amazon Web Services Japan
 
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
Amazon Web Services Japan
 
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
Amazon Web Services Japan
 
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
Amazon Web Services Japan
 
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
Amazon Web Services Japan
 
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
Amazon Web Services Japan
 
Ad

Recently uploaded (20)

PDF
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
PDF
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PPT
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PDF
TrustArc Webinar - Data Privacy Trends 2025: Mid-Year Insights & Program Stra...
TrustArc
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PDF
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
PPTX
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
TrustArc Webinar - Data Privacy Trends 2025: Mid-Year Insights & Program Stra...
TrustArc
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
Ad

AWS re:Invent 2018 re:cap for Gaming (Amazon Game Developers Day)

  • 1. 8 ,1. 1 1 8 22 1 1 1 10 , 1 8 18 1 : 1 C GA I W SA A F
  • 2. 1 18 ..121 8 22 1 08 , • AWS re:Invent 2018 • A S I • A
  • 3. 1 18 ..121 8 22 1 08 ,
  • 4. 1 18 ..121 8 22 1 08 , v • AWS sl sc bhc I S A ü 2018 11 25 11 30 ü 7 +7 ü 50,000 ü 1,000 ü 2,100 • a c z g m c isd s m g sn t v • re:PLAY f Pub Crawl heg r s osg W
  • 5. 8 , 8 00 12 . 1. AWS RoboMaker MN 2. AWS Amplify Console MN 3. AWS Transfer for SFTP MN 4. AWS DataSync MN 5. AWS S3 Batch Operations MN 6. Amazon S3 Intelligent Tiering MN 7. Amazon EFS Infrequent Access(EFS-IA) MN 8. Snowball Edge Compute Optimized MN 9. Amazon EBSAPIOPS AI 8 1 8 MN
  • 6. 1 18 ..121 8 22 1 08 , ( ) 1. AWS Global Accelerator 2. AWS Transit Gateway 3. Amazon EC2 A1 4. Amazon EC2 C5n 5. Elastic Fabric Adapter 6. Firecracker 7. Dynamic Training for Deep Learning Model 8. AWS IoT Events 9. AWS IoT SiteWise 10. AWS IoT Thing Graph 11. AWS IoT Greengrass 3 12. AWS IoT Device Tester 13. Amazon FreeRTOS Bluetooth Low Energy 14. IoT A3 AWS I S
  • 7. 1 18 ..121 8 22 1 08 , ( ) 15. AWS KMS Custom Key StoreA 16. Amazon S3 Object LockA 17. Amazon S3-Glacier 3 18. Amazon Kinesis Data Analytics Java I A
  • 8. 1 18 ..121 8 22 1 08 , 1. AWS Container Competency I lm 2. AWS Device Qualification Program AWS Partner Device Catalog lm 3. AWS Marketplace W S hg A 4. AWS Marketplace Private Marketplace lm 5. AWS Ground Station lm 6. Amazon Comprehend Medical lm 7. Amazon Translate deAf 8. Amazon QuickSight n b Sa Af 9. Amazon DynamoDB Transactions lm 10. AWS Elemental MediaConnect lm 11. Amazon CloudWatch Logs Insights lm 12. Amazon AthenaAWorkgroupa i 13. AWS CodePipeline ECRAf cACodeDeploy Blue/Green Af 14. Shared VPC lm
