DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
        Siddharth Institute of Engineering and Technology
          (Affiliated to J.N.T.UNIVERSITY, ANANTAPUR)
                       Narayanavanam, puttur, AP.




II YEAR BTECH I SEMESTER

 BASIC SIMULATION LAB                                       MANUAL




  PREPARED BY:
VERIFIED BY:




                         LIST OF EXPERIMENTS
   S.No                     Name of the Experiment
          Basic operations on matrices.
    1.
          Generation on various signals and Sequences (periodic and a
          periodic), such as unit impulse, unit step, square, saw tooth,
    2.
          triangular, sinusoidal, ramp, sinc.

          Operations on signals and sequences such as addition,
          multiplication, scaling, shifting, folding, computation of
    3.
          energy and average power.

          Finding the even and odd parts of signal/sequence and real
    4.    and imaginary part of signal.
5.    Convolution between signals and sequences
      Auto correlation and cross correlation between signals and
6.    sequences.

      Verification of linearity and time invariance properties of a
7.    given continuous /discrete system.

      Computation of unit sample, unit step and sinusoidal
      response of the given LTI system and verifying its physical
8.
      Reliability and stability properties.

      Gibbs phenomenon.
9.

      Finding the Fourier transform of a given signal and plotting
10.
         its magnitude and phase spectrum

11. Waveform synthesis using Laplace Transform.

    Locating the zeros and poles and plotting the pole zero maps
12. in s8plane and z8plane for the given transfer function.

    Generation of Gaussian Noise (real and
    complex),computation of its mean, M.S. Value and its skew,
13.
    kurtosis, and PSD, probability distribution function.


14. Sampling theorem verification.

15. Removal of noise by auto correlation/cross correlation.

      Extraction of periodic signal masked by noise using
16.
      correlation.

17. Verification of Weiner8Khinchine relations.


18. Checking a random process for stationary in wide sense.




                                  1
EXP.NO:
1
BASIC OPERATIONS ON MATRICES


Aim: To generate matrix and perform basic operation on matrices Using
MATLAB Software.
EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software

CONCLUSION:

EXP.NO: 2

   GENERATION OF VARIOUS SIGNALS AND SEQUENCES (PERIODIC
       AND APERIODIC), SUCH AS UNIT IMPULSE, UNIT STEP,
         SQUARE, SAWTOOTH, TRIANGULAR, SINUSOIDAL, RAMP,
                            SINC.


Aim: To generate different types of signals Using MATLAB Software.
EQUIPMENTS:
PC with windows
(95/98/XP/NT/2000).
MATLAB Software




Matlab program:

%unit impulse
generation clc
close all
n1=-3;
n2=4;
n0=0;
n=[n1:n
2];
x=[(n-n0)==0]
stem(n,x)




% unit step
generation n1=-4;
n2=5;
n0=0;
9
[y,n]=stepseq(n0,n1,n2);
stem(n,y); xlabel('n') ylabel('amplitude'); title('unit step');
% square wave wave
generator fs = 1000;
t = 0:1/fs:1.5;
x1 = sawtooth(2*pi*50*t); x2 =
square(2*pi*50*t);
subplot(2,2,1),plot(t,x1), axis([0 0.2 -1.2
1.2])
xlabel('Time (sec)');ylabel('Amplitude'); title('Sawtooth Periodic Wave')
subplot(2,2,2),plot(t,x2), axis([0 0.2 -1.2 1.2])
xlabel('Time (sec)');ylabel('Amplitude'); title('Square Periodic Wave');
subplot(2,2,3),stem(t,x2), axis([0 0.1 -1.2 1.2])
xlabel('Time (sec)');ylabel('Amplitude');


% sawtooth wave
generator fs = 10000;
t = 0:1/fs:1.5;
x = sawtooth(2*pi*50*t);
subplot(1,2,1);
plot(t,x), axis([0 0.2 -1
1]);
xlabel('t'),ylabel('x(t)')
title('sawtooth signal');
N=2; fs = 500;n =
0:1/fs:2; x =
sawtooth(2*pi*50*n);
subplot(1,2,2);
stem(n,x), axis([0 0.2 -1
1]);
xlabel('n'),ylabel('x(n)')
title('sawtooth
sequence');

To generate a trianguular pulse
A=2; t = 0:0.0005:1;
x=A*sawtooth(2*pi*5*t,0.25); %5 Hertz wave with duty cycle 25%
plot(t,x);
grid
axis([0 1 -3 3]);


%%To generate a trianguular
pulse fs = 10000;t = -1:1/fs:1;
x1 = tripuls(t,20e-3); x2 = rectpuls(t,20e-3);
subplot(211),plot(t,x1), axis([-0.1 0.1 -0.2 1.2])
xlabel('Time (sec)');ylabel('Amplitude'); title('Triangular Aperiodic Pulse')
subplot(212),plot(t,x2), axis([-0.1 0.1 -0.2 1.2])
xlabel('Time (sec)');ylabel('Amplitude'); title('Rectangular Aperiodic Pulse')
set(gcf,'Color',[1 1 1]),




%%To generate a rectangular pulse
t=-5:0.01:5;
pulse = rectpuls(t,2); %pulse of width 2 time units
plot(t,pulse)
axis([-5 5 -1 2]);
grid
Basic simulation lab manual1
% sinusoidal signal
N=64; % Define Number of samples
n=0:N-1; % Define vector
n=0,1,2,3,...62,63 f=1000; % Define
the frequency
fs=8000; % Define the sampling
frequency x=sin(2*pi*(f/fs)*n); %
Generate x(t) plot(n,x); % Plot x(t) vs.
t
title('Sinewave [f=1KHz,
fs=8KHz]'); xlabel('Sample
Number'); ylabel('Amplitude');




% RAMP
clc
close all
n=input('enter the length of ramp');
t=0:n; plot(t); xlabel('t');
ylabel('amplitude');
title ('ramp')
% sinc
x = linspace(-5,5); y =
sinc(x);
subplot(1,2,1);plot(x,y
) xlabel(‘time’);
ylabel(‘amplitude’);
title(‘sinc function’);
subplot(1,2,2);stem(x,
y); xlabel(‘time’);
ylabel(‘amplitude’);
title(‘sinc function’);
CONCLUSION:
Basic simulation lab manual1
EXP.NO: 3

  OPERATIONS ON SIGNALS AND SEQUENCES SUCH AS ADDITION,
        MULTIPLICATION, SCALING, SHIFTING, FOLDING,
        COMPUTATION OF ENERGY AND AVERAGE POWER

Aim: To perform arithmetic operations different types of signals Using
MATLAB Software.
EQUIPMENTS:
PC with windows
(95/98/XP/NT/2000).
MATLAB Softwar
%plot the 2 Hz sine wave in the top panel
 t = [0:.01:1];         % independent (time) variable
 A = 8;                % amplitude
f1 = 2;               % create a 2 Hz sine wave lasting
 1 sec s1 = A*sin(2*pi*f1*t);
f2 = 6;               % create a 4 Hz sine wave lasting
1 sec s2 = A*sin(2*pi*f2*t);
figure subplot(4,1,1) plot(t, s1)
title('1 Hz sine wave')
ylabel('Amplitude')
%plot the 4 Hz sine wave in the middle panel subplot(4,1,2)
plot(t, s2)
title('2 Hz sine wave')
ylabel('Amplitude')
%plot the summed sine waves in the bottom panel subplot(4,1,3)
plot(t, s1+s2) title('Summed sine waves') ylabel('Amplitude') xlabel('Time (s)')
xmult=s1.*s2;
subplot(4,1,4); plot(xmult); title('multiplication'); ylabel('Amplitude') xlabel('Time (s)')
%signal folding clc; clear all t=0:0.1:10; x=0.5*t; lx=length(x); nx=0:lx-1;
xf=fliplr(x);
nf=-fliplr(nx); subplot(2,1,1); stem(nx,x); xlabel('nx'); ylabel('x(nx)');
title('original signal'); subplot(2,1,2); stem(nf,xf); xlabel('nf'); ylabel('xf(nf)');
title('folded signal');


                                            23
%plot the 2 Hz sine wave scalling

t = [0:.01:1];        % independent (time) variable
 A = 8;               % amplitude
f1 = 2;             % create a 2 Hz sine wave
lasting 1 sec s1 = A*sin(2*pi*f1*t);
subplot(3,2,1) plot(s1); xlabel('t');
ylabel('amplitude'); s2=2*s1; subplot(3,2,2) plot(s2);
xlabel('t');
ylabel('amplitude');
s3=s1/2; subplot(3,2,3) plot(s3); xlabel('t');
ylabel('amplitude'); subplot(3,2,4) stem(s1);
xlabel('t'); ylabel('amplitude'); s2=2*s1; subplot(3,2,5) stem(s2);
xlabel('t'); ylabel('amplitude'); s3=s1/2; subplot(3,2,6) stem(s3);
xlabel('t');
ylabel('amplitude
');




