SlideShare a Scribd company logo
Basic Logic Gates
Basic Logic Gates
        and Basic Digital Design
•   NOT, AND, and OR Gates
•   NAND and NOR Gates
•   DeMorgan’s Theorem
•   Exclusive-OR (XOR) Gate
•   Multiple-input Gates
NOT Gate -- Inverter
                X      Y
                0      1
                1      0
NOT
• Y = ~X      (Verilog)
• Y = !X      (ABEL)
• Y = not X   (VHDL)
• Y = X’
•Y = X
•Y = X        (textook)
• not(Y,X)    (Verilog)
NOT

X     ~X       ~~X = X



    X ~X ~~X
    0 1 0
    1 0 1
AND Gate
       AND
                      X    Y   Z
X                     0    0   0
                      0    1   0
                 Z
                      1    0   0
Y                     1    1   1

    Z = X & Y
AND
•X & Y      (Verilog and ABEL)
• X and Y   (VHDL)
   V
•X    Y
   U
•X    Y
•X * Y
• XY            (textbook)
• and(Z,X,Y)    (Verilog)
OR Gate
    OR
                  X   Y   Z
X                 0   0   0
            Z     0   1   1
Y                 1   0   1
                  1   1   1
Z = X | Y
OR
•X | Y        (Verilog)
•X # Y        (ABEL)
• X or Y      (VHDL)
•X + Y        (textbook)
•X V Y
•X U Y
• or(Z,X,Y)   (Verilog)
Basic Logic Gates
         and Basic Digital Design
•   NOT, AND, and OR Gates
•   NAND and NOR Gates
•   DeMorgan’s Theorem
•   Exclusive-OR (XOR) Gate
•   Multiple-input Gates
NAND Gate
       NAND
                       X   Y   Z
X                      0   0   1
                       0   1   1
                   Z
                       1   0   1
Y                      1   1   0

    Z = ~(X & Y)
    nand(Z,X,Y)
NAND Gate
           NOT-AND
                            X   Y   W   Z
X                           0   0   0   1
                W           0   1   0   1
                        Z
                            1   0   0   1
Y                           1   1   1   0

    W = X & Y

    Z = ~W = ~(X & Y)
NOR Gate
    NOR
                   X   Y   Z
X                  0   0   1
               Z   0   1   0
Y                  1   0   0
                   1   1   0
Z = ~(X | Y)
nor(Z,X,Y)
NOR Gate
     NOT-OR
                        X   Y   W   Z
X                       0   0   0   1
            W       Z   0   1   1   0
Y                       1   0   1   0
                        1   1   1   0
W = X | Y

Z = ~W = ~(X | Y)
Basic Logic Gates
         and Basic Digital Design
•   NOT, AND, and OR Gates
•   NAND and NOR Gates
•   DeMorgan’s Theorem
•   Exclusive-OR (XOR) Gate
•   Multiple-input Gates
NAND Gate
 X               Z           X             Z
                     =
 Y                           Y

Z = ~(X & Y)             Z = ~X | ~Y

 X   Y   W   Z           X   Y ~X ~Y   Z
 0   0   0   1           0   0 1 1     1
 0   1   0   1           0   1 1 0     1
 1   0   0   1           1   0 0 1     1
 1   1   1   0           1   1 0 0     0
De Morgan’s Theorem-1

~(X & Y) = ~X | ~Y
• NOT all variables
• Change & to | and | to &
• NOT the result
NOR Gate
X                       X
                Z                         Z
Y                       Y

Z = ~(X | Y)         Z = ~X & ~Y

    X   Y   Z       X       Y ~X ~Y   Z
    0   0   1       0       0 1 1     1
    0   1   0       0       1 1 0     0
    1   0   0       1       0 0 1     0
    1   1   0       1       1 0 0     0
De Morgan’s Theorem-2