  • 9. 1 18 ..121 8 22 1 08 , ( ) 1. Amazon S3 Glacier Deep Archive 2. Amazon FSx for Windows File Server 3. Amazon FSx for Lustre 4. AWS Lake Formation 5. AWS Control Tower 6. AWS Security Hub 7. Amazon Aurora Global Database 8. Amazon DynamoDB Read/Write Capacity On Demand 9. Amazon Timestream 10. Amazon Quantum Ledger Database 11. Amazon Managed Blockchain 12. Amazon Elastic Inference 13. AWS Inferentia 14. Amazon SageMaker Ground Trouth
  • 10. 1 18 ..121 8 22 1 08 , ( ) 15. AWS Marketplace for Machine LearningA 16. Amazon SageMaker RLA 17. Amazon SageMaker 3 W 18. AWS DeepRacerA 19. Amazon TextractA 20. Amazon PersonalizeA 21. Amazon ForecastA 22. AWS OutpostsA 23. AWS License ManagerA 24. AWS Cloud MapA 25. AWS App MeshA 26. Amazon EC2 I A 27. Amazon Lightsail 2 W 28. Amazon RDS on VMware S A
  • 11. 1 18 ..121 8 22 1 08 , 1. Amazon Redshift Concurrency Scaling S 2. PyCharm, IntelliJ, Visual Studio Code AWS Toolkits S 3. AWS Lambda Ruby 4. AWS LambdaACustom Runtimes 5. AWS Lambda Layers S 6. AWS Serverless Application Model I 7. AWS Lambda ALB 8. AWS Step Functions API Connectors S 9. Amazon API Gateway for WebSocket S 10. Amazon Managed Streaming for Kafka S 11. AWS Well-Architected Tool S
  • 12. 1 18 ..121 8 22 1 08 ,
  • 13. , 8 8 00 8 12 8 8 . AD K J • SQL EJava e hm Wf • n em i di E g v N Arz ü Apache Flink ü AWS SDK for Java • Kinesis S3 DynamoDB I AWSW c t E Java S E Cassandra RabbitMQ I OSS t rz • b a l m im s hm o rz
  • 14. ( 2E 1 3 0 D A A 2 2 A ( 8 A A D A P Q . 1 • i eus m 1 3 ü W I a ü 0 8 W ) • L ,Mr gWc dcl Q ou ü ,r gWz z ü ,r gW W ü nvkb SNt h f
  • 15. , 8 8 00 8 12 8 8 . A C • AWS W A b l o a cs z Wnv d b me • CloudWatch Logs g e n vh mdr t f EW • Dashboard W NS • ds e i h I $0.0076/GB( )N W
  • 16. , 8 8 00 8 12 8 8 . 1 A • S3 g i h S z E N I b l S I A • AWS Lake FormationSCloudFormation g b l ovnds I g NE • AWS gf e W gva g m i cs • o nr Lake Formation S N tf e I
  • 17. , 8 8 00 8 12 8 8 . A • Apache Kafka E ao h i l v Apache Kafka gc b d t • r IKafka n t Kafkav eo m IA • E S z Kinesis Data Streams ndo NW a s f I I • e d
  • 18. 1 18 ..121 8 22 1 08 ,
  • 19. , 8 8 00 8 12 8 8 . 3 B 3 A • r E W g mh AA i I veN Batch Operations c a fl st • S3 n W N E c bd b o S N I ü ACL Glacier ü CSV S3 ü CloudTrail
  • 20. 8. 2 2 02 0 . . 2 2 2 21 , A 3 • S3 PUT t bc a ib I Glacier o v S3 lb ahm f hm A d ahm Glacier ib S • S3-Glacier ea c v SNS/SQS E r W g m E • n rI bc ATUs P U I f hm z TD P ü ü Queue ,
  • 21. , 8 8 00 8 12 8 8 . ( ) 3, 3 ) 3 ( , , • S3 WORMW Wm nb 2 e vE • • IAM • Object Lock f cd o r g l t W IS h d o s • ni na eN A s z W Bucket with objects