Excersize questions: Sketch the following questions using MATLAB


   1. x(t)= u(-t+1)
2.    x(t)=3r(t-1)
   3.    x(t)=U(n+2-u(n-3)
   4.    x(n)=x1(n)+x2(n)where x1(n)={1,3,2,1},x2(n)={1,-2,3,2}
   5.    x(t)=r(t)-2r(t-1)+r(t-2)
   6.    x(n)=2δ(n+2)-2δ(n-4), -5≤ n ≥5.
   7.    X(n)={1,2,3,4,5,6,7,6,5,4,2,1} determine and plot the following
        sequence a. x1(n)=2x(n-5-3x(n+4))
        b. x2(n)=x(3-n)+x(n)x(n-
                     2)

CONCLUSION: Inthis experiment the various oprations on signals
have been performedUsing MATLAB have been demonstrated.
EXP.NO: 4

 FINDING THE EVEN AND ODD PARTS OF SIGNAL/SEQUENCE AND
           REAL AND IMAGINARY PART OF SIGNAL

Aim: program for finding even and odd parts of signals Using MATLAB
Software.
EQUIPMENTS:
PC with windows
(95/98/XP/NT/2000). MATLAB
Software


%even and odd signals program:

t=-4:1:4;
 h=[ 2 1 1 2 0 1 2 2 3 ];
 subplot(3,2,1)
 stem(t,h);
 xlabel('time'); ylabel('amplitude');
 title('signal');
  n=9;
for i=1:9 x1(i)=h(n); n=n-1;
end subplot(3,2,2)
stem(t,x1);
xlabel('time'); ylabel('amplitude');
title('folded
signal'); z=h+x1
subplot(3,2,3);
stem(t,z);
 xlabel('time');
ylabel('amplitude'); title('sum
of two signal'); subplot(3,2,4);
stem(t,z/2);
xlabel('time'); ylabel('amplitude');
title('even
 signal'); a=h-
 x1;
 subplot(3,2,5);
 stem(t,a);
 xlabel('time'); ylabel('amplitude');
title('difference of two signal');
 subplot(3,2,6);
stem(t,a/2);
xlabel('time'); ylabel('amplitude');
title('odd signal');
% energy clc;
close all; clear all; x=[1,2,3]; n=3
e=0;
for i=1:n;
  e=e+(x(i).*x(i));
end

% energy clc;
close all; clear all; N=2 x=ones(1,N) for i=1:N
  y(i)=(1/3)^i.*x(i);
end n=N;
  e=0;
for i=1:n;
  e=e+(y(i).*y(i));
end
%
power
clc;
close all;
clear all;
N=2
x=ones(1,
N) for
i=1:N
   y(i)=(1/3)^i.*x(i);
end
n=
N;
e=0
;
for i=1:n;
  e=e+(y(i).*y(i))
          ;
end
 p=e/(2*N+
 1);


% power
N=input('type a value for
N'); t=-N:0.0001:N;
x=cos(2*pi*50*t).^2;
disp('the calculated power p of the
signal is'); P=sum(abs(x).^2)/length(x)
plot(t,x);
axis([0 0.1 0 1]);
disp('the theoretical power of the
signal is'); P_theory=3/8


CONCLUSION:
EXP.NO:
5                            LINEAR CONVOLUTION

Aim: To find the out put with linear convolution operation Using MATLAB
Software.
EQUIPMENTS:
PC with windows
(95/98/XP/NT/2000). MATLAB
Software


Program:
clc;
close all;
clear all;
x=input('enter input
sequence'); h=input('enter
impulse response');
y=conv(x,h);
subplot(3,1,1);
stem(x);
xlabel('n');ylabel('x(n)'
); title('input signal')
subplot(3,1,2);
stem(h);
xlabel('n');ylabel('h(n)'
); title('impulse
response')
subplot(3,1,3);
stem(y);
xlabel('n');ylabel('y(n)')
; title('linear
convolution')
disp('The resultant signal is');
disp(y)


linear convolution
output:
enter input sequence[1 4 3
2] enter impulse response[1
0 2 1] The resultant signal
is
   1 4 5 11 10 7 2
CONCLUSION:
EXP.NO: 6

6. AUTO CORRELATION AND CROSS CORRELATION BETWEEN
SIGNALS AND SEQUENCES.
………………………………………………………………………………………………
Aim: To compute auto correlation and cross correlation between signals and
sequences
EQUIPMENTS:
      PC with windows
      (95/98/XP/NT/2000). MATLAB
      Software

% Cross
Correlation clc;
close all;
clear all;
x=input('enter input sequence');
h=input('enter the impulse suquence');
subplot(3,1,
1); stem(x);
xlabel('n');
ylabel('x(n)');
title('input signal');
subplot(3,1,
2); stem(h);
xlabel('n');
ylabel('h(n)');
title('impulse
signal');
y=xcorr(x,h);
subplot(3,1,3);
stem(y);
xlabel('n');
ylabel('y(n)');
disp('the resultant signal is');
disp(y);
title('correlation signal');
Basic simulation lab manual1
% auto
correlation clc;
close all;
clear all;
x = [1,2,3,4,5]; y = [4,1,5,2,6];
subplot(3,1,
1); stem(x);
xlabel('n');
ylabel('x(n)');
title('input
signal');
subplot(3,1,2);
stem(y);
xlabel('n');
ylabel('y(n)');
title('input
signal');
z=xcorr(x,x);
subplot(3,1,3);
stem(z);
xlabel('n');
ylabel('z(n)');
title('resultant signal signal');
CONCLUSION: In this experiment correlation of various signals
have been performed Using MATLAB

Applications:it is used to measure the degree to which the two signals are
similar and it is also used for radar detection by estimating the time delay.it
is also used in Digital communication, defence applications and sound
navigation

Excersize questions: perform convolution between the following signals
   1. X(n)=[1 -1 4 ], h(n) = [ -1 2 -3 1]
   2. perform convolution between the. Two periodic
       sequences x1(t)=e-3t{u(t)-u(t-2)} , x2(t)= e -3t
       for 0 ≤ t ≤ 2
EXP.NO: 7

 VERIFICATION OF LINEARITY AND TIME INVARIANCE PROPERTIES OF A
GIVEN CONTINUOUS /DISCRETE SYSTEM.


Aim: To compute linearity and time invariance properties of a given continuous
/discrete system

EQUIPMENTS:

PC with windows (95/98/XP/NT/2000).
MATLAB Software


Program1:
clc;
clear all;
close all;
n=0:40; a=2; b=1;
x1=cos(2*pi*0.1*n);
x2=cos(2*pi*0.4*n);
x=a*x1+b*x2; y=n.*x;
y1=n.*x1;
y2=n.*x2;
yt=a*y1+b*y2;
d=y-yt;
d=round(
d) if d
  disp('Given system is not satisfy linearity property');
else
  disp('Given system is satisfy linearity property');
end
subplot(3,1,1), stem(n,y);
grid subplot(3,1,2),
stem(n,yt); grid
subplot(3,1,3), stem(n,d);
grid




Program2:

clc;
clear all;
close all;
n=0:40; a=2; b=-
3;
x1=cos(2*pi*0.1*n)
;
x2=cos(2*pi*0.4*n)
; x=a*x1+b*x2;
y=x.^2;
y1=x1.^2;
y2=x2.^2;
yt=a*y1+b*y2
;
d=y-yt;
d=round(d
); if d
   disp('Given system is not satisfy linearity property');
else
   disp('Given system is satisfy linearity property');
end
subplot(3,1,1), stem(n,y); grid
subplot(3,1,2), stem(n,yt); grid
subplot(3,1,3), stem(n,d); grid




Program
clc;
close all;
clear all;
x=input('enter the sequence');
N=length(x);
n=0:1:N-1;
y=xcorr(x,x);
subplot(3,1,
1); stem(n,x);
xlabel(' n----->');ylabel('Amplitude--->');
title('input
seq');
subplot(3,1,2);
N=length(y);
n=0:1:N-1;
stem(n,y);
xlabel('n---->');ylabel('Amplitude---
-.'); title('autocorr seq for input');
disp('autocorr seq for input');
disp(y)
p=fft(y,N);
subplot(3,1,3
); stem(n,p);
xlabel('K----->');ylabel('Amplitude--->');
title('psd         of
input'); disp('the
psd            fun:');
disp(p)