~(X | Y) = ~X & ~Y
• NOT all variables
• Change & to | and | to &
• NOT the result
De Morgan’s Theorem
•   NOT all variables
•   Change & to | and | to &
•   NOT the result
•   --------------------------------------------
•   ~X | ~Y = ~(~~X & ~~Y) = ~(X & Y)
•   ~(X & Y) = ~~(~X | ~Y) = ~X | ~Y
•   ~X & !Y = ~(~~X | ~~Y) = ~(X | Y)
•   ~(X | Y) = ~~(~X & ~Y) = ~X & ~Y
Basic Logic Gates
        and Basic Digital Design
•   NOT, AND, and OR Gates
•   NAND and NOR Gates
•   DeMorgan’s Theorem
•   Exclusive-OR (XOR) Gate
•   Multiple-input Gates
Exclusive-OR Gate

    XOR
                  X Y   Z
X
             Z     0 0 0
Y
                   0 1 1
Z = X ^ Y          1 0 1
xor(Z,X,Y)
                  1 1 0
XOR
•X ^ Y      (Verilog)
•X $ Y      (ABEL)
•X @ Y
gX ⊕ Y         (textbook)
• xor(Z,X,Y)   (Verilog)
Exclusive-NOR Gate

    XNOR
                   X Y     Z
X
               Z   0   0   1
Y
                   0   1   0
Z = ~(X ^ Y)       1   0   0
Z = X ~^ Y         1   1   1
xnor(Z,X,Y)
XNOR
• X ~^ Y     (Verilog)
• !(X $ Y)   (ABEL)
•X @ Y
gX e Y
• xnor(Z,X,Y)   (Verilog)
Basic Logic Gates
         and Basic Digital Design
•   NOT, AND, and OR Gates
•   NAND and NOR Gates
•   DeMorgan’s Theorem
•   Exclusive-OR (XOR) Gate
•   Multiple-input Gates
Multiple-input Gates

     Z1                Z2




     Z3                Z4
Multiple-input AND Gate

                           Z1



Output Z 1 is HIGH only if all inputs are HIGH


 An open input will float HIGH
Multiple-input OR Gate

                            Z2




Output Z 2 is LOW only if all inputs are LOW
Multiple-input NAND Gate

                             Z3




Output Z 3 is LOW only if all inputs are HIGH
Multiple-input NOR Gate

                              Z4




Output Z 4 is HIGH only if all inputs are LOW

More Related Content

PPTX
Basic Logic gates
Nong Aquino jr.
 
PPTX
Logic gates and NAND and NOR univarsal gates
Dhwanil Champaneria
 
PPTX
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Satya P. Joshi
 
PPT
Combinational circuits
SARITHA REDDY
 
PPTX
Logic Gates
Adeel Rasheed
 
PPTX
Basics of digital electronics
shalet kochumuttath Shaji
 
PPTX
Universal gates electronic
Sooraj Maurya
 
PPTX
BOOLEAN ALGEBRA AND LOGIC GATE
Tamim Tanvir
 
Basic Logic gates
Nong Aquino jr.
 
Logic gates and NAND and NOR univarsal gates
Dhwanil Champaneria
 
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Satya P. Joshi
 
Combinational circuits
SARITHA REDDY
 
Logic Gates
Adeel Rasheed
 
Basics of digital electronics
shalet kochumuttath Shaji
 
Universal gates electronic
Sooraj Maurya
 
BOOLEAN ALGEBRA AND LOGIC GATE
Tamim Tanvir
 

What's hot (20)