  • 22. , 8 0 0 4.0 . 8 4 ,114 4, 0 42 0 0 0 G AD 3 • I E E S I hAe Glacierv • E oh ctgtf A m z sa E bAd N • hAe W v E E l A W W I • nr tdoti 2019
  • 23. , 8 8 00 8 12 8 8 . A F • AZ E me n s S3 d W e • Windowsf E DFS Replication Active Directory z Ib ihna W • 10GB/s l e a g mS n E l e aI v s • aIo NArtId c ü 1GB $0.13/ ü 1MBps $2.2/ ü 1GB $0.050/
  • 24. 1 18 ..121 8 22 1 08 ,
  • 25. , 8 8 00 8 12 8 8 . A • ISN m b af I cvz (Custom Terminology) N • n N g E hNl r A I rN cvz g iSI • cvz TMX I CSV m o Wd t s edf https://docs.aws.amazon.com/translate/latest/dg/creating-custom-terminology.html
  • 26. 1 . E C C 88 C C C E E E GI C AE 2 E • XE 0 r NS eg e gih W c oe ü eia1.medium: 8TFLOPs(Mixed precision) ü eia1.large: 16TFLOPs(Mixed precision) ü eia1.xlarge: 32TFLOPs(Mixed precision) • A 2 W, 2I/ C 8 cp . O P M XTU • n dl Iawb I vt kIam aI f vI ds z 1
  • 27. , 8 8 00 8 12 8 8 . LA • t b z N N S 3rd partyE s W o • SageMakerE s W z md g mc r W • 200n z l h zv ib lE meafI WS E A EN ü ü ü
  • 28. , 8 8 00 8 12 8 8 . A • t S N E Wiba f c gm S N • v Sc do A l v S t N • N r • hne OCR N N z S r I szS z
  • 29. , 8 8 00 8 12 8 8 . • s zv E AN t I • s E fb A W N hloA m rN • Open AI Gym/Intel Coach/RLLib MXNet Tensorflow E ce ai ce S gAd • SageMaker N nA m
  • 30. , 8 8 00 8 12 8 8 . A • Amazon A v i s lvf a nb I l vfa NI N • i e IW b ENm dlt c E W • r Si e I z h g E IW A • NSovn fo i e v TPS z
  • 31. , 8 8 00 8 12 8 8 . A • h lvc W iAf Amazon gc I z • I iAf rn g S E • a eAt I z s dW • b o m A W iAf N S
  • 32. , 8 8 00 8 12 8 8 . A D / 8 1 • z IA s cf N Ad daf N v E W • AWS DeepRacer NSDK lmr b eg a S hc • SageMaker RL Wz AWS RoboMaker W3D lmr nt W • io t to tNDeepRacer
  • 33. 1 18 ..121 8 22 1 08 ,
  • 34. , 8 8 00 8 12 8 8 . • Cloud9dA N me fglA hn cmS WAb • ROS(Robot Operating System) AWS t z WAb r ROS a A o I • fglA hn 1SU(Simulation Unit) E A $0.40/ WAb • A l n S in v A h n s 2019
  • 35. 1 18 ..121 8 22 1 08 ,
  • 36. , 8 8 00 8 12 8 8 . • CubeSat/PocketQube N n stN n A N S e • n A E d EC2 Ib io Kinesis Data Streams Redshift S3 Nz e I S • NORAD ID FCCNg N S AWSa f c • S I 2 2019 12 Im • v W h r E l v
  • 37. 1 18 ..121 8 22 1 08 ,
  • 38. , 8 8 00 8 12 8 8 . A • AWSb We cdi W a v l t AE f s m I • r g IPS iW A A ni h ALB/NLB/EIPI A • o 8 i h m • 2 z Ns ü Global Accelerator : $0.025/Accelerator/ ü : IN/OUT APAC $0.015/GB $0.015/GB $0.035/GB $0.015/GB $0.015/GB $0.043/GB APAC $0.012/GB $0.043/GB $0.010/GB
  • 39. , 8 8 00 8 12 8 8 . A C G • big oAc IW N VPC IW • CloudWatch W gn a VPC Flow Logs Ag SG/NACL W St • Transit Gateway s N 50Gbps hAaggmi e EW • Direct Connect TGW cedIW EN r v • znA l fAc 2 NW