Program1:
clc;
close
all;
clear
all;
n=0:40;
D=10
;
x=3*cos(2*pi*0.1*n)-2*cos(2*pi*0.4*n);
xd=[zeros(1,D)
x];
y=n.*xd(n+D);
n1=n+D;
yd=n1.*x;
d=y-yd;
if d
   disp('Given system is not satisfy time shifting property');
else
   disp('Given system is satisfy time shifting property');
end
subplot(3,1,1),stem(y),gri
d;
subplot(3,1,2),stem(yd),g
rid;
subplot(3,1,3),stem(d),gri
d;
Program
2:
clc;
close
all;
clear
all;
n=0:40;
D=10;
x=3*cos(2*pi*0.1*n)-2*cos(2*pi*0.4*n);
xd=[zeros(1,D)
x]; x1=xd(n+D);
y=exp(x1);
n1=n+D;
yd=exp(xd(n1));
d=y-yd;
if d
   disp('Given system is not satisfy time shifting property');
else
   disp('Given system is satisfy time shifting property');
end
subplot(3,1,1),stem(y),gri
d;
subplot(3,1,2),stem(yd),g
rid;
subplot(3,1,3),stem(d),gri
d;
CONCLUSION:
EXP.NO:8

   COMPUTATION OF UNIT SAMPLE, UNIT STEP AND SINUSOIDAL
    RESPONSE OF THE GIVEN LTI SYSTEM AND VERIFYING ITS
     PHYSICAL REALIZABILITY AND STABILITY PROPERTIES.


Aim: To Unit Step And Sinusoidal Response Of The Given LTI System And
Verifying
Its Physical Realizability And Stability
Properties.

EQUIPMENTS:
PC        with              windows
(95/98/XP/NT/2000).
MATLAB
Software


%calculate and plot the impulse response and step
response b=[1];
a=[1,-1,.9];
x=impseq(0,-20,120); n = [-20:120]; h=filter(b,a,x); subplot(3,1,1);stem(n,h);
title('impulse response'); xlabel('n');ylabel('h(n)');
=stepseq(0,-20,120); s=filter(b,a,x); s=filter(b,a,x); subplot(3,1,2); stem(n,s);
title('step response'); xlabel('n');ylabel('s(n)') t=0:0.1:2*pi;
x1=sin(t);
%impseq(0,-20,120); n = [-20:120]; h=filter(b,a,x1); subplot(3,1,3);stem(h);
title('sin response'); xlabel('n');ylabel('h(n)'); figure;
zplane(b,a);
Basic simulation lab manual1
CONCLUSION: I
EXP.NO: 9                     GIBBS      PHENOMENON

Aim: To verify the Gibbs Phenomenon.

EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software

Gibbs Phenomina Program :

t=0:0.1:(pi*8); y=sin(t); subplot(5,1,1); plot(t,y); xlabel('k');
ylabel('amplitude'); title('gibbs phenomenon'); h=2;
%k=3;
for k=3:2:9 y=y+sin(k*t)/k; subplot(5,1,h);
plot(t,y); xlabel('k'); ylabel('amplitude'); h=h+1;
end
CONCLUSION: In this experiment Gibbs phenomenon have been
demonstrated Using MATLAB
EXP.NO: 10.

   FINDING THE FOURIER TRANSFORM OF A GIVEN SIGNAL AND
        PLOTTING ITS MAGNITUDE AND PHASE SPECTRUM

Aim: to find the fourier transform of a given signal and plotting its
magnitude and phase spectrum

EQUIPMENTS:
 PC with windows (95/98/XP/NT/2000).
 MATLAB Software

EQUIPMENTS:
      PC with windows (95/98/XP/NT/2000).
MATLAB Software



  Program:
 clc;
close all;
clear all;
x=input('enter the sequence'); N=length(x);
n=0:1:N-1; y=fft(x,N) subplot(2,1,1); stem(n,x);
title('input sequence'); xlabel('time index n----->'); ylabel('amplitude x[n]-
---> '); subplot(2,1,2);
stem(n,y);
title('output sequence');
xlabel(' Frequency index K---->');
ylabel('amplitude X[k]------>');
FFT magnitude and Phase plot:

clc
close all x=[1,1,1,1,zeros(1,4)]; N=8;
X=fft(x,N); magX=abs(X),phase=angle(X)*180/pi; subplot(2,1,1)
plot(magX); grid xlabel('k')
ylabel('X(K)') subplot(2,1,2) plot(phase);
grid xlabel('k') ylabel('degrees')
CONCLUSION: In this experiment the fourier transform of a given signal
and plotting its magnitude and phase spectrum have been demonstrated
using matlab
Exp:11
                               LAPLACE TRNASFORMS

Aim: To perform waveform synthesis using Laplece Trnasforms of a given
signal
Program for Laplace Transform:
 f=t
 syms f t; f=t; laplace(f)
 Program for nverse Laplace Transform
 f(s)=24/s(s+8) invese LT
 syms F s F=24/(s*(s+8)); ilaplace(F)
 y(s)=24/s(s+8) invese LT poles and zeros
Signal synthese using Laplace Tnasform:
clear all clc t=0:1:5 s=(t);
subplot(2,3,1) plot(t,s); u=ones(1,6) subplot(2,3,2) plot(t,u); f1=t.*u;
subplot(2,3,3) plot(f1);
s2=-2*(t-1); subplot(2,3,4); plot(s2);
u1=[0 1 1 1 1 1]; f2=-2*(t-1).*u1; subplot(2,3,5); plot(f2);
u2=[0 0 1 1 1 1]; f3=(t-2).*u2; subplot(2,3,6); plot(f3); f=f1+f2+f3; figure;
plot(t,f);
% n=exp(-t);
% n=uint8(n);
% f=uint8(f);
% R = int(f,n,0,6)
laplace(f);
Basic simulation lab manual1
CONCLUSION: In this experiment the Triangular signal synthesised using
Laplece Trnasforms using MATLAB
EXP.NO: 12

 LOCATING THE ZEROS AND POLES AND PLOTTING THE POLE ZERO
MAPS IN S-PLANE AND Z-PLANE FOR THE GIVEN TRANSFER FUNCTION.


Aim: To locating the zeros and poles and plotting the pole zero maps in
s-plane and z- plane for the given transfer function

EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software

clc; close all clear all;
%b= input('enter the numarator cofficients')
%a= input('enter the denumi cofficients')
b=[1 2 3 4] a=[1 2 1 1 ] zplane(b,a);




                                 Result: :
EXP.NO: 13
                     13. Gaussian noise


 %Estimation of Gaussian density and Distribution Functions

 %% Closing and Clearing
 all clc;
 clear all;
 close all;

 %% Defining the range for the Random
 variable dx=0.01; %delta x
 x=-3:dx:3; [m,n]=size(x);

 %% Defining the parameters of the pdf
 mu_x=0;    % mu_x=input('Enter the value of mean');
 sig_x=0.1; % sig_x=input('Enter the value of varience');

 %% Computing the probability density
 function px1=[];
 a=1/(sqrt(2*pi)*sig_x);
 for j=1:n
   px1(j)=a*exp([-((x(j)-mu_x)/sig_x)^2]/2);
 end

 %% Computing the cumulative distribution
 function cum_Px(1)=0;
 for j=2:n
   cum_Px(j)=cum_Px(j-1)+dx*px1(j);
 end

 %% Plotting the
 results figure(1)
 plot(x,px1);grid
 axis([-3 3 0 1]);
 title(['Gaussian pdf for mu_x=0 and sigma_x=', num2str(sig_x)]);
 xlabel('--> x')
 ylabel('--> pdf')
 figure(2)
 plot(x,cum_Px);gri
 d axis([-3 3 0 1]);
 title(['Gaussian Probability Distribution Function for mu_x=0 and
 sigma_x=', num2str(sig_x)]);
 title('ite^{omegatau} = cos(omegatau) + isin(omegatau)')
xlabel('--> x')
 ylabel('--> PDF')
EXP.NO: 14
                    14. Sampling theorem verification


Aim: To detect the edge for single observed image using sobel edge detection
and canny edge detection.

EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software
Figure 2: (a) Original signal g(t) (b) Spectrum G(w)
δ (t) is the sampling signal with fs = 1/T > 2fm.




Figure 3: (a) sampling signal δ (t) ) (b) Spectrum δ (w)

Let gs(t) be the sampled signal. Its Fourier Transform Gs(w) isgiven by




Figure 4: (a) sampled signal gs(t) (b) Spectrum Gs(w)
To recover the original signal G(w):
1. Filter with a Gate function, H2wm(w) of width 2wm
Scale it by T.