PPT
Digital Logic circuit
kavitha muneeshwaran
 
PPTX
Logic gates
Asuquo Asuquo
 
PPTX
Registers
Sanjeev Patel
 
PPT
Eigen values and eigenvectors
Amit Singh
 
PPT
Logic gates
prasanna chitra
 
PPT
Arithmetic operator
Jordan Delacruz
 
PPTX
SOP POS, Minterm and Maxterm
Self-employed
 
PPTX
COUNTERS(Synchronous & Asynchronous)
Sairam Adithya
 
PPTX
Logic gates
Niläńjäň Ghóšh
 
PPTX
What are Flip Flops and Its types.
Satya P. Joshi
 
PPTX
Logic gates
THE CREATORS ACADEMY
 
PPTX
Nand and nor as a universal gates
Kaushal Shah
 
PPTX
K - Map
Abhishek Choksi
 
PPTX
Logic gates ppt
parassini
 
PPT
Logic gates presentation
priyanka bisarya
 
PPT
Booths Multiplication Algorithm
knightnick
 
PPTX
Encoders and decoders
Gaditek
 
PPT
Boolean algebra And Logic Gates
Kumar
 
PPT
Booth Multiplier
Sudhir Kumar
 
PPTX
Combinational circuit
Satya P. Joshi
 
Digital Logic circuit
kavitha muneeshwaran
 
Logic gates
Asuquo Asuquo
 
Registers
Sanjeev Patel
 
Eigen values and eigenvectors
Amit Singh
 
Logic gates
prasanna chitra
 
Arithmetic operator
Jordan Delacruz
 
SOP POS, Minterm and Maxterm
Self-employed
 
COUNTERS(Synchronous & Asynchronous)
Sairam Adithya
 
What are Flip Flops and Its types.
Satya P. Joshi
 
Nand and nor as a universal gates
Kaushal Shah
 
K - Map
Abhishek Choksi
 
Logic gates ppt
parassini
 
Logic gates presentation
priyanka bisarya
 
Booths Multiplication Algorithm
knightnick
 
Encoders and decoders
Gaditek
 
Boolean algebra And Logic Gates
Kumar
 
Booth Multiplier
Sudhir Kumar
 
Combinational circuit
Satya P. Joshi
 
Ad

Viewers also liked (7)

PPTX
Transistor as an amplifier
Anshu Kumar
 
PPTX
Number system
Palash Sachan
 
PPT
number system school ppt ninth class
Manan Jain
 
PPTX
Computer number systems
Revi Shahini
 
PPT
Number System
samarthagrawal
 
PPT
3.bipolar junction transistor (bjt)
firozamin
 
PPTX
Transistors ppt by behin
Behin anben
 
Transistor as an amplifier
Anshu Kumar
 
Number system
Palash Sachan
 
number system school ppt ninth class
Manan Jain
 
Computer number systems
Revi Shahini
 
Number System
samarthagrawal
 
3.bipolar junction transistor (bjt)
firozamin
 
Transistors ppt by behin
Behin anben
 
Ad

Similar to Basic logic gates (20)