  • 40. , 8 8 00 8 12 8 8 . C A • e i d Nl rt SN d S AS E nv SN d aW ch • d Ni f d bg d aW chN • SDK/CLI DNS z m d Cloud Map z E SE m • Ih $0.10/ oNaW chAPI $1.00N s
  • 41. , 8 8 00 8 12 8 8 . A • AWS o crd me W d me • o crd me bicg A d me E S E N z I v E t S • App Mesh a nsf e Envoy Proxy ASa nf eh l • App Mesh
  • 42. , 8 8 00 8 12 8 8 . A • WebSocket m na l v z A API API GatewayN • hn e dNWebSocketi API I • fb od SAWS Lambda S AWS g EC2i W s od oc NE • r t S
  • 43. 1 18 ..121 8 22 1 08 ,
  • 44. 8 ,1. 1 /1 8/ 22 1 1 1 10 A C A • m Web e i w q S nc N p • Amplify Console N W E z q N f nq w qa rS nca r Wp • v r $0.01/ y o d W q $0.023/GB p l $0.15/GB I • s b g r bt b irs W , hz qN w c : 8 / : 2A / 8 1 2
  • 45. 1 18 ..121 8 22 1 08 ,
  • 46. , 8 8 00 8 12 8 8 . 3 • S3 API IW N E SFTP S3g cd ba W z IAM o n IW • hn f e a n s AW • ei d $0.30/ UP/DOWN $0.04/GB IS m l v • t IS m l r
  • 47. , 8 8 00 8 12 8 8 . • b sh s lc g d NS3S EFSN I b s h msfisc • t v rh b sh 10Gbps E crehos NW a h • 1GB $0.04 A o bn s • z o bns
  • 48. 1 18 ..121 8 22 1 08 ,
  • 49. , 8 8 00 8 12 8 8 . • i g d bgz t e cg W bgr • s 2 f bg E v10 S aI4MB NhA ü TransactWriteItems: PutItem/UpdateItem/DeleteItem ü TransactGetItems: GetItem Read • o n m ld bg
  • 50. , 8 8 00 8 12 8 8 . DA G • Amazon Aurora(MySQL ) bo gsl W Aurora Global DatabaseN c • t sl ao cf s b I v 1 s e a z N A • mibn f d rS SDK/CLI • bh s r g bo E Writer Reader
  • 51. , 8 8 00 8 12 8 8 . BA C D / • h m ga I c eS a eh Ss n i • On-Demandn i Sec rb E S l a S f e • Provisioned Capacityn i zN On-Demand 1 S1v • W dor t S $1.25/1M write request unit $0.25/1M read request unit A d
  • 52. , 8 8 00 8 12 8 8 . A • IoTim eE SfvcvaiAg Sh so riAg nrbAc v lgrva iAg E S • Amazon Timestream iAg E z N W N SiAg N RDBS1/10S • S SiAg W A tA • Write/Queryr e e sAd I e sAd Memory/SSD/MagneticS3
  • 53. , 8 8 00 8 12 8 8 . BA D )( ) ) • rzdAf lAi EN W m a c sz I lAisAheAoh • S gvAn EN W • SQL b b z etAm b A A AbN • r o A I/O W gvAn hm Ag l bhhm Ag
  • 54. 1 18 ..121 8 22 1 08 ,
  • 55. , 8 8 00 8 12 8 8 . A 2 C 2 • g hfA mo ln d a z oacoa r • Ah W in A mo W N E oacoa W • g hfA mo oacoa b v W NS ln bNEBS I t S s W • M3/M4/M5/C3/C4/C5/R3/R4/R5 oacoa r Windows ServerNAmazon Linux 1 Ae Amazon Linux 2
  • 56. N , C ME 8 6 G A 2 EG AI ABA I BB GA I G G 2 C E 1 G • bg Pum cd Pt f o Pt b mn m • v z W SU 45% h mp • Amazon Linux 2, RHEL, Ubuntu AMI xPp • tPlra e i ab esbe 4 08 A /5 1A. 0.6 1 48 1 hmp $ C A C 3 ( 3 B G ) 3 ( 3 B G ) , 3 ( 3 B G , 3 ( 3 ) ) B G ( ( 3 ) ,
  • 57. M C9 E 8 6 G A 2 EG AI 9 ABA9I BB GA I G G EG 0 5 21 C C 5 • mn Pg tnz mg a Pg Po NC5 mn Pg c SUC5nc P l • c aU ENAoxes 1 mi W 10Gbps/5Gbps U N a • b N P EC2 S3/RDS/EMR 100GbpsW • sP pdNf h Ndezx oN frefNGovCloud(US-West) 4 08 A 57 v 1A. 0.6 1 48 1 ( B9G ( ( 39 ( 39 ( ( B9G ( 39 ( 39 ( ( B9G 39 ( 39 ( ( B9G ) ( 39 ( ( , B9G ) ,) ( ( B9G ,