Figure 5: Recovery of signal by filtering with a fiter of width 2wm


Aliasing
{ Aliasing is a phenomenon where the high frequency components of the
sampled signal interfere with each other because of inadequate sampling
ws < 2wm.




Figure 6: Aliasing due to inadequate sampling
Aliasing leads to distortion in recovered signal. This is the
reason why sampling frequency should be atleast twice thebandwidth of
the signal. Oversampling
{ In practice signal are oversampled, where fs is
signi_cantly higher than Nyquist rate to avoid
aliasing.




Figure 7: Oversampled signal-avoids aliasing t=-10:.01:10;
 T=4; fm=1/T; x=cos(2*pi*fm*t); subplot(2,2,1); plot(t,x);
 xlabel('time');ylabel('x(t)') title('continous time signal') grid;
 n1=-4:1:4 fs1=1.6*fm; fs2=2*fm; fs3=8*fm;
x1=cos(2*pi*fm/fs1*n1); subplot(2,2,2); stem(n1,x1); xlabel('time');ylabel('x(n)')
title('discrete time signal with fs<2fm')
hold on subplot(2,2,2); plot(n1,x1) grid;
 n2=-5:1:5; x2=cos(2*pi*fm/fs2*n2); subplot(2,2,3); stem(n2,x2);
 xlabel('time');ylabel('x(n)')
title('discrete time signal with fs=2fm')
 hold on

subplot(2,2,3); plot(n2,x2) grid;
 n3=-20:1:20;
Basic simulation lab manual1
x3=cos(2*pi*fm/fs3*n
 3); subplot(2,2,4);
 stem(n3,x3);
 xlabel('time');ylabel('x(
 n)')
title('discrete time signal with fs>2fm')
 hold on
subplot(2,2
,4);
plot(n3,x3)
grid;




CONCLUSION: In this experiment the sampling theorem have been verified
 Using MATLAB
Basic simulation lab manual1
EXP.No:1
5
REMOVAL OF NOISE BY AUTO CORRELATION/CROSS
                       CORRELATION


Aim: removal of noise by auto correlation/cross correlation


EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software

a)auto correlation clear all
clc t=0:0.1:pi*4; s=sin(t);
k=2; subplot(6,1,1) plot(s); title('signal s'); xlabel('t');
ylabel('amplitude'); n = randn([1 126]); f=s+n; subplot(6,1,2) plot(f);
title('signal f=s+n'); xlabel('t'); ylabel('amplitude'); as=xcorr(s,s); subplot(6,1,3)
plot(as);
title('auto correlation of s'); xlabel('t'); ylabel('amplitude'); an=xcorr(n,n);
subplot(6,1,4)
plot(an);

title('auto correlation of
n'); xlabel('t');
ylabel('amplitude');
cff=xcorr(f,f);
subplot(6,1,5)
plot(cff);
title('auto correlation of
f'); xlabel('t');
ylabel('amplitude');
hh=as+an;
subplot(6,1,6)
plot(hh);
title('addition of
as+an'); xlabel('t');
ylabel('amplitude');
B)CROSS CORRELATION :

clear all clc
t=0:0.1:pi*4;
s=sin(t);
k=2;
%sk=sin(t+k);
subplot(7,1,1)
plot(s);
title('signal s');xlabel('t');ylabel('amplitude');
c=cos(t); subplot(7,1,2) plot(c);
title('signal c');xlabel('t');ylabel('amplitude');
n = randn([1 126]); f=s+n; subplot(7,1,3) plot(f);
title('signal f=s+n');xlabel('t');ylabel('amplitude');
asc=xcorr(s,c); subplot(7,1,4) plot(asc);
title('auto correlation of s and c');xlabel('t');ylabel('amplitude');
anc=xcorr(n,c); subplot(7,1,5) plot(anc);
title('auto correlation of n and c');xlabel('t');ylabel('amplitude');
cfc=xcorr(f,c); subplot(7,1,6) plot(cfc);
title('auto correlation of f and c');xlabel('t');ylabel('amplitude');
hh=asc+anc; subplot(7,1,7) plot(hh);
title('addition of asc+anc');xlabel('t');ylabel('amplitude');




                                          76
Result:
Basic simulation lab manual1
EXP.No:16
                     Program:
EXTRACTION OF
                     Clear all; close all; clc; n=256; k1=0:n-1;
                            P
                     x=cos(32*pi*k1/n)+sin(48*pi*k1/n);
                            E
                     plot(k1,x)
                            R
                     %Module to find period of input signl k=2;
                            I
                     xm=zeros(k,1); ym=zeros(k,1); hold on
                            O
                     for i=1:k
                            D
                       [xm(i) ym(i)]=ginput(1);
                            I
                          plot(xm(i), ym(i),'r*');
                            C
                     end
                          period=abs(xm(2)-xm(1)); rounded_p=round(period);
                            S
                       m=rounded_p
                            I
                     % Adding noise and plotting noisy signal
                            G
                            N
                            A
                            L

                            M
                            A
                     y=x+randn(1,n);
                            S
                     figure plot(k1,y)
                            K
                            E
                            D

                            B
                            Y

                            N
                            O
                            I
                            S
                            E

                            U
                            S
                            I
                            N
                            G

                            C
                            O
                            R
                            R
                            E
                            L
                            A
                            T
                            I
                            O
                            N
    Extraction of
   Periodic Signal
  Masked By Noise
        Using
     Correlation
% To generate impulse train with the period as that of input signal
d=zeros(1,n);
for i=1:n

if (rem(i-1,m)==0)

  d(i)=1;

end end
%Correlating noisy signal and impulse train cir=cxcorr1(y,d);
%plotting the original and reconstructed signal m1=0:n/4;
figure

Plot (m1,x(m1+1),'r',m1,m*cir(m1+1));
Basic simulation lab manual1
CONCLUSION: In this experiment the Weiner-Khinchine Relation have
been verified using MATLAB.
EXP.No:17
       VERIFICATION OF WIENER–KHINCHIN RELATION


AIM: Verification of wiener–khinchine relation

EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software

PROGRAM:
Clc
clear all;
t=0:0.1:2*pi; x=sin(2*t); subplot(3,2,1); plot(x); au=xcorr(x,x); subplot(3,2,2);
plot(au); v=fft(au); subplot(3,2,3); plot(abs(v)); fw=fft(x); subplot(3,2,4);
plot(fw);
fw2=(abs(fw)).^2;
subplot(3,2,5); plot(fw2);




Result:
EXP18.

  CHECKING A RANDOM PROCESS FOR STATIONARITY IN WIDE SENSE.


 AIM: Checking a random process for stationary in wide sense.

EQUIPMENTS:
PC with windows (95/98/XP/NT/2000).
MATLAB Software

MATLAB PROGRAM:

Clear all
Clc
y = randn([1 40]) my=round(mean(y));
z=randn([1 40]) mz=round(mean(z)); vy=round(var(y)); vz=round(var(z));
t = sym('t','real'); h0=3; x=y.*sin(h0*t)+z.*cos(h0*t); mx=round(mean(x));
k=2;
xk=y.*sin(h0*(t+k))+z.*cos(h0*(t+k));
x1=sin(h0*t)*sin(h0*(t+k));
x2=cos(h0*t)*cos(h0*(t+k)); c=vy*x1+vz*x1;
% if we solve “c=2*sin (3*t)*sin (3*t+6)" we get c=2cos (6)
% which is a costant does not depent on variable’t’
% so it is wide sence stationary




Result:

More Related Content

PDF
vlsi projects using verilog code 2014-2015
PPTX
What is 16 qam modulation
PDF
Signal Processing Introduction using Fourier Transforms
PPTX
Cadence Design Flow.pptx
PDF
Digital signal Processing all matlab code with Lab report
PPTX
Low level injection
vlsi projects using verilog code 2014-2015
What is 16 qam modulation
Signal Processing Introduction using Fourier Transforms
Cadence Design Flow.pptx
Digital signal Processing all matlab code with Lab report
Low level injection

What's hot (20)