PPT
digital logic circuits, digital component
Rai University
 
PPT
Bca 2nd sem-u-1.6 digital logic circuits, digital component
Rai University
 
PPT
B.sc cs-ii-u-1.6 digital logic circuits, digital component
Rai University
 
PPT
BasicLogicGates.ppt
PiyushGupta632209
 
PPT
lab1_basic logic gates.ppt
ssuserd2f50d
 
PPT
Logic gates
Dwij Barad
 
PPT
Logic gates
Dwij Barad
 
PPTX
Digital electronics
RaviGhael
 
PPTX
B sc cs i bo-de u-ii logic gates
Rai University
 
PPTX
Computer System Architecture lecture 12 GLAU
kajalaman434
 
PPTX
Logic gates
Nisarg Amin
 
PDF
7.digital basicsa
Chethan Nt
 
PDF
Copy of 7.digital basicsa
Chethan Nt
 
PPTX
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Satya P. Joshi
 
PDF
logic gates
MohiniChorat
 
DOCX
Name dld preparation
Padam Rai
 
PPTX
Logical operations & boolean algebra
Andrei Jechiu
 
PPTX
Logic gate
GargiKhanna1
 
PPTX
Logic Gates
GargiKhanna1
 
digital logic circuits, digital component
Rai University
 
Bca 2nd sem-u-1.6 digital logic circuits, digital component
Rai University
 
B.sc cs-ii-u-1.6 digital logic circuits, digital component
Rai University
 
BasicLogicGates.ppt
PiyushGupta632209
 
lab1_basic logic gates.ppt
ssuserd2f50d
 
Logic gates
Dwij Barad
 
Logic gates
Dwij Barad
 
Digital electronics
RaviGhael
 
B sc cs i bo-de u-ii logic gates
Rai University
 
Computer System Architecture lecture 12 GLAU
kajalaman434
 
Logic gates
Nisarg Amin
 
7.digital basicsa
Chethan Nt
 
Copy of 7.digital basicsa
Chethan Nt
 
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
Satya P. Joshi
 
logic gates
MohiniChorat
 
Name dld preparation
Padam Rai
 
Logical operations & boolean algebra
Andrei Jechiu
 
Logic gate
GargiKhanna1
 
Logic Gates
GargiKhanna1
 

More from Kumar (20)