  • 58. , 8 8 00 8 12 8 8 . • fi sdAb A c r sf KVMf tanAb o tVMf ta • Lambda Fargate v N S • z 125ms o tVM I W E5MiB s A Ameh • Al dAblta g https://github.com/firecracker-microvm/firecracker
  • 59. , 8 0 0 .0 . 8 ,11 , 0 2 0 0 0 • AWS Lambda S Ruby d A I E • cg hI aL fN ü Python 2.7, 3.6, 3.7 ü Node.js 4.3, 6.10, 8.10 ü .NET Core 1.0(C#), 2.0(C#), 2,1(C#/PowerShell) ü Go 1.x ü Java 8 ü Ruby • , ,A hIeW i b Lambda Function
  • 60. L BA : : H 8:E .A8 B E :E E :E: H: C A C 0 , • Linux zt o ifne W r eLambdau ev ScaP • ppOh d Runtime API a s NRuby gmO ac • x b+ E ppOhe NlO O b 2-2 , A , +1 1/R w d c • + E 1 c ü CE 8B IE E IE 8CC A : ü https://github.com/awslabs/aws-lambda-rust-runtime
  • 61. , 8 8 00 8 12 8 8 . • ALB hea ng Lambdai nacln I Lambda HTTP ng nf • t Web mb cln Lambdai nacln W E • i naclnSALB N Nv A S o • ALB Lambda r m dlnN sz
  • 62. , 8 8 00 8 12 8 8 . A • z i bma o i bma v I • AMI Launch Template A I Ndic m dic m mflga Ae W n • vCPU I Dedicated I Ni bma S t • A hm s r A hm E N N
  • 63. 1 18 ..121 8 22 1 08 ,
  • 64. , 8 8 00 8 12 8 8 . • AWS Marketplacel ohf E d ig N A N A r IWv S • A b mcg f ena W N W • AWS Organization W ogs W • Private Marketplace dig zt
  • 65. 1 18 ..121 8 22 1 08 ,
  • 66. 8. 2 2 02 0 . . 2 2 2 21 / / CD E BA , / E , / / • AWS CodePipeline Amazon ECRU A c Ir DS • o AWS CodeDeploy Amazon ECS AWS Fargate Blue/Green c d g • ET ef cAUlm DS • ECR • CodePipeline • CodeBuild • CodeDeploy Blue/Green • n UiPhbAWad r g ,
  • 67. , 8 8 00 8 12 8 8 . , A C • s EIDE W i cg f o z g f t E c S n AWS Toolkits • Apache License, Version 2.0 N c • PyCharmr GA IntelliJ Visual Studio Coder d a cibe l I • AWS Serverless Application Model(SAM) CLI mv E S hA
  • 68. 1 18 ..121 8 22 1 08 ,
  • 69. , 8 8 00 8 12 8 8 . H EB A / / / • ie em W oc an z N v Amazon Managed Blockechain S s • a f t E aio ho r I • Amazon Quantum Ledger Database em W oN d alobN • fldg AI Web https://aws.amazon.com/managed-blockchain/
  • 70. 1 18 ..121 8 22 1 08 ,
  • 71. 2 1 / : A , :BA 2 : :2B A :8 BA A 1 • Nb VPCVpdtwh P a VPC • 1VPC PaNV i m s AWSdgewnc n z c a • VPC f o VPCvru (RouteTable Subnet W)c I Security Group tl c S • Padgewn AWS Organizationh u a a - 1 / 2 0. C B C B BB A A 2EA 2 2 2B AB CA 8C: A 2 : 8 B
  • 72. , 8 8 00 8 12 8 8 . - A • Well-ArchitectedhrA sA af N agio f a N WE IW S • SA z N baltg eA SmA c d W A ntS af c d v
  • 73. 1 18 ..121 8 22 1 08 , 8 1 02 https://amzn.to/2R23scQhttps://amzn.to/2S4F1eN
  • 74. . . 2,.8 , 2 8 2 2 .8 201 8 .8. .- . ,12 ., .- A n : ]m[e : cb • W S h A • S j S . / - - ( a)S
  • 75. 2 8 8 , ! 8 00 ! 12 .!