PDF
Optical Transceivers for Datacom & Telecom 2020
PPTX
Ion implantation VLSI
DOCX
HDL Implementation of Vending Machine Report with Verilog Code
DOC
PIC MICROCONTROLLERS -CLASS NOTES
DOC
DPSK(Differential Phase Shift Keying) transmitter and receiver
PPTX
Planar fabrication technology
PDF
Introduction to VLSI Design
PPTX
Wallace tree multiplier.pptx1
PDF
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
PPT
digital logic_families
PPTX
Fourier Series for Continuous Time & Discrete Time Signals
PDF
IC Fabrication Process
PDF
Taub’s Principles of Communication Systems (Herbert Taub, Donald L. Schilling...
PPTX
Introduction to SILVACO and MOSFET Simulation technique
PPT
Multipliers in VLSI
PPT
Cyclone IV FPGA Device
PPTX
Interconnect timing model
PDF
Fabrication process of Integrated Circuit (IC's)
PPTX
Presentation on Scaling
Optical Transceivers for Datacom & Telecom 2020
Ion implantation VLSI
HDL Implementation of Vending Machine Report with Verilog Code
PIC MICROCONTROLLERS -CLASS NOTES
DPSK(Differential Phase Shift Keying) transmitter and receiver
Planar fabrication technology
Introduction to VLSI Design
Wallace tree multiplier.pptx1
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
digital logic_families
Fourier Series for Continuous Time & Discrete Time Signals
IC Fabrication Process
Taub’s Principles of Communication Systems (Herbert Taub, Donald L. Schilling...
Introduction to SILVACO and MOSFET Simulation technique
Multipliers in VLSI
Cyclone IV FPGA Device
Interconnect timing model
Fabrication process of Integrated Circuit (IC's)
Presentation on Scaling
Ad

Similar to Basic simulation lab manual1 (20)

PDF
Dsp Lab Record
PDF
Matlab 2
PDF
Adv. Digital Signal Processing LAB MANUAL.pdf
DOC
Dsp 1recordprophess-140720055832-phpapp01
DOC
Digital Signal Processing Lab Manual ECE students
DOC
Dsp manual
PPTX
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
PDF
Matlab programs
PDF
DSP Lab 1-6.pdf
PDF
Fast Fourier Transform (FFT) of Time Series in Kafka Streams
PDF
Dsp file
PDF
Signal Prosessing Lab Mannual
PDF
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
PDF
BS LAB Manual (1).pdf
PPTX
DSP_EXP.pptx
PPTX
DSP_EXP. digital signal processing pptx
PPTX
DSP_EXP. digital signal processing pptx
PPTX
DSP_EXP of matlab experiments for signal.pptx
PPTX
DSP_EXP. digital signal processing pptx
Dsp Lab Record
Matlab 2
Adv. Digital Signal Processing LAB MANUAL.pdf
Dsp 1recordprophess-140720055832-phpapp01
Digital Signal Processing Lab Manual ECE students
Dsp manual
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
Matlab programs
DSP Lab 1-6.pdf
Fast Fourier Transform (FFT) of Time Series in Kafka Streams
Dsp file
Signal Prosessing Lab Mannual
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
BS LAB Manual (1).pdf
DSP_EXP.pptx
DSP_EXP. digital signal processing pptx
DSP_EXP. digital signal processing pptx
DSP_EXP of matlab experiments for signal.pptx
DSP_EXP. digital signal processing pptx
Ad

Recently uploaded (20)

PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
PPTX
Modernising the Digital Integration Hub
PPTX
Module 1 Introduction to Web Programming .pptx
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PPTX
The various Industrial Revolutions .pptx
PPTX
Training Program for knowledge in solar cell and solar industry
PDF
Consumable AI The What, Why & How for Small Teams.pdf
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
STKI Israel Market Study 2025 version august
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
Build Your First AI Agent with UiPath.pptx
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PPTX
Configure Apache Mutual Authentication
PDF
A review of recent deep learning applications in wood surface defect identifi...
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
Architecture types and enterprise applications.pdf
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
A contest of sentiment analysis: k-nearest neighbor versus neural network
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
Modernising the Digital Integration Hub
Module 1 Introduction to Web Programming .pptx
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
The various Industrial Revolutions .pptx
Training Program for knowledge in solar cell and solar industry
Consumable AI The What, Why & How for Small Teams.pdf
Taming the Chaos: How to Turn Unstructured Data into Decisions
STKI Israel Market Study 2025 version august
Module 1.ppt Iot fundamentals and Architecture
Build Your First AI Agent with UiPath.pptx
The influence of sentiment analysis in enhancing early warning system model f...
Configure Apache Mutual Authentication
A review of recent deep learning applications in wood surface defect identifi...
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
Convolutional neural network based encoder-decoder for efficient real-time ob...
Architecture types and enterprise applications.pdf
sustainability-14-14877-v2.pddhzftheheeeee
Final SEM Unit 1 for mit wpu at pune .pptx