PPT
Graphics devices
Kumar
 
PPT
Fill area algorithms
Kumar
 
PDF
region-filling
Kumar
 
PDF
Bresenham derivation
Kumar
 
PPT
Bresenham circles and polygons derication
Kumar
 
PPTX
Introductionto xslt
Kumar
 
PPTX
Extracting data from xml
Kumar
 
PPTX
Xml basics
Kumar
 
PPTX
XML Schema
Kumar
 
PPTX
Publishing xml
Kumar
 
PPTX
DTD
Kumar
 
PPTX
Applying xml
Kumar
 
PPTX
Introduction to XML
Kumar
 
PDF
How to deploy a j2ee application
Kumar
 
PDF
JNDI, JMS, JPA, XML
Kumar
 
PDF
EJB Fundmentals
Kumar
 
PDF
JSP and struts programming
Kumar
 
PDF
java servlet and servlet programming
Kumar
 
PDF
Introduction to JDBC and JDBC Drivers
Kumar
 
PDF
Introduction to J2EE
Kumar
 
Graphics devices
Kumar
 
Fill area algorithms
Kumar
 
region-filling
Kumar
 
Bresenham derivation
Kumar
 
Bresenham circles and polygons derication
Kumar
 
Introductionto xslt
Kumar
 
Extracting data from xml
Kumar
 
Xml basics
Kumar
 
XML Schema
Kumar
 
Publishing xml
Kumar
 
DTD
Kumar
 
Applying xml
Kumar
 
Introduction to XML
Kumar
 
How to deploy a j2ee application
Kumar
 
JNDI, JMS, JPA, XML
Kumar
 
EJB Fundmentals
Kumar
 
JSP and struts programming
Kumar
 
java servlet and servlet programming
Kumar
 
Introduction to JDBC and JDBC Drivers
Kumar
 
Introduction to J2EE
Kumar
 

Basic logic gates

  • 2. Basic Logic Gates and Basic Digital Design • NOT, AND, and OR Gates • NAND and NOR Gates • DeMorgan’s Theorem • Exclusive-OR (XOR) Gate • Multiple-input Gates
  • 3. NOT Gate -- Inverter X Y 0 1 1 0
  • 4. NOT • Y = ~X (Verilog) • Y = !X (ABEL) • Y = not X (VHDL) • Y = X’ •Y = X •Y = X (textook) • not(Y,X) (Verilog)
  • 5. NOT X ~X ~~X = X X ~X ~~X 0 1 0 1 0 1
  • 6. AND Gate AND X Y Z X 0 0 0 0 1 0 Z 1 0 0 Y 1 1 1 Z = X & Y
  • 7. AND •X & Y (Verilog and ABEL) • X and Y (VHDL) V •X Y U •X Y •X * Y • XY (textbook) • and(Z,X,Y) (Verilog)
  • 8. OR Gate OR X Y Z X 0 0 0 Z 0 1 1 Y 1 0 1 1 1 1 Z = X | Y
  • 9. OR •X | Y (Verilog) •X # Y (ABEL) • X or Y (VHDL) •X + Y (textbook) •X V Y •X U Y • or(Z,X,Y) (Verilog)
  • 10. Basic Logic Gates and Basic Digital Design • NOT, AND, and OR Gates • NAND and NOR Gates • DeMorgan’s Theorem • Exclusive-OR (XOR) Gate • Multiple-input Gates
  • 11. NAND Gate NAND X Y Z X 0 0 1 0 1 1 Z 1 0 1 Y 1 1 0 Z = ~(X & Y) nand(Z,X,Y)
  • 12. NAND Gate NOT-AND X Y W Z X 0 0 0 1 W 0 1 0 1 Z 1 0 0 1 Y 1 1 1 0 W = X & Y Z = ~W = ~(X & Y)
  • 13. NOR Gate NOR X Y Z X 0 0 1 Z 0 1 0 Y 1 0 0 1 1 0 Z = ~(X | Y) nor(Z,X,Y)
  • 14. NOR Gate NOT-OR X Y W Z X 0 0 0 1 W Z 0 1 1 0 Y 1 0 1 0 1 1 1 0 W = X | Y Z = ~W = ~(X | Y)
  • 15. Basic Logic Gates and Basic Digital Design • NOT, AND, and OR Gates • NAND and NOR Gates • DeMorgan’s Theorem • Exclusive-OR (XOR) Gate • Multiple-input Gates
  • 16. NAND Gate X Z X Z = Y Y Z = ~(X & Y) Z = ~X | ~Y X Y W Z X Y ~X ~Y Z 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0
  • 17. De Morgan’s Theorem-1 ~(X & Y) = ~X | ~Y • NOT all variables • Change & to | and | to & • NOT the result
  • 18. NOR Gate X X Z Z Y Y Z = ~(X | Y) Z = ~X & ~Y X Y Z X Y ~X ~Y Z 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0
  • 19. De Morgan’s Theorem-2 ~(X | Y) = ~X & ~Y • NOT all variables • Change & to | and | to & • NOT the result
  • 20. De Morgan’s Theorem • NOT all variables • Change & to | and | to & • NOT the result • -------------------------------------------- • ~X | ~Y = ~(~~X & ~~Y) = ~(X & Y) • ~(X & Y) = ~~(~X | ~Y) = ~X | ~Y • ~X & !Y = ~(~~X | ~~Y) = ~(X | Y) • ~(X | Y) = ~~(~X & ~Y) = ~X & ~Y
  • 21. Basic Logic Gates and Basic Digital Design • NOT, AND, and OR Gates • NAND and NOR Gates • DeMorgan’s Theorem • Exclusive-OR (XOR) Gate • Multiple-input Gates
  • 22. Exclusive-OR Gate XOR X Y Z X Z 0 0 0 Y 0 1 1 Z = X ^ Y 1 0 1 xor(Z,X,Y) 1 1 0
  • 23. XOR •X ^ Y (Verilog) •X $ Y (ABEL) •X @ Y gX ⊕ Y (textbook) • xor(Z,X,Y) (Verilog)
  • 24. Exclusive-NOR Gate XNOR X Y Z X Z 0 0 1 Y 0 1 0 Z = ~(X ^ Y) 1 0 0 Z = X ~^ Y 1 1 1 xnor(Z,X,Y)
  • 25. XNOR • X ~^ Y (Verilog) • !(X $ Y) (ABEL) •X @ Y gX e Y • xnor(Z,X,Y) (Verilog)
  • 26. Basic Logic Gates and Basic Digital Design • NOT, AND, and OR Gates • NAND and NOR Gates • DeMorgan’s Theorem • Exclusive-OR (XOR) Gate • Multiple-input Gates
  • 27. Multiple-input Gates Z1 Z2 Z3 Z4
  • 28. Multiple-input AND Gate Z1 Output Z 1 is HIGH only if all inputs are HIGH An open input will float HIGH
  • 29. Multiple-input OR Gate Z2 Output Z 2 is LOW only if all inputs are LOW
  • 30. Multiple-input NAND Gate Z3 Output Z 3 is LOW only if all inputs are HIGH
  • 31. Multiple-input NOR Gate Z4 Output Z 4 is HIGH only if all inputs are LOW