Basic simulation lab manual1

  • 1. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Siddharth Institute of Engineering and Technology (Affiliated to J.N.T.UNIVERSITY, ANANTAPUR) Narayanavanam, puttur, AP. II YEAR BTECH I SEMESTER BASIC SIMULATION LAB MANUAL PREPARED BY: VERIFIED BY: LIST OF EXPERIMENTS S.No Name of the Experiment Basic operations on matrices. 1. Generation on various signals and Sequences (periodic and a periodic), such as unit impulse, unit step, square, saw tooth, 2. triangular, sinusoidal, ramp, sinc. Operations on signals and sequences such as addition, multiplication, scaling, shifting, folding, computation of 3. energy and average power. Finding the even and odd parts of signal/sequence and real 4. and imaginary part of signal.
  • 2. 5. Convolution between signals and sequences Auto correlation and cross correlation between signals and 6. sequences. Verification of linearity and time invariance properties of a 7. given continuous /discrete system. Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical 8. Reliability and stability properties. Gibbs phenomenon. 9. Finding the Fourier transform of a given signal and plotting 10. its magnitude and phase spectrum 11. Waveform synthesis using Laplace Transform. Locating the zeros and poles and plotting the pole zero maps 12. in s8plane and z8plane for the given transfer function. Generation of Gaussian Noise (real and complex),computation of its mean, M.S. Value and its skew, 13. kurtosis, and PSD, probability distribution function. 14. Sampling theorem verification. 15. Removal of noise by auto correlation/cross correlation. Extraction of periodic signal masked by noise using 16. correlation. 17. Verification of Weiner8Khinchine relations. 18. Checking a random process for stationary in wide sense. 1
  • 4. BASIC OPERATIONS ON MATRICES Aim: To generate matrix and perform basic operation on matrices Using MATLAB Software. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software CONCLUSION: EXP.NO: 2 GENERATION OF VARIOUS SIGNALS AND SEQUENCES (PERIODIC AND APERIODIC), SUCH AS UNIT IMPULSE, UNIT STEP, SQUARE, SAWTOOTH, TRIANGULAR, SINUSOIDAL, RAMP, SINC. Aim: To generate different types of signals Using MATLAB Software. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software Matlab program: %unit impulse generation clc close all n1=-3; n2=4; n0=0; n=[n1:n 2]; x=[(n-n0)==0] stem(n,x) % unit step generation n1=-4; n2=5; n0=0;
  • 5. 9
  • 7. % square wave wave generator fs = 1000; t = 0:1/fs:1.5; x1 = sawtooth(2*pi*50*t); x2 = square(2*pi*50*t); subplot(2,2,1),plot(t,x1), axis([0 0.2 -1.2 1.2]) xlabel('Time (sec)');ylabel('Amplitude'); title('Sawtooth Periodic Wave') subplot(2,2,2),plot(t,x2), axis([0 0.2 -1.2 1.2]) xlabel('Time (sec)');ylabel('Amplitude'); title('Square Periodic Wave'); subplot(2,2,3),stem(t,x2), axis([0 0.1 -1.2 1.2]) xlabel('Time (sec)');ylabel('Amplitude'); % sawtooth wave generator fs = 10000; t = 0:1/fs:1.5; x = sawtooth(2*pi*50*t); subplot(1,2,1); plot(t,x), axis([0 0.2 -1 1]); xlabel('t'),ylabel('x(t)') title('sawtooth signal'); N=2; fs = 500;n = 0:1/fs:2; x = sawtooth(2*pi*50*n); subplot(1,2,2);
  • 8. stem(n,x), axis([0 0.2 -1 1]); xlabel('n'),ylabel('x(n)') title('sawtooth sequence'); To generate a trianguular pulse A=2; t = 0:0.0005:1; x=A*sawtooth(2*pi*5*t,0.25); %5 Hertz wave with duty cycle 25% plot(t,x); grid axis([0 1 -3 3]); %%To generate a trianguular pulse fs = 10000;t = -1:1/fs:1; x1 = tripuls(t,20e-3); x2 = rectpuls(t,20e-3); subplot(211),plot(t,x1), axis([-0.1 0.1 -0.2 1.2]) xlabel('Time (sec)');ylabel('Amplitude'); title('Triangular Aperiodic Pulse') subplot(212),plot(t,x2), axis([-0.1 0.1 -0.2 1.2])
  • 9. xlabel('Time (sec)');ylabel('Amplitude'); title('Rectangular Aperiodic Pulse') set(gcf,'Color',[1 1 1]), %%To generate a rectangular pulse t=-5:0.01:5; pulse = rectpuls(t,2); %pulse of width 2 time units plot(t,pulse) axis([-5 5 -1 2]); grid
  • 11. % sinusoidal signal N=64; % Define Number of samples n=0:N-1; % Define vector n=0,1,2,3,...62,63 f=1000; % Define the frequency fs=8000; % Define the sampling frequency x=sin(2*pi*(f/fs)*n); % Generate x(t) plot(n,x); % Plot x(t) vs. t title('Sinewave [f=1KHz, fs=8KHz]'); xlabel('Sample Number'); ylabel('Amplitude'); % RAMP clc close all n=input('enter the length of ramp'); t=0:n; plot(t); xlabel('t');
  • 13. % sinc x = linspace(-5,5); y = sinc(x); subplot(1,2,1);plot(x,y ) xlabel(‘time’); ylabel(‘amplitude’); title(‘sinc function’); subplot(1,2,2);stem(x, y); xlabel(‘time’); ylabel(‘amplitude’); title(‘sinc function’);
  • 16. EXP.NO: 3 OPERATIONS ON SIGNALS AND SEQUENCES SUCH AS ADDITION, MULTIPLICATION, SCALING, SHIFTING, FOLDING, COMPUTATION OF ENERGY AND AVERAGE POWER Aim: To perform arithmetic operations different types of signals Using MATLAB Software. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Softwar %plot the 2 Hz sine wave in the top panel t = [0:.01:1]; % independent (time) variable A = 8; % amplitude f1 = 2; % create a 2 Hz sine wave lasting 1 sec s1 = A*sin(2*pi*f1*t); f2 = 6; % create a 4 Hz sine wave lasting 1 sec s2 = A*sin(2*pi*f2*t); figure subplot(4,1,1) plot(t, s1) title('1 Hz sine wave') ylabel('Amplitude') %plot the 4 Hz sine wave in the middle panel subplot(4,1,2) plot(t, s2) title('2 Hz sine wave') ylabel('Amplitude') %plot the summed sine waves in the bottom panel subplot(4,1,3) plot(t, s1+s2) title('Summed sine waves') ylabel('Amplitude') xlabel('Time (s)') xmult=s1.*s2; subplot(4,1,4); plot(xmult); title('multiplication'); ylabel('Amplitude') xlabel('Time (s)')
  • 17. %signal folding clc; clear all t=0:0.1:10; x=0.5*t; lx=length(x); nx=0:lx-1; xf=fliplr(x); nf=-fliplr(nx); subplot(2,1,1); stem(nx,x); xlabel('nx'); ylabel('x(nx)'); title('original signal'); subplot(2,1,2); stem(nf,xf); xlabel('nf'); ylabel('xf(nf)'); title('folded signal'); 23
  • 18. %plot the 2 Hz sine wave scalling t = [0:.01:1]; % independent (time) variable A = 8; % amplitude f1 = 2; % create a 2 Hz sine wave lasting 1 sec s1 = A*sin(2*pi*f1*t); subplot(3,2,1) plot(s1); xlabel('t'); ylabel('amplitude'); s2=2*s1; subplot(3,2,2) plot(s2); xlabel('t'); ylabel('amplitude');
  • 19. s3=s1/2; subplot(3,2,3) plot(s3); xlabel('t'); ylabel('amplitude'); subplot(3,2,4) stem(s1); xlabel('t'); ylabel('amplitude'); s2=2*s1; subplot(3,2,5) stem(s2); xlabel('t'); ylabel('amplitude'); s3=s1/2; subplot(3,2,6) stem(s3); xlabel('t'); ylabel('amplitude '); Excersize questions: Sketch the following questions using MATLAB 1. x(t)= u(-t+1)
  • 20. 2. x(t)=3r(t-1) 3. x(t)=U(n+2-u(n-3) 4. x(n)=x1(n)+x2(n)where x1(n)={1,3,2,1},x2(n)={1,-2,3,2} 5. x(t)=r(t)-2r(t-1)+r(t-2) 6. x(n)=2δ(n+2)-2δ(n-4), -5≤ n ≥5. 7. X(n)={1,2,3,4,5,6,7,6,5,4,2,1} determine and plot the following sequence a. x1(n)=2x(n-5-3x(n+4)) b. x2(n)=x(3-n)+x(n)x(n- 2) CONCLUSION: Inthis experiment the various oprations on signals have been performedUsing MATLAB have been demonstrated.
  • 21. EXP.NO: 4 FINDING THE EVEN AND ODD PARTS OF SIGNAL/SEQUENCE AND REAL AND IMAGINARY PART OF SIGNAL Aim: program for finding even and odd parts of signals Using MATLAB Software. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software %even and odd signals program: t=-4:1:4; h=[ 2 1 1 2 0 1 2 2 3 ]; subplot(3,2,1) stem(t,h); xlabel('time'); ylabel('amplitude'); title('signal'); n=9;
  • 22. for i=1:9 x1(i)=h(n); n=n-1; end subplot(3,2,2) stem(t,x1); xlabel('time'); ylabel('amplitude'); title('folded signal'); z=h+x1 subplot(3,2,3); stem(t,z); xlabel('time'); ylabel('amplitude'); title('sum of two signal'); subplot(3,2,4); stem(t,z/2); xlabel('time'); ylabel('amplitude'); title('even signal'); a=h- x1; subplot(3,2,5); stem(t,a); xlabel('time'); ylabel('amplitude'); title('difference of two signal'); subplot(3,2,6); stem(t,a/2); xlabel('time'); ylabel('amplitude'); title('odd signal');
  • 23. % energy clc; close all; clear all; x=[1,2,3]; n=3 e=0; for i=1:n; e=e+(x(i).*x(i)); end % energy clc; close all; clear all; N=2 x=ones(1,N) for i=1:N y(i)=(1/3)^i.*x(i); end n=N; e=0; for i=1:n; e=e+(y(i).*y(i)); end
  • 24. % power clc; close all; clear all; N=2 x=ones(1, N) for i=1:N y(i)=(1/3)^i.*x(i); end n= N; e=0 ; for i=1:n; e=e+(y(i).*y(i)) ; end p=e/(2*N+ 1); % power N=input('type a value for N'); t=-N:0.0001:N; x=cos(2*pi*50*t).^2; disp('the calculated power p of the signal is'); P=sum(abs(x).^2)/length(x) plot(t,x); axis([0 0.1 0 1]); disp('the theoretical power of the signal is'); P_theory=3/8 CONCLUSION:
  • 25. EXP.NO: 5 LINEAR CONVOLUTION Aim: To find the out put with linear convolution operation Using MATLAB Software. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software Program: clc; close all; clear all; x=input('enter input sequence'); h=input('enter impulse response'); y=conv(x,h); subplot(3,1,1); stem(x); xlabel('n');ylabel('x(n)' ); title('input signal') subplot(3,1,2); stem(h); xlabel('n');ylabel('h(n)' ); title('impulse response') subplot(3,1,3);
  • 26. stem(y); xlabel('n');ylabel('y(n)') ; title('linear convolution') disp('The resultant signal is'); disp(y) linear convolution output: enter input sequence[1 4 3 2] enter impulse response[1 0 2 1] The resultant signal is 1 4 5 11 10 7 2
  • 28. EXP.NO: 6 6. AUTO CORRELATION AND CROSS CORRELATION BETWEEN SIGNALS AND SEQUENCES. ……………………………………………………………………………………………… Aim: To compute auto correlation and cross correlation between signals and sequences EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software % Cross Correlation clc; close all; clear all; x=input('enter input sequence'); h=input('enter the impulse suquence'); subplot(3,1, 1); stem(x); xlabel('n'); ylabel('x(n)'); title('input signal'); subplot(3,1, 2); stem(h); xlabel('n'); ylabel('h(n)'); title('impulse signal'); y=xcorr(x,h); subplot(3,1,3); stem(y); xlabel('n'); ylabel('y(n)'); disp('the resultant signal is'); disp(y); title('correlation signal');
  • 30. % auto correlation clc; close all; clear all; x = [1,2,3,4,5]; y = [4,1,5,2,6]; subplot(3,1, 1); stem(x); xlabel('n'); ylabel('x(n)'); title('input signal'); subplot(3,1,2); stem(y); xlabel('n'); ylabel('y(n)'); title('input signal'); z=xcorr(x,x); subplot(3,1,3); stem(z); xlabel('n'); ylabel('z(n)'); title('resultant signal signal');
  • 31. CONCLUSION: In this experiment correlation of various signals have been performed Using MATLAB Applications:it is used to measure the degree to which the two signals are similar and it is also used for radar detection by estimating the time delay.it is also used in Digital communication, defence applications and sound navigation Excersize questions: perform convolution between the following signals 1. X(n)=[1 -1 4 ], h(n) = [ -1 2 -3 1] 2. perform convolution between the. Two periodic sequences x1(t)=e-3t{u(t)-u(t-2)} , x2(t)= e -3t for 0 ≤ t ≤ 2
  • 32. EXP.NO: 7 VERIFICATION OF LINEARITY AND TIME INVARIANCE PROPERTIES OF A GIVEN CONTINUOUS /DISCRETE SYSTEM. Aim: To compute linearity and time invariance properties of a given continuous /discrete system EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software Program1: clc; clear all; close all; n=0:40; a=2; b=1; x1=cos(2*pi*0.1*n); x2=cos(2*pi*0.4*n); x=a*x1+b*x2; y=n.*x; y1=n.*x1; y2=n.*x2; yt=a*y1+b*y2;
  • 33. d=y-yt; d=round( d) if d disp('Given system is not satisfy linearity property'); else disp('Given system is satisfy linearity property'); end subplot(3,1,1), stem(n,y); grid subplot(3,1,2), stem(n,yt); grid subplot(3,1,3), stem(n,d); grid Program2: clc; clear all; close all; n=0:40; a=2; b=- 3; x1=cos(2*pi*0.1*n) ; x2=cos(2*pi*0.4*n) ; x=a*x1+b*x2; y=x.^2; y1=x1.^2; y2=x2.^2; yt=a*y1+b*y2 ;
  • 34. d=y-yt; d=round(d ); if d disp('Given system is not satisfy linearity property'); else disp('Given system is satisfy linearity property'); end subplot(3,1,1), stem(n,y); grid subplot(3,1,2), stem(n,yt); grid subplot(3,1,3), stem(n,d); grid Program clc; close all; clear all; x=input('enter the sequence'); N=length(x); n=0:1:N-1;
  • 35. y=xcorr(x,x); subplot(3,1, 1); stem(n,x); xlabel(' n----->');ylabel('Amplitude--->'); title('input seq'); subplot(3,1,2); N=length(y); n=0:1:N-1; stem(n,y); xlabel('n---->');ylabel('Amplitude--- -.'); title('autocorr seq for input'); disp('autocorr seq for input'); disp(y) p=fft(y,N); subplot(3,1,3 ); stem(n,p); xlabel('K----->');ylabel('Amplitude--->'); title('psd of input'); disp('the psd fun:'); disp(p) Program1: clc; close all; clear all; n=0:40;
  • 36. D=10 ; x=3*cos(2*pi*0.1*n)-2*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; y=n.*xd(n+D); n1=n+D; yd=n1.*x; d=y-yd; if d disp('Given system is not satisfy time shifting property'); else disp('Given system is satisfy time shifting property'); end subplot(3,1,1),stem(y),gri d; subplot(3,1,2),stem(yd),g rid; subplot(3,1,3),stem(d),gri d;
  • 37. Program 2: clc; close all; clear all; n=0:40; D=10; x=3*cos(2*pi*0.1*n)-2*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; x1=xd(n+D); y=exp(x1); n1=n+D; yd=exp(xd(n1)); d=y-yd; if d disp('Given system is not satisfy time shifting property'); else disp('Given system is satisfy time shifting property'); end subplot(3,1,1),stem(y),gri d; subplot(3,1,2),stem(yd),g rid; subplot(3,1,3),stem(d),gri d;
  • 39. EXP.NO:8 COMPUTATION OF UNIT SAMPLE, UNIT STEP AND SINUSOIDAL RESPONSE OF THE GIVEN LTI SYSTEM AND VERIFYING ITS PHYSICAL REALIZABILITY AND STABILITY PROPERTIES. Aim: To Unit Step And Sinusoidal Response Of The Given LTI System And Verifying Its Physical Realizability And Stability Properties. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software %calculate and plot the impulse response and step response b=[1]; a=[1,-1,.9]; x=impseq(0,-20,120); n = [-20:120]; h=filter(b,a,x); subplot(3,1,1);stem(n,h); title('impulse response'); xlabel('n');ylabel('h(n)'); =stepseq(0,-20,120); s=filter(b,a,x); s=filter(b,a,x); subplot(3,1,2); stem(n,s); title('step response'); xlabel('n');ylabel('s(n)') t=0:0.1:2*pi; x1=sin(t); %impseq(0,-20,120); n = [-20:120]; h=filter(b,a,x1); subplot(3,1,3);stem(h); title('sin response'); xlabel('n');ylabel('h(n)'); figure; zplane(b,a);
  • 42. EXP.NO: 9 GIBBS PHENOMENON Aim: To verify the Gibbs Phenomenon. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software Gibbs Phenomina Program : t=0:0.1:(pi*8); y=sin(t); subplot(5,1,1); plot(t,y); xlabel('k'); ylabel('amplitude'); title('gibbs phenomenon'); h=2; %k=3; for k=3:2:9 y=y+sin(k*t)/k; subplot(5,1,h); plot(t,y); xlabel('k'); ylabel('amplitude'); h=h+1; end
  • 43. CONCLUSION: In this experiment Gibbs phenomenon have been demonstrated Using MATLAB
  • 44. EXP.NO: 10. FINDING THE FOURIER TRANSFORM OF A GIVEN SIGNAL AND PLOTTING ITS MAGNITUDE AND PHASE SPECTRUM Aim: to find the fourier transform of a given signal and plotting its magnitude and phase spectrum EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software EQUIPMENTS: PC with windows (95/98/XP/NT/2000).
  • 45. MATLAB Software Program: clc; close all; clear all; x=input('enter the sequence'); N=length(x); n=0:1:N-1; y=fft(x,N) subplot(2,1,1); stem(n,x); title('input sequence'); xlabel('time index n----->'); ylabel('amplitude x[n]- ---> '); subplot(2,1,2); stem(n,y); title('output sequence'); xlabel(' Frequency index K---->'); ylabel('amplitude X[k]------>');
  • 46. FFT magnitude and Phase plot: clc close all x=[1,1,1,1,zeros(1,4)]; N=8; X=fft(x,N); magX=abs(X),phase=angle(X)*180/pi; subplot(2,1,1) plot(magX); grid xlabel('k') ylabel('X(K)') subplot(2,1,2) plot(phase);
  • 48. CONCLUSION: In this experiment the fourier transform of a given signal and plotting its magnitude and phase spectrum have been demonstrated using matlab
  • 49. Exp:11 LAPLACE TRNASFORMS Aim: To perform waveform synthesis using Laplece Trnasforms of a given signal Program for Laplace Transform: f=t syms f t; f=t; laplace(f) Program for nverse Laplace Transform f(s)=24/s(s+8) invese LT syms F s F=24/(s*(s+8)); ilaplace(F) y(s)=24/s(s+8) invese LT poles and zeros
  • 50. Signal synthese using Laplace Tnasform: clear all clc t=0:1:5 s=(t); subplot(2,3,1) plot(t,s); u=ones(1,6) subplot(2,3,2) plot(t,u); f1=t.*u; subplot(2,3,3) plot(f1); s2=-2*(t-1); subplot(2,3,4); plot(s2); u1=[0 1 1 1 1 1]; f2=-2*(t-1).*u1; subplot(2,3,5); plot(f2); u2=[0 0 1 1 1 1]; f3=(t-2).*u2; subplot(2,3,6); plot(f3); f=f1+f2+f3; figure; plot(t,f); % n=exp(-t); % n=uint8(n); % f=uint8(f); % R = int(f,n,0,6) laplace(f);
  • 52. CONCLUSION: In this experiment the Triangular signal synthesised using Laplece Trnasforms using MATLAB
  • 53. EXP.NO: 12 LOCATING THE ZEROS AND POLES AND PLOTTING THE POLE ZERO MAPS IN S-PLANE AND Z-PLANE FOR THE GIVEN TRANSFER FUNCTION. Aim: To locating the zeros and poles and plotting the pole zero maps in s-plane and z- plane for the given transfer function EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software clc; close all clear all; %b= input('enter the numarator cofficients') %a= input('enter the denumi cofficients') b=[1 2 3 4] a=[1 2 1 1 ] zplane(b,a); Result: :
  • 54. EXP.NO: 13 13. Gaussian noise %Estimation of Gaussian density and Distribution Functions %% Closing and Clearing all clc; clear all; close all; %% Defining the range for the Random variable dx=0.01; %delta x x=-3:dx:3; [m,n]=size(x); %% Defining the parameters of the pdf mu_x=0; % mu_x=input('Enter the value of mean'); sig_x=0.1; % sig_x=input('Enter the value of varience'); %% Computing the probability density function px1=[]; a=1/(sqrt(2*pi)*sig_x); for j=1:n px1(j)=a*exp([-((x(j)-mu_x)/sig_x)^2]/2); end %% Computing the cumulative distribution function cum_Px(1)=0; for j=2:n cum_Px(j)=cum_Px(j-1)+dx*px1(j); end %% Plotting the results figure(1) plot(x,px1);grid axis([-3 3 0 1]); title(['Gaussian pdf for mu_x=0 and sigma_x=', num2str(sig_x)]); xlabel('--> x') ylabel('--> pdf') figure(2) plot(x,cum_Px);gri d axis([-3 3 0 1]); title(['Gaussian Probability Distribution Function for mu_x=0 and sigma_x=', num2str(sig_x)]); title('ite^{omegatau} = cos(omegatau) + isin(omegatau)') xlabel('--> x') ylabel('--> PDF')
  • 55. EXP.NO: 14 14. Sampling theorem verification Aim: To detect the edge for single observed image using sobel edge detection and canny edge detection. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software
  • 56. Figure 2: (a) Original signal g(t) (b) Spectrum G(w) δ (t) is the sampling signal with fs = 1/T > 2fm. Figure 3: (a) sampling signal δ (t) ) (b) Spectrum δ (w) Let gs(t) be the sampled signal. Its Fourier Transform Gs(w) isgiven by Figure 4: (a) sampled signal gs(t) (b) Spectrum Gs(w)
  • 57. To recover the original signal G(w): 1. Filter with a Gate function, H2wm(w) of width 2wm Scale it by T. Figure 5: Recovery of signal by filtering with a fiter of width 2wm Aliasing { Aliasing is a phenomenon where the high frequency components of the sampled signal interfere with each other because of inadequate sampling ws < 2wm. Figure 6: Aliasing due to inadequate sampling
  • 58. Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency should be atleast twice thebandwidth of the signal. Oversampling { In practice signal are oversampled, where fs is signi_cantly higher than Nyquist rate to avoid aliasing. Figure 7: Oversampled signal-avoids aliasing t=-10:.01:10; T=4; fm=1/T; x=cos(2*pi*fm*t); subplot(2,2,1); plot(t,x); xlabel('time');ylabel('x(t)') title('continous time signal') grid; n1=-4:1:4 fs1=1.6*fm; fs2=2*fm; fs3=8*fm; x1=cos(2*pi*fm/fs1*n1); subplot(2,2,2); stem(n1,x1); xlabel('time');ylabel('x(n)') title('discrete time signal with fs<2fm') hold on subplot(2,2,2); plot(n1,x1) grid; n2=-5:1:5; x2=cos(2*pi*fm/fs2*n2); subplot(2,2,3); stem(n2,x2); xlabel('time');ylabel('x(n)') title('discrete time signal with fs=2fm') hold on subplot(2,2,3); plot(n2,x2) grid; n3=-20:1:20;
  • 60. x3=cos(2*pi*fm/fs3*n 3); subplot(2,2,4); stem(n3,x3); xlabel('time');ylabel('x( n)') title('discrete time signal with fs>2fm') hold on subplot(2,2 ,4); plot(n3,x3) grid; CONCLUSION: In this experiment the sampling theorem have been verified Using MATLAB
  • 63. REMOVAL OF NOISE BY AUTO CORRELATION/CROSS CORRELATION Aim: removal of noise by auto correlation/cross correlation EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software a)auto correlation clear all clc t=0:0.1:pi*4; s=sin(t); k=2; subplot(6,1,1) plot(s); title('signal s'); xlabel('t'); ylabel('amplitude'); n = randn([1 126]); f=s+n; subplot(6,1,2) plot(f); title('signal f=s+n'); xlabel('t'); ylabel('amplitude'); as=xcorr(s,s); subplot(6,1,3) plot(as); title('auto correlation of s'); xlabel('t'); ylabel('amplitude'); an=xcorr(n,n); subplot(6,1,4) plot(an); title('auto correlation of n'); xlabel('t'); ylabel('amplitude'); cff=xcorr(f,f); subplot(6,1,5) plot(cff); title('auto correlation of f'); xlabel('t'); ylabel('amplitude'); hh=as+an; subplot(6,1,6) plot(hh); title('addition of as+an'); xlabel('t'); ylabel('amplitude');
  • 64. B)CROSS CORRELATION : clear all clc t=0:0.1:pi*4; s=sin(t); k=2; %sk=sin(t+k);
  • 65. subplot(7,1,1) plot(s); title('signal s');xlabel('t');ylabel('amplitude'); c=cos(t); subplot(7,1,2) plot(c); title('signal c');xlabel('t');ylabel('amplitude'); n = randn([1 126]); f=s+n; subplot(7,1,3) plot(f); title('signal f=s+n');xlabel('t');ylabel('amplitude'); asc=xcorr(s,c); subplot(7,1,4) plot(asc); title('auto correlation of s and c');xlabel('t');ylabel('amplitude'); anc=xcorr(n,c); subplot(7,1,5) plot(anc); title('auto correlation of n and c');xlabel('t');ylabel('amplitude'); cfc=xcorr(f,c); subplot(7,1,6) plot(cfc); title('auto correlation of f and c');xlabel('t');ylabel('amplitude'); hh=asc+anc; subplot(7,1,7) plot(hh); title('addition of asc+anc');xlabel('t');ylabel('amplitude'); 76
  • 68. EXP.No:16 Program: EXTRACTION OF Clear all; close all; clc; n=256; k1=0:n-1; P x=cos(32*pi*k1/n)+sin(48*pi*k1/n); E plot(k1,x) R %Module to find period of input signl k=2; I xm=zeros(k,1); ym=zeros(k,1); hold on O for i=1:k D [xm(i) ym(i)]=ginput(1); I plot(xm(i), ym(i),'r*'); C end period=abs(xm(2)-xm(1)); rounded_p=round(period); S m=rounded_p I % Adding noise and plotting noisy signal G N A L M A y=x+randn(1,n); S figure plot(k1,y) K E D B Y N O I S E U S I N G C O R R E L A T I O N Extraction of Periodic Signal Masked By Noise Using Correlation
  • 69. % To generate impulse train with the period as that of input signal d=zeros(1,n); for i=1:n if (rem(i-1,m)==0) d(i)=1; end end %Correlating noisy signal and impulse train cir=cxcorr1(y,d); %plotting the original and reconstructed signal m1=0:n/4; figure Plot (m1,x(m1+1),'r',m1,m*cir(m1+1));
  • 71. CONCLUSION: In this experiment the Weiner-Khinchine Relation have been verified using MATLAB.
  • 72. EXP.No:17 VERIFICATION OF WIENER–KHINCHIN RELATION AIM: Verification of wiener–khinchine relation EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software PROGRAM: Clc clear all; t=0:0.1:2*pi; x=sin(2*t); subplot(3,2,1); plot(x); au=xcorr(x,x); subplot(3,2,2); plot(au); v=fft(au); subplot(3,2,3); plot(abs(v)); fw=fft(x); subplot(3,2,4); plot(fw); fw2=(abs(fw)).^2; subplot(3,2,5); plot(fw2); Result:
  • 73. EXP18. CHECKING A RANDOM PROCESS FOR STATIONARITY IN WIDE SENSE. AIM: Checking a random process for stationary in wide sense. EQUIPMENTS: PC with windows (95/98/XP/NT/2000). MATLAB Software MATLAB PROGRAM: Clear all Clc y = randn([1 40]) my=round(mean(y)); z=randn([1 40]) mz=round(mean(z)); vy=round(var(y)); vz=round(var(z)); t = sym('t','real'); h0=3; x=y.*sin(h0*t)+z.*cos(h0*t); mx=round(mean(x)); k=2; xk=y.*sin(h0*(t+k))+z.*cos(h0*(t+k)); x1=sin(h0*t)*sin(h0*(t+k)); x2=cos(h0*t)*cos(h0*(t+k)); c=vy*x1+vz*x1; % if we solve “c=2*sin (3*t)*sin (3*t+6)" we get c=2cos (6) % which is a costant does not depent on variable’t’ % so it is wide sence stationary Result: